Intro to Quantum Computing CSCI/PHYS 3090
 CU Boulder Spring 2020
 Practice Midterm II Solutions

1 EPR Paradox, Bell Experiment

1.1 Classical

Alice and Bob got together a long time ago, and wrote down a long list of common strategies they could possibly use. Soon after, they moved far apart from each other and never talked to each other again, unable to modify their stategy. Now, Alice is given as input a random bit x_{A} and Bob a random bit x_{B}. Without communicating with each other, Alice and Bob wish to output bits a and b respectively such that $x_{A} \wedge x_{B}=a \oplus b$. Prove that any protocol that Alice and Bob follow has success probability at most $3 / 4$. [Hint: Consider their strategies as fixed functions $f_{A}, f_{B}:\{0,1\} \rightarrow\{0,1\}$ where $a=f_{A}\left(x_{A}\right)$ and $b=f_{B}\left(x_{B}\right)$. What can these functions be? What happens in each case?]

Solution: There are 4 unique choices for $f_{A}: f_{A}(x)=\{0,1, x, 1-x\}$. We will analyze the two cases when f_{A} is the identity and f_{A} is identically 1 , the others follow the same argument.

Assume that $f_{A}\left(x_{A}\right)=x_{A}$. Then Alice outputs $a=x_{A}$. They win if and only if Bob outputs $b=\left(x_{A} \wedge x_{B}\right) \oplus x_{A}$. There are 2 choices for Bob's input:

- $x_{B}=1$: Then $b=\left(x_{A} \wedge x_{B}\right) \oplus x_{A}=x_{A} \oplus x_{A}=0$ so if Bob outputs $b=0$ then they win with probability 1.
- $x_{B}=0$: Then b must equal x_{A}. Bob does not know x_{A} and so they can only win with probability $1 / 2$.

Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}(\text { win }) & =\operatorname{Pr}\left(\operatorname{win} \mid x_{B}=1\right) \operatorname{Pr}\left(x_{b}=1\right)+\operatorname{Pr}\left(\operatorname{win} \mid x_{B}=0\right) \operatorname{Pr}\left(x_{b}=0\right) \\
& =(1 / 2)(1)+(1 / 2)(1 / 2) \\
& =3 / 4
\end{aligned}
$$

Now assume that $f_{A}\left(x_{A}\right)=1$. Then Alice outputs $a=1$.

- $x_{B}=1$: Then b must equal $1+x_{A}$ to win. Bob does not know x_{A} and so they can only win with probability $1 / 2$.
- $x_{B}=0:$ Then $b=1$ wins with probability 1.

Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}(\operatorname{win}) & =\operatorname{Pr}\left(\operatorname{win} \mid x_{B}=1\right) \operatorname{Pr}\left(x_{b}=1\right)+\operatorname{Pr}\left(\operatorname{win} \mid x_{B}=0\right) \operatorname{Pr}\left(x_{b}=0\right) \\
& =(1 / 2)(1 / 2)+(1 / 2)(1) \\
& =3 / 4
\end{aligned}
$$

1.2 Quantum

Now we assume that Alice and Bob each share a qubit of the entangled system $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ Once again, Alice is given as input a random bit x_{A} and Bob a random bit x_{B}. Without communicating with each other (but with possible operations on their qubit), Alice and Bob wish to output bits a and b respectively such that $x_{A} \wedge x_{B}=a \oplus b$. Prove that Alice and Bob can win with probability at least 0.8. [Hint: Consider applying rotations θ_{A} and θ_{B} where $\left|\theta_{A}\right|=\left|\theta_{B}\right|=\frac{\pi}{8}$.]

Solution: The main trick we use is the following: if a measurement in the standard basis results in $|0\rangle$ with probability 1 , then if a state is rotated by an angle θ, measurement results in $|0\rangle$ with probability $\cos ^{2}(\theta)$.

Here is the strategy:

- If Alice receives a 1 , then she applies a rotation of $\frac{\pi}{8}$ to her qubit before measuring and outputting her result.
- If Bob receives a 1 , then he applies a rotation of $-\frac{\pi}{8}$ to his qubit before measuring and outputting his result.

There are 4 cases to analyze, all occurring with probability $1 / 4$.

