Linear Algebra

CSCl 2820

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Why are we here?

- Linear algebra is a main underlying tool for a lot of computer science applications
- Machine learning
- Robotics
- Operations research
- Theory
- Quantum Computing
- This class: you will learn the basic tools of Linear Algebra and how they apply to various aspects of computer science

Why are we here, meta?

- The world obeys Quantum Theory (old news!)
- Computers that fully harness quantum effects could outperform classical ones.
- Building quantum computers is very hard, but not ridiculously, impossibly hard.
- We are at a special moment: beginning to build nontrivial quantum computers
- It all begins with Linear Algebra...

Today

- Logistics
- Who are we?
- Who are you?
- Grading
- Outline

Who are we

- Instructor:Alexandra Kolla (Alexandra.kolla@Colorado.edu)
- GSS:
- Nivetha Kesavan (Nivetha.Kesavan@colorado.edu)
- Rick Gentry (Rick.Gentry@colorado.edu).
- CA: Zachary Jorquera
(Zackary.Jorquera@colorado.edu)

Who are we

- Class webpage: https://home.cs.colorado.edu/~alko5368/i ndexCSCI2820.html
- Canvas shortly
- Office hours:TBD this week

Grading Scheme

- 60\% Weekly Problem sets
- I5\% Midterm I (take-home)
- 15\% Midterm 2 (take-home)
- 20\% Final (take-home)
- Absolutely no late homeworks, will drop 2 worst grades.

Textbook

Stephen Boyd
Lieven Vandenberghe

Introduction to
Applied Linear Algebra
Vectors, Matrices, and Least Squares

What we'll cover

- Vectors:
- Definitions and notations, vector operations, inner product, linear functions, norm and distance, linear independence, bases, Gram Schmidt, vector spaces, complexity of computations.
- Matrices:
- Definitions, Zero and Identity, operations, examples of matrices. Linear equations, matrix multiplication, QR factorization, matrix inverse.
- Spectra:
- Diagonalization, eigenvalues and eigenvectors, invariant spaces.
- Least Squares
- Least Squares problem, solution, data-fitting, classification (time permitting...)

To discuss

- Flip classroom?
- Expectations
- Pace of material
- Background (who knows what a vector is?)

Today

- What is a vector
- Vector addition
- Scalar-vector multiplication
- Examples

Vectors

Vectors

Vectors

Location or displacement in 2-D or 3-D

2-vector $\left(x_{1}, x_{2}\right)$ can represent a location or a displacement in 2-D

Word count vectors

- a short document:

Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document.

- a small dictionary (left) and word count vector (right)
word
in
number
horse
the
document $\quad\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 0 \\ 4 \\ 2\end{array}\right]$

Vector addition

Vector addition

Adding displacements

if 3-vectors a and b are displacements, $a+b$ is the sum displacement

Vector addition

Displacement from one point to another

displacement from point q to point p is $p-q$

Scalar-Vector multiplication

Example

two vectors a_{1} and a_{2}, and linear combination $b=0.75 a_{1}+1.5 a_{2}$

