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Problem 1

We want to calculate the probabilities of getting |0) and |1) if we measure qubit one on the following
states. We additionally would like to determine the post-measurement state on qubit 2 for each of
the measurement outcomes.

The measurement probabilities and the post-measurement states can be determined by using the
generalized Born-rule. We would like to get the states into the following form:
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where |10),, |¥1), are normalized states. If our state is in the form shown above, then we get outcome
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x” with probability p, = |a,|? and the post-measurement state on qubit 2 is [1);),.
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This state is already in the form given by Equation 1 and so we can get the following probabilities
and post-measurement outcomes:
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Table 1: Outcomes for Part A
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Therefore we get the following outcomes:
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Table 2: Outcomes for Part B

Part C
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We now want to normalize the second qubit state in order to properly apply the generalized Born

rule.
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We now have the state in a form where we can simply use the Born rule to get the measurement
outcomes.



Outcome | Probability | Post-measurement state on qubit 2
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Table 3: Outcomes for Part C
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Problem 2

Given that |u),|v),|w), and |z) are real vectors, then we want to show that the inner product of

(lu®@v),|Jw ® 2z)) is equal to (uw) - (v|z). We will have to assume that |u) and |w) have the same

dimension and that |v) and |z) have the same dimension for the inner product to be well defined.
We can define the tensor product in terms of how it operates on vectors in some basis:
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The inner product is the following:
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Problem 3

We begin by defining the bitwise inner product between two bit strings x = (z1,...,2,) and a =
(a1, ...,ay) as the following:
r-a=2x1a1+ -+ Tpay

where addition is assumed to mean addition modulo 2. The addition between two bit strings in this
problem is bitwise addition modulo 2: z + a = (a1 + 21,...,a, + 2,). We would like to prove the

following relation:
S (e

ze{0,1}" i

(—1)(as+vs)zs (2)

n 1
=1 a:j:O

Part A
We will begin by considering the n = 1 case. Let’s begin by looking at the RHS.
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We therefore see that the Equation 2 holds for the case of n = 1.



Part B

Now let’s consider the case of n = 2. We will try to work the RHS of the equation into the LHS.
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Therefore, we have shown that Equation 2 holds for the n = 2 case.

Part C

We will now show the inductive step by showing that if we assume that the identity holds for the n-th
case, then it holds for the (n + 1)-th case. We will start with the RHS and prove that it is equal to

the LHS. Define the following strings: a’ = (a1,...,a,) and ¢’ = (y1,...,yn) wWhere the bit strings a
and y that we are given are (a’,a,11) and (¢, ynt1) -
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We now observe that we are really summing over all possible bit strings of length n + 1 since we are
adding together the case where the (n+ 1)-th bit is 0 and the case when it is 1 for each possible string
of n least significant bits.
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Therefore we have shown the inductive step and proven by induction that Equation 2 holds.

Problem 4

In this problem we are trying to find unitaries that wil inetrchange the control and target qubits for
ControlZ and ControlY gates.

Part A
We want to find a unitary V such that the follow is true:

We can start by just expressing C'Z15 and CZ3; as 4x4 matrices.

1 0 0 O
cnefy 0!
00 0 -1
1 0 0 O
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00 0 -1

The CZ gate is symmetric under exchange of the control and target qubits as the only computational
basis state that the gate acts on non-trivially is [1), |1), . Therefore the unitary that satisfies the above
circuit equation is V' = I (the identity).

Part B

We can determine the unitary W by noting that in the previous problem we found that the CZ gate
is symmetric in its target and control qubits. This means that if we can find a gate W such that
WIYW = Z, then we can turn CY7 into C'Z1. This is equivalent to C'Zs1, so then when we act the
inverse gates that take us back from Z to Y, then we can take C'Z3; to C'Ys;. Diagrammatically, this

is the following argument:
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The gate W that performs the required operation is
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It can be verified that WY W = Z and therefore the gate satisfies the above diagrammatic equation.



