Linear Algebra

CSCI 2820

Lecture 14
Prof. Alexandra Kolla
Alexandra.Kolla@Colorado.edu ECES 122

Today

- Matrices, contd.
- Examples and exercises

Matrix vector multiplication
A $m \times n$ matrix
$\vec{x} \quad n$-vector
def: Matrix-vector product $\overrightarrow{\underline{y}}=A \frac{\vec{x}}{\vec{m} \text {-vector }} \frac{\vec{n} \text { vector }}{}$

$$
\begin{aligned}
& y_{i}: \sum_{k=1}^{n} A_{i k} x_{k}=A_{i 1} x_{1}+\cdots+A_{i n} x_{n}, \quad i=1, \ldots, m \\
&=\left\langle b_{i}, x\right\rangle \\
& e g:\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 1
\end{array}\right] & {\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
0.2+2 \cdot 1+(-1)(-1) \\
-2 \cdot 2+(1)(1)+(\lambda)(-1)
\end{array}\right]=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
\end{aligned}
$$

Matrix vector multiplication
$y_{i}=\left\langle b_{i}, x\right\rangle, b_{i}$ is sow i of A $\left(b_{i}^{\top} x\right)$
k-th column vector of $A \vec{a} k$:

$$
\vec{y}=A \vec{x}=x_{1} \vec{a}_{1}+x_{2} \overrightarrow{a_{2}}+\cdots+x_{n} \vec{d}_{n}
$$

verity:

$$
\begin{aligned}
y_{2} & =x_{1} a_{1}(i)+\cdots+x_{n} a_{n}(i) \\
& =x_{1} A_{i 1}+\ldots+x_{n} A_{i n}
\end{aligned}
$$

Matrix vector multiplication
examples A man matix, \vec{x} nuector
(in) zero matrix. $A=0, A \vec{x}=0 \forall \vec{\pi}$
(2) Identity vatrix. $I \vec{x}=\vec{x}$
$(n \times n)$
(3) Dicking art columus and raws: $A \vec{e}_{j}=\vec{a}_{j}$

$$
\begin{aligned}
& \text { (3) Dicking ait columus and raws: } A e_{j}=a_{j} \\
& {\left[\begin{array}{l}
A_{1} \ldots A_{1} \\
A_{n 1} \ldots A_{n n}
\end{array}\right]\left[\begin{array}{c}
\dot{0} \\
\vdots \\
\dot{A}
\end{array}\right]=\left[\begin{array}{c}
A_{11} \\
A_{n 1}
\end{array}\right]=\vec{a}_{1} \quad\left(A^{\top} e_{i}\right)^{\top}=\overrightarrow{b_{i}}}
\end{aligned}
$$

(4) Averaging colums or raws. $A \frac{\overrightarrow{1}}{n}=[\quad] y_{i}=\frac{1}{n} \sum_{n=1}^{n} A_{i k}$

$$
A^{\top} \overrightarrow{1}=\left[\vec{y}=\sum_{k=1}^{n} A_{k i} \quad\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right)\right.
$$

Matrix vector multiplication
(5) Difference matrix

$$
\begin{aligned}
& (n-1) \times n \\
& D=\left[\begin{array}{cccccc}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
& & \cdots & & & \\
0 & 0 & 0 & \cdots & \cdots & -1 \\
0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1
\end{array}\right], D \vec{x}=\left[\begin{array}{c}
\\
y_{1} \\
x_{2}-\lambda_{1} \\
x_{3}-12 \\
\vdots \\
x_{n}-x_{n-1}
\end{array}\right]
\end{aligned}
$$

(6) Running sum matrix

$$
\begin{aligned}
& \text { uning } \operatorname{sum} \text { matrix } \\
& S=\left[\begin{array}{ccccc}
1 & & & \\
1 & 1 & & \\
1 & 1 & 1 \\
1 & \vdots & 1 & & \\
\vdots & 1 & \ddots & \ddots & 1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\\
x
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
x_{1}+x_{2}+x_{3} \\
\vdots \\
x_{1}+\cdots+m_{n}
\end{array}\right]
\end{aligned}
$$

Application examples:
Polynomial evaluation of multiple points

$$
p(t)=c_{1}+c_{2} t+\cdots+c_{n-1} t^{n-2}+c_{n} t^{n-1}
$$

value of $p(t)$ at t_{1}, \ldots, t_{m}

$$
\begin{aligned}
& \vec{y}=\left[\begin{array}{c}
p\left(t_{1}\right) \\
\vdots \\
p\left(t_{n}\right)
\end{array}\right], y_{1}^{\prime}=p\left(t_{i}\right) \\
& A=\left[\begin{array}{ccc}
1 & t_{1} & \cdots \\
t_{1}^{n-2} & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{n-2} \\
\vdots & t_{2}^{n-1} \\
1 & t_{m} & t_{m}^{n-2} \\
t_{m}^{n-1}
\end{array}\right], \text { then } A \vec{c}=\vec{y} \\
& \vec{C}=\left[\begin{array}{c}
c \\
\vdots \\
c_{n}
\end{array}\right] \quad \rightarrow \vec{y} \quad \vec{y} \text { is }
\end{aligned}
$$

