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Abstract

In this work, we present a spectral algorithm that finds good assignments for instances of
Unique Games when the underlying graph has some significant expansion and the constraints
are arbitrary Γ-max-lin.

We first analyze the behavior of the SDP by Feige and Lovász [FL92] on random instances of
unique games. We show that on random d-regular graphs with permutations chosen at random,
the value of the SDP is very small with probability 1− e−Ω(d). Hence, the SDP provides a proof
of unsatisfiability for random unique games. We then give a spectral algorithm for recovering
planted solutions. Given a random instance consistent with a given solution on 1 − ε fraction
of the edges, our algorithm recovers a solution with value 1 − O(ε) with high probability at
least 1 − e−Ω(d) over the inputs. Using similar arguments as in the planted solution case, we
conclude with an algorithm that finds good solutions for a Γ-max-lin expanding unique game.
We present both cases in a unified manner in order to emphasize the main ideas that were used
in the analysis of the algorithm.

1 Introduction

A unique game is defined in terms of a constraint graph G = (V,E), a set of variables {xu}u∈V ,
one for each vertex u and a set of permutations (constraints) Πuv : [k] → [k], one for each edge
(u, v). An assignment to the variables is said to satisfy the constraint on the edge (u, v) ∈ E if
πuv(xu) = xv. The edges are taken to be undirected and hence πuv = (πvu)−1. The goal is to assign
a value from the set [k] to each variable xu so as to maximize the number of satisfied constraints.

Khot [Kho02] conjectured that it is NP-hard to distinguish between the cases when almost all the
constraints of a unique game are satisfiable and when very few of the constraints are satisfiable.
Formally, the statement of the conjecture is the following:

Conjecture 1 (Unique Games Conjecture) For any constants ε, δ > 0, for any k > k(ε, δ), it
is NP-hard to distinguish between instances of unique games with domain size k where at least
1 − ε fraction of constraints are satisfiable and those where at most δ fraction of constraints are
satisfiable.

The Unique Games Conjecture is known to imply optimal inapproximability results for several
important problems. For instance, it implies a hardness of approximation within a factor of 2 − ε
for Vertex Cover [KR03] and within a factor of 0.878 for Max-Cut [KKMO04]. These results are
not known to follow from any other complexity assumptions.

Several approximation algorithms using linear and semidefinite programming have been developed
for approximating unique games (see [Kho02], [Tre05], [GT06], [CMM06a], [CMM06b]). These
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algorithms start with an instance where the value of the SDP or LP relaxation is 1− ε and round
it to a solution with value ν. Here, value of the game refers to the maximum fraction of satisfiable
constraints. For ν > δ, this would give an algorithm to distinguish between the two cases. However,
most of these algorithms give good approximations only when ε is very small (ε = O(1/ log n) or
ε = O(1/ log k)) 1. For constant ε however, only the algorithm of [CMM06a] gives interesting
parameters with ν ≈ k−ε/(2−ε). We refer the reader to [CMM06a] for a comparison of parameters
of various algorithms.

Is is also known (is implicit in [KV05]) that a stronger version of the unique games conjecture,
where the underlying constraint graph has significant expansion, would imply hardness of the
uniform version of the Sparsest Cut problem. An algorithm for solving unique games on random
graphs would thus give partial evidence of a negative answer. In this paper we study the case of
random and semi-random permutations, which may help in understanding how (and if) expansion
can provide an algorithmic advantage.

Our results

We study the case of random unique games generated by picking a random regular graph of degree
d (or a random Gn,p graph of average degree d) and picking a random permutation for each edge.
We show that with high probability over the choice of instances, the value of the SDP from [FL92]
and [Kho02] is at most δ for d = Ω(1/δ4 + 1/ε4). Here, we think of ε, δ as small constants and d as
a large constant.

