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Practice Midterm II Solutions

1 EPR Paradox, Bell Experiment

1.1 Classical

Alice and Bob got together a long time ago, and wrote down a long list of common strategies they
could possibly use. Soon after, they moved far apart from each other and never talked to each other
again, unable to modify their stategy. Now, Alice is given as input a random bit xA and Bob a
random bit xB . Without communicating with each other, Alice and Bob wish to output bits a and b
respectively such that xA∧xB = a⊕ b. Prove that any protocol that Alice and Bob follow has success
probability at most 3/4. [Hint: Consider their strategies as fixed functions fA, fB : {0, 1} → {0, 1}
where a = fA(xA) and b = fB(xB). What can these functions be? What happens in each case?]

Solution: There are 4 unique choices for fA: fA(x) = {0, 1, x, 1 − x}. We will analyze the two
cases when fA is the identity and fA is identically 1, the others follow the same argument.

Assume that fA(xA) = xA. Then Alice outputs a = xA. They win if and only if Bob outputs
b = (xA ∧ xB)⊕ xA. There are 2 choices for Bob’s input:

• xB = 1: Then b = (xA ∧ xB)⊕ xA = xA ⊕ xA = 0 so if Bob outputs b = 0 then they win with
probability 1.

• xB = 0: Then b must equal xA. Bob does not know xA and so they can only win with probability
1/2.

Therefore, we have

Pr(win) = Pr(win|xB = 1)Pr(xb = 1) + Pr(win|xB = 0)Pr(xb = 0)

= (1/2)(1) + (1/2)(1/2)

= 3/4

Now assume that fA(xA) = 1. Then Alice outputs a = 1.

• xB = 1: Then b must equal 1 + xA to win. Bob does not know xA and so they can only win
with probability 1/2.

• xB = 0: Then b = 1 wins with probability 1.

Therefore, we have
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Pr(win) = Pr(win|xB = 1)Pr(xb = 1) + Pr(win|xB = 0)Pr(xb = 0)

= (1/2)(1/2) + (1/2)(1)

= 3/4

1.2 Quantum

Now we assume that Alice and Bob each share a qubit of the entangled system |ψ〉 = 1√
2
(|00〉+ |11〉)

Once again, Alice is given as input a random bit xA and Bob a random bit xB . Without communicating
with each other (but with possible operations on their qubit), Alice and Bob wish to output bits a
and b respectively such that xA ∧ xB = a⊕ b. Prove that Alice and Bob can win with probability at
least 0.8. [Hint: Consider applying rotations θA and θB where |θA| = |θB | = π

8 .]
Solution: The main trick we use is the following: if a measurement in the standard basis results

in |0〉 with probability 1, then if a state is rotated by an angle θ, measurement results in |0〉 with
probability cos2(θ).

Here is the strategy:

• If Alice receives a 1, then she applies a rotation of π8 to her qubit before measuring and outputting
her result.

• If Bob receives a 1, then he applies a rotation of −π8 to his qubit before measuring and outputting
his result.

There are 4 cases to analyze, all occurring with probability 1/4.

• xA = xB = 0: They each simply measure and so Pr(a = b|xA = xB = 0) = 1.

• xA = 0, xB = 1: Bob applies his transformation before measuring and so
Pr(a = b|xA = 0, xB = 1) = cos2 −π8 ≥ .85

• xA = 1, xB = 0: By same logic, Pr(a = b|xA = 1, xB = 0) = cos2 π8 ≥ .85

• xA = xB = 1: Here they win if a 6= b. This case is a bit sloppier. Both apply their transformation
resulting in the following (unnormalized) state:

(cos(π/8) |0〉+ sin(π/8) |1〉)(cos(π/8) |0〉 − sin(π/8) |1〉)
+(− sin(π/8) |0〉+ cos(π/8) |1〉)(sin(π/8) |0〉+ cos(π/8) |1〉)

=
(
cos2(π/8)− sin2(π/8)

)
|00〉 − 2 sin(π/8) cos(π/8) |01〉

+2 sin(π/8) cos(π/8) |10〉+
(
cos2(π/8)− sin2(π/8)

)
|11〉

= 2 sin(π/8) cos(π/8) (|00〉 − |01〉+ |10〉+ |11〉)

where the last line follows from trigonometric identities. Since they all have the same coefficients,
the normalized state is 1

2 (|00〉 − |01〉+ |10〉+ |11〉). Thus, Pr(a 6= b|xA = xB = 1) = 1/2.

Putting this all together, we have Pr(win) ≥ (1/4)(1) + (1/2)(.85) + (1/4)(1/2) = 0.8.

