Linear Algebra

0

CSCI 2820

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Add a picture.

Why are we here?

- Linear algebra is a main underlying tool for a lot of computer science applications
- Machine learning
- Robotics
- Operations research
- Theory
- Quantum Computing
- This class: you will learn the basic tools of Linear Algebra and how they apply to various aspects of computer science

Why are we here, meta?

- The world obeys Quantum Theory (old news!)
- Computers that fully harness quantum effects could outperform classical ones.
- Building quantum computers is very hard, but not ridiculously, impossibly hard.
- We are at a special moment: beginning to build nontrivial quantum computers
- It all begins with Linear Algebra...

Today

- Logistics
 - Who are we?
 - Who are you?
 - Grading
 - Outline

Who are we

- Instructor: Alexandra Kolla (<u>Alexandra.kolla@Colorado.edu</u>)
- GSS:
 - Nivetha Kesavan (Nivetha.Kesavan@colorado.edu)
 - Rick Gentry (<u>Rick.Gentry@colorado.edu</u>).
- CA: Zachary Jorquera (Zackary.Jorquera@colorado.edu)

Who are we

• Class webpage:

https://home.cs.colorado.edu/~alko5368/i ndexCSCI2820.html

- Canvas shortly
- Office hours: TBD this week

Grading Scheme

- 60% Weekly Problem sets
- I 5% Midterm I (take-home)
- I 5% Midterm 2 (take-home)
- 20% Final (take-home)
- Absolutely no late homeworks, will drop
 2 worst grades.

Textbook

Stephen Boyd Lieven Vandenberghe

Introduction to Applied Linear Algebra

Vectors, Matrices, and Least Squares

What we'll cover

- Vectors:
 - Definitions and notations, vector operations, inner product, linear functions, norm and distance, linear independence, bases, Gram Schmidt, vector spaces, complexity of computations.
- Matrices:
 - Definitions, Zero and Identity, operations, examples of matrices. Linear equations, matrix multiplication, QR factorization, matrix inverse.

• Spectra:

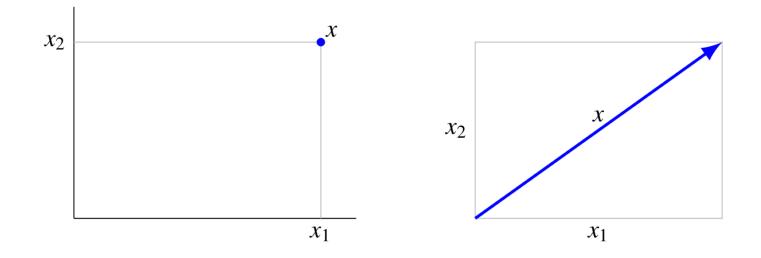
- Diagonalization, eigenvalues and eigenvectors, invariant spaces.
- Least Squares
 - Least Squares problem, solution, data-fitting, classification (time permitting...)

To discuss

- Flip classroom?
- Expectations
- Pace of material
- Background (who knows what a vector is?)

Today

- What is a vector
- Vector addition
- Scalar-vector multiplication
- Examples



Location or displacement in 2-D or 3-D

2-vector (x_1, x_2) can represent a location or a displacement in 2-D

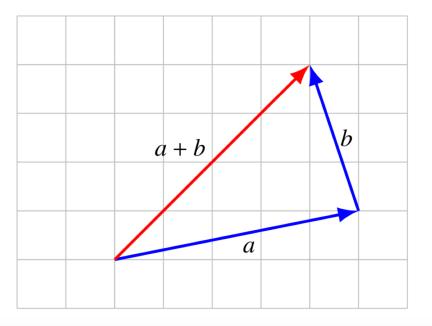
Word count vectors

a short document:

Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document.

a small dictionary (left) and word count vector (right)

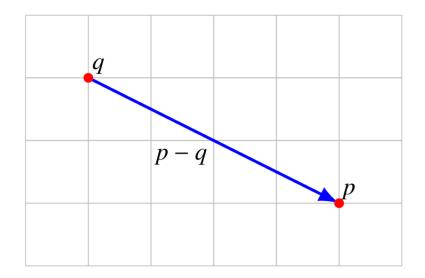
word	[3]
in	2
number	1
horse	0
the	4
document	[2]


Vector addition

Vector addition

Adding displacements

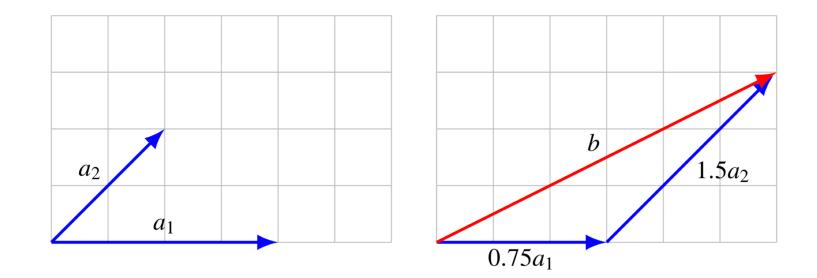
if 3-vectors a and b are displacements, a + b is the sum displacement



Vector addition

Displacement from one point to another

displacement from point q to point p is p - q



Example

two vectors a_1 and a_2 , and linear combination $b = 0.75a_1 + 1.5a_2$