Using techniques from the above analysis, we also study the problem of recovering planted solutions
for random unique games and finding good solutions when the given Unique game is a Γ-max-
lin expanding instance. Specifically, we start with studying the model where a random instance
consistent with a given solution is chosen to start with, and an adversary then perturbs ε fraction
of the constraints. Thus, the given instance has one planted solution with value 1− ε. We give an
algorithm which recovers w.h.p. a solution of value at least 1−O(ε) even when the perturbations are
adversarial. The result for Γ-max-lin expanding constraint graphs follows easily from this analysis.

To obtain both the above results, we analyze the dual of the SDP. We reduce the problem of
estimating the value of the SDP to estimating the eigenvalues for an associated matrix M . Since
most known eigenvalue analyses are for matrices with independent entries, which does not happen
to be the case with M , we adapt the analyses from [BS87] and [AKV02] to our purposes. The
planted and expanding Γ-max-lin cases are dealt with by analyzing the eigenvectors of this matrix.

Remark: For the random graphs model, it is possible to prove analogous results in the Gn,p model
by using the eigenvalue analysis from [FO05]. However, in this model our current estimates only
give interesting results in the range d = Ω(k2), where d = pn is the expected degree of the constraint
graph and k is the size of the alphabet.

1It might be good to think of k as O(log n) since this is range of interest for most reductions
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2 Preliminaries

2.1 Unique Games with Γ-max-lin constraints

As noted before, a unique game is defined in terms of a constraint graph G = (V,E), a set of
variables {xu}u∈V , one for each vertex u and a set of permutations (constraints) Πuv : [k] → [k],
one for each edge (u, v). An instance of Unique Games is Γ-max-lin when the constraints are of a
very specific form, namely they are all linear equations over some abelian group Γ.

2.2 SDPs and duality

Semidefinite programs are often used as relaxations of 0/1 quadratic programs. In obtaining the
relaxations, we often replace 0/1 variables x1, . . . , xn by vectors v1, . . . ,vn. Alternatively, we may
think of solving for an n× n positive semidefinite matrix Y such that Yij = vi · vj. Then, one way
of writing a general SDP is

maximize B • Y
subject to A1 • Y = c1

A2 • Y = c2

...
An • Y = cn

Y � 0

where A1, A2, . . . An, B are symmetric square matrices and A • B denotes the Frobenius inner
product (=

∑
i,j aijbij) of the matrices.Here Y � 0 denotes the constraint that Y is positive

semidefinite. The dual of the above SDP is

minimize cTx

subject to x1A1 + x2A2 . . . xnAn −B � 0

From (weak) duality, we have that vprimal ≤ vdual.

2.3 Spectra of graphs

In the rest of the paper we are going to investigate this SDP by looking at its dual and reducing it
to estimating eigenvalues of graphs.

We remind the reader that for a graph G, the adjacency matrix A = AG is defined as :

AG =
{

1 if (u, v) ∈ E
0 if (u, v) /∈ E

If the graph has n vertices, AG has n real eigenvalues λ1 ≥ λ2 ≥ · · ·λn. The eigenvectors that
correspond to these eigenvalues form an orthonormal basis of Rn. We note that if the graph is
d-regular then the largest eigenvalue is equal to d and the corresponding eigenvector is the all-one’s
vector.
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We can use the Courant-Fisher Theorem to characterize the spectrum of A. The largest eigenvalue
satisfies

λ1 = max
x∈Rn

xTAx

xTx

If we denote the first eigenvector by x1 then

λ2 = max
x∈Rn,x⊥x1

xTAx

xTx

Similar definitions hold for the eigenvalues λi, i ≥ 3.

3 The dual of Unique-Games SDP for random graphs

We look at the SDP for Unique-Games without the triangle inequality. The SDP is

maximize
∑

(u,v)∈E
∑k

i=1 ui · vπuv(i)

subject to ui · uj = 0 ∀u ∈ V,∀i, j∑k
i=1 ‖ui‖

2 = 1 ∀u ∈ V

The feasible region of the dual can be expressed as Z � 0 where Z is an nk × nk matrix. We use
Zuv to denote the k × k block corresponding to the vertices u and v. The blocks are given by

Zuv =


0 if (u, v) /∈ E, u 6= v
−1

2Πuv if (u, v) ∈ E
Zu if u = v

where Πuv is the permutation matrix corresponding to πuv and Zu is the (symmetric) matrix of all
the variables corresponding to the vertex u. The off-diagonal entries of Zu are (Zu)ij = (Zu)ji =
1
2x

u
{i,j} - a separate variable for each pair {i, j} and vertex u. All the diagonal entries are the same,

equal to a single variable x(u). The objective function of the whole SDP is
∑

u∈V x
u.