- $x_{A}=x_{B}=0$: They each simply measure and so $\operatorname{Pr}\left(a=b \mid x_{A}=x_{B}=0\right)=1$.
- $x_{A}=0, x_{B}=1$: Bob applies his transformation before measuring and so $\operatorname{Pr}\left(a=b \mid x_{A}=0, x_{B}=1\right)=\cos ^{2} \frac{-\pi}{8} \geq .85$
- $x_{A}=1, x_{B}=0$: By same logic, $\operatorname{Pr}\left(a=b \mid x_{A}=1, x_{B}=0\right)=\cos ^{2} \frac{\pi}{8} \geq .85$
- $x_{A}=x_{B}=1$: Here they win if $a \neq b$. This case is a bit sloppier. Both apply their transformation resulting in the following (unnormalized) state:

$$
\begin{array}{r}
(\cos (\pi / 8)|0\rangle+\sin (\pi / 8)|1\rangle)(\cos (\pi / 8)|0\rangle-\sin (\pi / 8)|1\rangle) \\
+(-\sin (\pi / 8)|0\rangle+\cos (\pi / 8)|1\rangle)(\sin (\pi / 8)|0\rangle+\cos (\pi / 8)|1\rangle) \\
=\left(\cos ^{2}(\pi / 8)-\sin ^{2}(\pi / 8)\right)|00\rangle-2 \sin (\pi / 8) \cos (\pi / 8)|01\rangle \\
+2 \sin (\pi / 8) \cos (\pi / 8)|10\rangle+\left(\cos ^{2}(\pi / 8)-\sin ^{2}(\pi / 8)\right)|11\rangle \\
=2 \sin (\pi / 8) \cos (\pi / 8)(|00\rangle-|01\rangle+|10\rangle+|11\rangle)
\end{array}
$$

where the last line follows from trigonometric identities. Since they all have the same coefficients, the normalized state is $\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle+|11\rangle)$. Thus, $\operatorname{Pr}\left(a \neq b \mid x_{A}=x_{B}=1\right)=1 / 2$.

Putting this all together, we have $\operatorname{Pr}($ win $) \geq(1 / 4)(1)+(1 / 2)(.85)+(1 / 4)(1 / 2)=0.8$.

2 Number Theory

Let p be an odd prime and let x be a uniformly random number modulo p. Show that the period of x modulo p is even with probability at least $1 / 2$. [Hint: . Look up the following group theory terms if you do not know them: order/period of an element and generator. Use Fermat's Little Theorem]

Solution: By FLT, we have that $x^{p-1}=1 \bmod p$ which implies that $\operatorname{ord}(x) \mid p-1$. This alone is not enough to determine the parity of $\operatorname{ord}(x)$. Let g be the generator for $\{0, \ldots, p-1\}=\mathbb{Z}_{p}$. In particular, there exists a $k \in \mathbb{Z}_{p}$ such that $x=g^{k} \bmod p$. Equality is preserved under raising both sides to the same power in this group so we have $x^{\text {ord(x) }}=\left(g^{k}\right)^{\text {ord(x) }} \bmod p$. This gives $\left(g^{k}\right)^{\text {ord }(x)}=1$ $\bmod p$ and now we have $p-1 \mid k * \operatorname{ord}(x)$. Since p is odd, $p-1$ is even and so $k * \operatorname{ord}(x)$ is even.
x was chosen uniformly random so we also have that k is uniformly random, thus $\operatorname{Pr}(k$ odd $)=1 / 2$. Say k is odd. Then $\operatorname{ord}(x)$ is even since $k * \operatorname{ord}(x)$ is even. If we say k is even, then we cannot conclude anything about $\operatorname{ord}(x)$. Thus $\operatorname{Pr}(\operatorname{ord}(x)$ even $) \geq \operatorname{Pr}(k$ odd $)=1 / 2$.

3 QFT

Let $|a\rangle=\Sigma_{j=0}^{N-1} a_{j}|j\rangle$ and let $|b\rangle=\Sigma_{j=0}^{N-1}|j\rangle$ be its Quantum Fourier Transform. Consider the shift of the superposition $|a\rangle,\left|a^{\prime}\right\rangle=\Sigma_{j=0}^{N-1} a_{j}|j+1(\bmod N)\rangle$, and let $\left|b^{\prime}\right\rangle=\Sigma_{j=0}^{N-1} b_{j}^{\prime}|j\rangle$ be its QFT. Derive an expression for $\left|b^{\prime}\right\rangle$ as a function of $|b\rangle$.