2 Number Theory

Let p be an odd prime and let x be a uniformly random number modulo p. Show that the period of
x modulo p is even with probability at least 1/2. [Hint: . Look up the following group theory terms
if you do not know them: order/period of an element and generator. Use Fermat’s Little Theorem]
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Solution: By FLT, we have that xp−1 = 1 mod p which implies that ord(x)|p − 1. This alone is
not enough to determine the parity of ord(x). Let g be the generator for {0, . . . , p − 1} = Zp. In
particular, there exists a k ∈ Zp such that x = gk mod p. Equality is preserved under raising both
sides to the same power in this group so we have xord(x) = (gk)ord(x) mod p. This gives (gk)ord(x) = 1
mod p and now we have p− 1|k ∗ ord(x). Since p is odd, p− 1 is even and so k ∗ ord(x) is even.

x was chosen uniformly random so we also have that k is uniformly random, thus Pr(k odd) = 1/2.
Say k is odd. Then ord(x) is even since k∗ord(x) is even. If we say k is even, then we cannot conclude
anything about ord(x). Thus Pr(ord(x) even) ≥ Pr(k odd) = 1/2.

3 QFT

Let |a〉 = ΣN−1j=0 aj |j〉 and let |b〉 = ΣN−1j=0 |j〉 be its Quantum Fourier Transform. Consider the shift of

the superposition |a〉, |a′〉 = ΣN−1j=0 aj |j + 1(modN)〉, and let |b′〉 = ΣN−1j=0 b
′
j |j〉 be its QFT. Derive an

expression for |b′〉 as a function of |b〉.

Solution:

We know from HW 7 that we have that b′j = bjw
j . Then, using 〈j|b〉 = bj , we can write

|b′〉 =

N−1∑
j=0

wj |j〉 〈j|b〉

4 RSA

Suppose you are developing an RSA public key encryption scheme. You decide to use the primes
p = 11 and q = 19, and the semiprime n = pq = 209 as the modulus for the encryption/decryption.

Part A

We would like to show that e = 7 is a valid public encryption key for our choice of p, q, and n. A
valid encryption key e must be coprime with (p − 1)(q − 1) = 180. Since e = 7 is prime and 7 - 180,
then the encryption key is coprime to (p− 1)(q − 1) and is therefore valid.

Part B

The decryption key d is the multiplicative inverse of e modulo (p− 1)(q − 1).

d · e = 1 mod 180

We can begin with Euclid’s algorithm:

180 = 7 · 25 + 5

7 = 5 · 1 + 2

5 = 2 · 2 + 1

2 = 2 · 2 + 0
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This confirms that the gcd(180, 7) = 1. The point of doing that however was so that we can now
”climb back up” the Euclidean algorithm to find the inverse of e.

1 = 5− 2 · 2
1 = 5− 2(7− 1 · 5) = 3 · 5− 2 · 7

1 = 3(180− 7 · 25)− 2 · 7
1 = 3 · 180− 77 · 7

=⇒ d = −77 mod 180

d = 103 mod 180

This is the smallest positive value which can be used for our decryption key.

Part C

Now, consider using p = 11 and q = 5, so n = 55, with e = 7 and d = 23. Encrypt the message
“SEND” (using single-letter blocks) where “SEND” is (18 04 13 03). We encode each letter through
the following scheme: c = me mod n where c is the encrypted message and m is the plaintext.

187 = 182
2+21+20

187 = 182
2

182
1

182
0

181 = 18 mod 55

182 = 324 = 49 mod 55

184 = (182)2 = (49)2 = 2401 = 36 mod 55

=⇒ 187 = (18)(49)(36) = 31752 = 17 mod 55

We can perform the same operation for each of the following letter blocks and we get the following:

c(E) = 49 mod 55, c(N) = 7 mod 55, c(D) = 42 mod 55

Therefore the encrypted message is c(SEND) = 17 49 07 42.

Part D

Decrypt the message “Y J A R Y” (24 09 00 17 24) The message can be recovered by the following
procedure: m = cd mod n. We know that the binary representation of 23 = 10111 and so we can use
fast modular exponentiation.

2423 = 242
4

242
2

242
1

242
0

24 mod 55 = 24

242 = 576 = 26 mod 55

244 = (242)2 = (26)2 = 676 = 16 mod 55

248 = (244)2 = (16)2 = 256 = 36 mod 55

2416 = (248)2 = (36)2 = 31 mod 55

2423 = (24)(26)(16)(31) = 309504 = 19 mod 55

Following the same method, we get the following:

m(J) = 14 mod 55, m(A) = 0 mod 55, m(R) = 18 mod 55, m(Y) = 19 mod 55

The message is therefore m = 19 14 0 18 19, which in letters is TOAST.
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