- Inner produA: $\vec{a}, \vec{b}, a^{\top} \vec{b}=\vec{y}$ y is 1-dim (1) n n-vector matrix
- Linear dependence of columns
$A=\left[\begin{array}{lll}\vec{a}_{1} \ldots & \vec{a}_{n}\end{array}\right], \vec{a}_{i}$'s ar L. D if $\vec{A}=0$ for some $\vec{x} \neq 0$
and L.I if $A \vec{x}=0$ implies $x=0$
Pf: $: A_{\vec{a}}=x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=0$ for some $\vec{i} \neq 0 \Rightarrow L . D$
- If $\left\{\vec{a}_{i}\right\}$ basis ; for any n-vector \vec{b}_{0} the re is α unique n-vectur ' $x: A \vec{x}=\vec{b}$
(since $\left\{\vec{a}_{i}\right\}$ basis: $\vec{b}=\underbrace{\dot{x}_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}}_{\overrightarrow{A_{x}}}$)
Poperies of matrix-vector

$$
\begin{aligned}
& \text { - } A(\vec{u}+\vec{v})=\underbrace{A \vec{u}}+\underbrace{\overrightarrow{u_{u}}} \text { (distributes) } \\
& \cdot(A+B) \vec{u}=A \vec{u} \pm \vec{u}
\end{aligned} \quad \underbrace{(a A) \vec{u}=a \cdot(A \vec{u})} \begin{array}{r}
=a \vec{u}
\end{array}
$$

Exercises

Suppose A is the adjacency matrix of a directed graph. The reversed graph is obtained by reversing the directions of all the edges of the original graph. What is the adjacency matrix of the reversed graph? (Express your answer in terms of A.)

$$
\begin{aligned}
& A_{i j}= \begin{cases}1 ; f(i, j) \text { edge (or }(i, j) \in R) \\
\theta \text { ow }\end{cases} \\
& \text { (square, } n \times n \text {) } \\
& \text { answer: } \quad(i, j) \in R \\
& \\
& (j, i) e R^{r e r} \\
& A_{i j}=1 \Rightarrow \\
& A_{i j}=0 \Rightarrow B j=1 \Rightarrow B=A^{T}
\end{aligned}
$$

Exercises
Matrix-vector multiplication. For each of the following matrices, describe in words how x and $y=A x$ are related. In each case x and y are n-vectors, with $n=3 k$.
(a) $A=\left[\begin{array}{ccc}0 & 0 & I_{k} \\ 0 & I_{k} & 0 \\ I_{k} & 0 & 0\end{array}\right]$.
ywis a $3 k$-di mvector colum

$$
\left.[]_{3 k \times 1}^{[}\right]
$$

(b) $A=\left[\begin{array}{ccc}E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & E\end{array}\right]$, where E is the $k \times k$ matrix with all entries $1 / k$.

$$
\begin{aligned}
& X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
\times 3 k
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
x_{k+1} \\
\dot{x_{2 k}} \\
x_{2 k+1} \\
\vdots \\
x_{3 k}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{x_{(1)}} \\
\overrightarrow{x_{(2)}} \\
\overrightarrow{x_{(3)}} \\
\text { matrix }
\end{array}\right] \\
& \text { - } \vec{x}_{(1)}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right], \vec{x}_{(2)}=\left[\begin{array}{c}
x_{k+1} \\
\vdots \\
\lambda_{2 k}
\end{array}\right] \overrightarrow{x_{(3)}}=\left[\begin{array}{c}
x_{2} k+1 \\
\vdots \\
x_{3 k}
\end{array}\right]
\end{aligned}
$$

Exercises
(b) $\left[\begin{array}{lll}\begin{array}{lll}E 00 \\ 0 E 0\end{array} \\ \underset{\substack{0}}{00}\end{array}\right]\left[\begin{array}{l}\vec{x}(1) \\ \overrightarrow{x_{2}(2)} \\ \vec{x}(2)\end{array}\right]=$

Exercises

Let A and B be two $m \times n$ matrices. Under each of the assumptions below, determine whether $A=B$ must always hold, or whether $A=B$ holds only sometimes.
(a) Suppose $A x=B x$ holds for all n-vectors x.
(b) Suppose $A x=B x$ for some nonzero n-vector x.
(a) $\vec{x}=\vec{c}_{j}$ always

$$
\begin{aligned}
& A \overrightarrow{e_{j}}=B_{e} \overrightarrow{a_{j}}
\end{aligned} \frac{\overrightarrow{a_{j}}=\overrightarrow{b_{j}}}{\text { do this fer even g } \overrightarrow{e_{j}}: A_{i j}=B_{i j} \forall i=A_{i j}}+B_{i j},
$$

(b) only sometimes

$$
\begin{aligned}
& \vec{x}=\overrightarrow{e_{1}}: \quad \overrightarrow{a_{1}}=\overrightarrow{b_{1}}=\vec{v} \\
& A=\left[\begin{array}{lll}
\vec{w} & \overrightarrow{a_{2}} & \cdots \vec{a}_{n}
\end{array}\right] \quad \overrightarrow{a_{i} \neq b_{1}}
\end{aligned}
$$

Exercises

Norm of matrix-vector product. Suppose A is an $m \times n$ matrix and x is an n-vector. A famous inequality relates $\|x\|,\|A\|$, and $\|A x\|$:

$$
\|A x\| \leq\|A\|\|x\| .
$$

The left-hand side is the (vector) norm of the matrix-vector product; the right-hand side is the (scalar) product of the matrix and vector norms. Show this inequality. Hints. Let a_{i}^{T} be the i th row of A. Use the Cauchy-Schwarz inequality to get $\left(a_{i}^{T} x\right)^{2} \leq\left\|a_{i}\right\|^{2}\|x\|^{2}$. Then add the resulting m inequalities.

Exercises

