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Problem 1

We want to calculate the probabilities of getting |0〉 and |1〉 if we measure qubit one on the following
states. We additionally would like to determine the post-measurement state on qubit 2 for each of
the measurement outcomes.

The measurement probabilities and the post-measurement states can be determined by using the
generalized Born-rule. We would like to get the states into the following form:

|ψ〉 = α0 |0〉1 ⊗ |ψ0〉2 + α1 |0〉1 ⊗ |ψ1〉2 (1)

where |ψ0〉2, |ψ1〉2 are normalized states. If our state is in the form shown above, then we get outcome
“x” with probability px = |αx|2 and the post-measurement state on qubit 2 is |ψx〉2.

Part A

|ψ〉12 =
1√
3
|0〉1 |1〉2 +

√
2

3
|1〉1 |0〉2

This state is already in the form given by Equation 1 and so we can get the following probabilities
and post-measurement outcomes:

Outcome Probability Post-measurement state on qubit 2

0 1
3 |1〉2

1 2
3 |0〉2

Table 1: Outcomes for Part A
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Part B

|ψ〉12 =
1√
2
|+〉1 |0〉2 +

1√
2
|−〉1 |1〉2

|ψ〉12 =
1

2
(|0〉1 + |1〉1) |0〉2 +

1

2
(|0〉1 − |1〉1) |1〉2

|ψ〉12 =
1

2
(|0〉1 |0〉2 + |0〉1 |1〉2 + |1〉1 |0〉2 − |1〉1 |1〉2)

|ψ〉12 =
1

2
(|0〉1 (|0〉2 + |1〉2) + |1〉1 (|0〉2 − |1〉2))

|ψ〉12 =
1√
2

(|0〉1 |+〉2 + |1〉1 |−〉2)

Therefore we get the following outcomes:

Outcome Probability Post-measurement state on qubit 2

0 1
2 |+〉2

1 1
2 |−〉2

Table 2: Outcomes for Part B

Part C

|ψ〉12 =
1√

2 +
√

2
(|+〉1 |0〉2 + |+〉1 |−〉2)

|ψ〉12 =
1√

2 +
√

2
|+〉1 (|0〉2 + |−〉2)

|ψ〉12 =
1√

2 +
√

2

1√
2

(|0〉1 + |1〉1)(|0〉2 + |−〉2)

We now want to normalize the second qubit state in order to properly apply the generalized Born
rule.

|ψ〉12 =
1√

2 +
√

2

1√
2

(|0〉1 + |1〉1)(|0〉2 +
1√
2

(|0〉2 − |1〉2))

|ψ〉12 =
1√

2 +
√

2

1√
2

(|0〉1 + |1〉1)((1 +
1√
2

) |0〉2 −
1√
2
|1〉2)

√
(1 +

1√
2

)2 + (
1√
2

)2 =

√
1 +

2√
2

+
1

2
+

1

2
=

√
2 +
√

2

|ψ〉12 =
1√
2

(|0〉1 + |1〉1)(
1 + 1√

2√
2 +
√

2
|0〉2 −

1
√

2
√

2 +
√

2
|1〉2)

|ψ〉12 =
1√
2

(|0〉1 + |1〉1)(
1 +
√

2√
4 + 2

√
2
|0〉2 −

1√
4 + 2

√
2
|1〉2)

We now have the state in a form where we can simply use the Born rule to get the measurement
outcomes.
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Outcome Probability Post-measurement state on qubit 2

0 1
2

1+
√
2√

4+2
√
2
|0〉2 −

1√
4+2
√
2
|1〉2

1 1
2

1+
√
2√

4+2
√
2
|0〉2 −

1√
4+2
√
2
|1〉2

Table 3: Outcomes for Part C

Part D

|ψ〉12 =
1√
2

(|0〉1 |+〉2 + |+〉1 |−〉2)

|ψ〉12 =
1√
2

(|0〉1 |+〉2 +
1√
2

(|0〉1 + |1〉1) |−〉2)

|ψ〉12 = |0〉1 (
1√
2
|+〉2 +

1

2
|−〉2) +

1

2
|1〉1) |−〉2

|ψ〉12 =

√
3

4
|0〉1 (

√
2

3
|+〉2 +

1√
3
|−〉2) +

1

2
|1〉1) |−〉2

Outcome Probability Post-measurement state on qubit 2

0 3
4

√
2
3 |+〉2 + 1√

3
|−〉2

1 1
4 |−〉2

Table 4: Outcomes for Part D

Problem 2

Given that |u〉,|v〉,|w〉, and |z〉 are real vectors, then we want to show that the inner product of
(|u⊗ v〉,|w ⊗ z〉) is equal to 〈u|w〉 · 〈v|z〉. We will have to assume that |u〉 and |w〉 have the same
dimension and that |v〉 and |z〉 have the same dimension for the inner product to be well defined.

We can define the tensor product in terms of how it operates on vectors in some basis:

u =



u1

u2
...

um


, v =



v1

v2
...

vn


, w =



w1

w2

...

wm


, z =



z1

z2
...

zn
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|u〉 ⊗ |v〉 =



u1v1

u1v2
...

u1vn

u2v1
...

umvn



, |w〉 ⊗ |z〉 =



w1z1

w1z2
...

w1zn

w2z1
...

wmzn


The inner product is the following:

(|u〉 ⊗ |v〉 , |w〉 ⊗ |z〉) = u1v1w1z1 + u1v2w1z2 + · · ·+ u1vnw1zn + u2v1w2z1 + · · ·+ umvnwmzn

(|u〉 ⊗ |v〉 , |w〉 ⊗ |z〉) = (u1w1)(v1z1 + v2z2 + . . . vnzn) + . . . (umwm)(v1z1 + v2z2 + . . . vnzn)