Solution:

We know from HW 7 that we have that $b_{j}^{\prime}=b_{j} w^{j}$. Then, using $\langle j \mid b\rangle=b_{j}$, we can write

$$
\left|b^{\prime}\right\rangle=\sum_{j=0}^{N-1} w^{j}|j\rangle\langle j \mid b\rangle
$$

4 RSA

Suppose you are developing an RSA public key encryption scheme. You decide to use the primes $p=11$ and $q=19$, and the semiprime $n=p q=209$ as the modulus for the encryption/decryption.

Part A

We would like to show that $e=7$ is a valid public encryption key for our choice of p, q, and n. A valid encryption key e must be coprime with $(p-1)(q-1)=180$. Since $e=7$ is prime and $7 \nmid 180$, then the encryption key is coprime to $(p-1)(q-1)$ and is therefore valid.

Part B

The decryption key d is the multiplicative inverse of e modulo $(p-1)(q-1)$.

$$
d \cdot e=1 \bmod 180
$$

We can begin with Euclid's algorithm:

$$
\begin{gathered}
180=7 \cdot 25+5 \\
7=5 \cdot 1+2 \\
5=2 \cdot 2+1 \\
2=2 \cdot 2+0
\end{gathered}
$$

This confirms that the $\operatorname{gcd}(180,7)=1$. The point of doing that however was so that we can now "climb back up" the Euclidean algorithm to find the inverse of e.

$$
\begin{gathered}
1=5-2 \cdot 2 \\
1=5-2(7-1 \cdot 5)=3 \cdot 5-2 \cdot 7 \\
1=3(180-7 \cdot 25)-2 \cdot 7 \\
1=3 \cdot 180-77 \cdot 7 \\
\Longrightarrow d=-77 \quad \bmod 180 \\
d=103 \quad \bmod 180
\end{gathered}
$$

This is the smallest positive value which can be used for our decryption key.

Part C

Now, consider using $p=11$ and $q=5$, so $n=55$, with $e=7$ and $d=23$. Encrypt the message "SEND" (using single-letter blocks) where "SEND" is (18 041303). We encode each letter through the following scheme: $c=m^{e} \bmod n$ where c is the encrypted message and m is the plaintext.

$$
\begin{gathered}
18^{7}=18^{2^{2}+2^{1}+2^{0}} \\
18^{7}=18^{2^{2}} 18^{2^{1}} 18^{2^{0}} \\
18^{1}=18 \quad \bmod 55 \\
18^{2}=324=49 \quad \bmod 55 \\
18^{4}=\left(18^{2}\right)^{2}=(49)^{2}=2401=36 \quad \bmod 55 \\
\Longrightarrow 18^{7}=(18)(49)(36)=31752=17 \quad \bmod 55
\end{gathered}
$$

We can perform the same operation for each of the following letter blocks and we get the following:

$$
c(\mathrm{E})=49 \bmod 55, c(\mathrm{~N})=7 \bmod 55, c(\mathrm{D})=42 \bmod 55
$$

Therefore the encrypted message is $c($ SEND $)=17490742$.

Part D

Decrypt the message "Y J A R Y" (2409 001724) The message can be recovered by the following procedure: $m=c^{d} \bmod n$. We know that the binary representation of $23=10111$ and so we can use fast modular exponentiation.

$$
\begin{gathered}
24^{2} 3=24^{2^{4}} 24^{2^{2}} 24^{2^{1}} 24^{2^{0}} \\
24 \quad \bmod 55=24 \\
24^{2}=576=26 \quad \bmod 55 \\
24^{4}=\left(24^{2}\right)^{2}=(26)^{2}=676=16 \quad \bmod 55 \\
24^{8}=\left(24^{4}\right)^{2}=(16)^{2}=256=36 \quad \bmod 55 \\
24^{16}=\left(24^{8}\right)^{2}=(36)^{2}=31 \quad \bmod 55 \\
24^{23}=(24)(26)(16)(31)=309504=19 \quad \bmod 55
\end{gathered}
$$

Following the same method, we get the following:

$$
m(\mathrm{~J})=14 \bmod 55, m(\mathrm{~A})=0 \quad \bmod 55, m(\mathrm{R})=18 \quad \bmod 55, m(\mathrm{Y})=19 \quad \bmod 55
$$

The message is therefore $m=1914018$ 19, which in letters is TOAST.

