

CSCI 2820

Lecture 11

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Today

- Coordinate systems
- Projections
- Gram-Schmidt re-explained

Unique Representation

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

DEFINITION

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for V and \mathbf{x} is in V. The **coordinates of \mathbf{x}** relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

Coordinate Systems

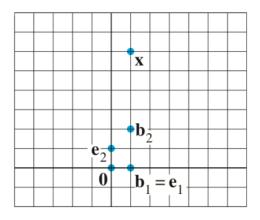


FIGURE 1 Standard graph paper.

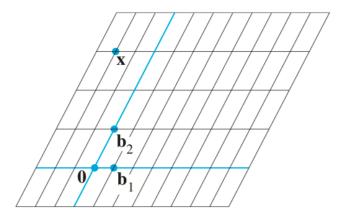


FIGURE 2 \mathcal{B} -graph paper.

If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

 $\dim H \leq \dim V$

The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Find the dimension of the subspace H of \mathbb{R}^2 spanned by

$$\begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 10 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix}.$$

True or False?

- a. If there exists a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ that spans V, then $\dim V \leq p$.
- b. If there exists a linearly independent set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in V, then dim $V \geq p$.
- c. If dim V = p, then there exists a spanning set of p + 1 vectors in V.

True or False?

- a. If there exists a linearly dependent set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in V, then dim $V \leq p$.
- b. If every set of p elements in V fails to span V, then $\dim V > p$.
- c. If $p \ge 2$ and dim V = p, then every set of p 1 nonzero vectors is linearly independent.

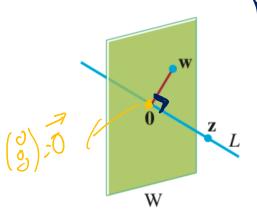
Orthogonal Complements

is orthogonal to every rector in a subspace W of 12th, we say it is orthogonal to W.

Deg: Set of all vectors 2 that are orthogonal to w is called orthogonal complement of W

(W*)

eg.



Orthogonal Complements

N= plane through the origin (subspace of R3)

L: live throug the origin (subspace of R3) 42 EL: 27. W= 0 WEW L= W+, W= L

- 1. A vector **x** is in W^{\perp} if and only if **x** is orthogonal to every vector in a set that spans W.
- **2.** W^{\perp} is a subspace of \mathbb{R}^n .

Orthogonality

Show that if **x** is in both W and W^{\perp} , then $\mathbf{x} = \mathbf{0}$.

Orthogonality

True or False?

a.
$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$
.

- b. For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- c. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to

-v, then u and v are orthogonal. T
$$||\vec{y}-\vec{y}||^2 = ||\vec{y}+\vec{y}||^2 - ||\vec{y}||^2 + ||\vec{y}||^2 + 2\langle y, y \rangle = ||y||^2 + ||y||^2 + 2\langle y, y \rangle$$

$$= ||\vec{y}-\vec{y}||^2 + ||\vec{y}||^2 + 2\langle y, y \rangle = 0$$

If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .

$$\widehat{\mathcal{U}} = C_1 \widehat{V}_1 + \cdots + C_p \widehat{V}_p$$

$$\langle x, w \rangle = C_1 \langle x, y'_1 \rangle + \cdots + C_p \langle x, y'_p \rangle = 0$$

Orthogonality

True or False?

If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .

Orthogonal sets

{vi,vi,v=0 + ixi

Orthogonal sets

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of <u>nonzero</u> vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Assume
$$C_1 \vec{u}_1 + ... + C_p \vec{u}_p = 0$$
 $C_1 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 + C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_1 \vec{u}_1 \vec{u}_1 = 0 = 0 = 0$
 $C_2 \vec{u}_2 \vec{u}_1 + ... + C_p \vec{u}_p \vec{u}_1 = 0 = 0$
 $C_3 \vec{u}_1 \vec{u}_1 = 0 = 0$
 $C_4 \vec{u}_1 \vec{u}_1 = 0 = 0$

Orthogonal sets

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

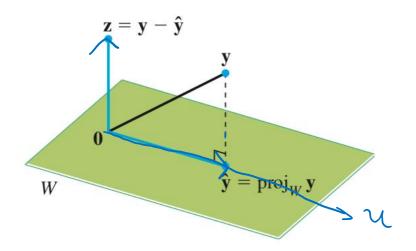
$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \qquad (j = 1, \dots, p)$$

Orthogonal Projections

we want to decompose if eth into sum of two rectors, one a multiple of vi. the other orthogonal \vec{x} = $\vec{a}\vec{u} + \vec{z}$, \vec{z} | $\vec{z} = \vec{y} - \vec{a}\vec{u} \perp \vec{u}$ is 2 3 -aû, û) =0 => <u>zý, û) - azá,û</u>>=0 $\alpha = \frac{\langle \vec{y}, \vec{u} \rangle}{\langle \vec{u}, \vec{u} \rangle}$

L= line throng 0 and u

Orthogonal Projections



Orthogonal Projections