(|u〉 ⊗ |v〉 , |w〉 ⊗ |z〉) = (u1w1 + u2w2 + · · ·+ umzm) 〈v|z〉
(|u〉 ⊗ |v〉 , |w〉 ⊗ |z〉) = 〈u|w〉 · 〈v|z〉

Problem 3

We begin by defining the bitwise inner product between two bit strings x = (x1, . . . , xn) and a =
(a1, . . . , an) as the following:

x · a = x1a1 + · · ·+ xnan

where addition is assumed to mean addition modulo 2. The addition between two bit strings in this
problem is bitwise addition modulo 2: x + a = (a1 + x1, . . . , an + xn). We would like to prove the
following relation: ∑

x∈{0,1}n
(−1)(a+y)·x =

n∏
j=1

1∑
xj=0

(−1)(aj+yj)xj (2)

Part A

We will begin by considering the n = 1 case. Let’s begin by looking at the RHS.

1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =

1∑
x1=0

(−1)(a1+y1)x1 = (−1)(a1+y1)0 + (−1)(a1+y1)1

We can now consider the LHS:∑
x∈{0,1}1

(−1)(a+y)·x = (−1)(a+y)·0 + (−1)(a+y)·1 = (−1)(a1+y1)·0 + (−1)(a1+y1)·1

∑
x∈{0,1}1

(−1)(a+y)·x = (−1)(a1+y1)0 + (−1)(a1+y1)1

We therefore see that the Equation 2 holds for the case of n = 1.
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Part B

Now let’s consider the case of n = 2. We will try to work the RHS of the equation into the LHS.

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =

2∏
j=1

((−1)(aj+yj)0 + (−1)(aj+yj)1)

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = ((−1)(a1+y1)0 + (−1)(a1+y1)1)((−1)(a2+y2)0 + (−1)(a2+y2)1)

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = (−1)(a1+y1)0(−1)(a2+y2)0 + (−1)(a1+y1)1(−1)(a2+y2)0

+(−1)(a1+y1)0(−1)(a2+y2)0 + (−1)(a1+y1)1(−1)(a2+y2)1

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = (−1)(a1+y1)0+(a2+y2)0 + (−1)(a1+y1)1+(a2+y2)0

+(−1)(a1+y1)0+(a2+y2)1 + (−1)(a1+y1)1+(a2+y2)1

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = (−1)(a+y)·(0,0) + (−1)(a+y)·(1,0) + (−1)(a+y)·(0,1) + (−1)(a+y)·(1,1)

2∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}2
(−1)(a+y)·x

Therefore, we have shown that Equation 2 holds for the n = 2 case.

Part C

We will now show the inductive step by showing that if we assume that the identity holds for the n-th
case, then it holds for the (n + 1)-th case. We will start with the RHS and prove that it is equal to
the LHS. Define the following strings: a′ = (a1, . . . , an) and y′ = (y1, . . . , yn) where the bit strings a
and y that we are given are (a′, an+1) and (y′, yn+1) .

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = (

1∑
xn+1=0

(−1)(an+1+yn+1)xn+1)

n∏
j=1

1∑
xj=0

(−1)(aj+yj)xj

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj = ((−1)(an+1+yn+1)0 + (−1)(an+1+yn+1)1)
∑

x∈{0,1}n
(−1)(a

′+y′)·x

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}n
(−1)(an+1+yn+1)0(−1)(a

′+y′)·x +
∑

x∈{0,1}n
(−1)(an+1+yn+1)1(−1)(a

′+y′)·x

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}n
(−1)(a

′+y′)·x+(an+1+yn+1)0 +
∑

x∈{0,1}n
(−1)(a

′+y′)·x+(an+1+yn+1)1

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}n
(−1)((a

′,an+1)+(y′,yn+1))·(x,0) +
∑

x∈{0,1}n
(−1)((a

′,an+1)+(y′,yn+1))·(x,1)

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}n
(−1)(a+y)·(x,0) +

∑
x∈{0,1}n

(−1)(a+y)·(x,1)
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We now observe that we are really summing over all possible bit strings of length n+ 1 since we are
adding together the case where the (n+ 1)-th bit is 0 and the case when it is 1 for each possible string
of n least significant bits.

n+1∏
j=1

1∑
xj=0

(−1)(aj+yj)xj =
∑

x∈{0,1}n+1

(−1)(a+y)·x

Therefore we have shown the inductive step and proven by induction that Equation 2 holds.

Problem 4

In this problem we are trying to find unitaries that wil inetrchange the control and target qubits for
ControlZ and ControlY gates.

Part A

We want to find a unitary V such that the follow is true:

V • V †

V † Z V
=

Z

•

We can start by just expressing CZ12 and CZ21 as 4x4 matrices.

CZ12 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



CZ21 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


The CZ gate is symmetric under exchange of the control and target qubits as the only computational
basis state that the gate acts on non-trivially is |1〉1 |1〉2 . Therefore the unitary that satisfies the above
circuit equation is V = I (the identity).

Part B

W • W †

W † Y W
=

Y

•

We can determine the unitary W by noting that in the previous problem we found that the CZ gate
is symmetric in its target and control qubits. This means that if we can find a gate W such that
W †YW = Z, then we can turn CY12 into CZ12. This is equivalent to CZ21, so then when we act the
inverse gates that take us back from Z to Y , then we can take CZ21 to CY21. Diagrammatically, this
is the following argument:

W • W †

W † Y W
=

W • W †

Z

=
W Z W †

•
=

Y

•
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The gate W that performs the required operation is

W = ei
π
4 X =

(
1√
2

i√
2

i√
2

1√
2

)

It can be verified that W †YW = Z and therefore the gate satisfies the above diagrammatic equation.
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