We will consider dual solutions with xu{i,j} = 2d/k for all u ∈ V and i, j ∈ [k], i 6= j. Also, we

set x(1) = x(2) = . . . = x(n) = λ + d/2k. Here λ is taken to be an upper bound on the second
eigenvalue. Note that the first eigenvalue of M is d since M can be thought of as the adjacency
matrix of a d-regular graph on nk vertices. The objective value as nd/2k + nλ. Putting in these
values for the variables, we will need to show that the following equation is satisfied.

λI +
d

2k
J − 1

2
M � 0

where I is the nk × nk identity matrix, J is a block diagonal matrix with k × k blocks of all 1s on
the diagonal and M is a block matrix with Muv = Πuv if (u, v) ∈ E and 0 otherwise.

Let z denote the all vector with all coordinates 1√
nk

. Then z is the first eigenvector of M . We
prove the following in the next section

Theorem 2 Let M be a matrix generated according to a random d-regular graph and random
permutations on each edge. Then, with probability 1− e−Ω(d), λ2(M) ≤ Cd3/4
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Hence, we take λ = Cd3/4 which is a bound on the second eigenvalue2. Note that z is the first
eigenvector of both J and M . Since we can express any vector x and αz+βw with w ⊥ z, we have

xT
(
λI +

d

2k
J − 1

2
M

)
x = (αz + βw)T

(
λI +

d

2k
J − 1

2
M

)
(αz + βw)

= λ+ α2d

2
+ β2d

2
wTJw − 1

2
(
α2zTMz + β2wTMw

)
Since J is positive semidefinite, zTMz ≤ d and wTMw ≤ Cd3/4, we have xT (λI + λ1

2kJ −
1
2M) ≥ 0

for every x. This gives that the value of the SDP for random d-regular graphs is |E|k + |E|
d1/4

with
high probability.

4 Bounding the second eigenvalue for d-regular graphs

We consider undirected random 2d-regular graphs G2d on n vertices constructed by choosing d
permutations (over n elements) independently at random. For each of the chosen permutations σ
and for each vertex u we add to the graph the edge (u, σ(u)). The unique game is then constructed
for by then picking a random permutation πuv (over k elements) for each edge (u, v) ∈ E.

The bound on the second eigenvalue is obtained in two steps. We first by first bound the expected
value by examining the trace of a power of the matrix M . We then show a concentration bound
using an application of Talagrand’s inequality adapted from [AKV02].

4.1 Bounding the mean

In the following argument, it will be convenient to consider the normalized matrices M∗ = (2d)−1M ,
A∗ = (2d)−1A. For any positive integer p, we have Trace((M∗)p) = 1

(2d)pTrace(M
p) and same for

A∗. Let ρ1, ρ2, · · · , ρnk the eigenvalues of M∗ in order of decreasing value. Clearly, ρ1 = 1. Our
next goal is to upper-bound the mean value of the quantity ρ = max{ρ2, |ρn|}. Let p be a large
positive integer to be fixed later.

Lemma 3
E[ρ] ≤ (E[Trace((M∗)2p)]− 1)1/2p

Proof: Because Trace((M∗)2p) =
∑

1≤i≤nk ρi
2p and because all the eigenvalues of a symmetric

matrix are real, we have :
ρ2p ≤ Trace((M∗)2p)− 1

Taking expectations over the probability space described above,(that is, over all 2d-regular graphs
and over all permutations of k elements within each non-zero block), we have

E[ρ] ≤ E[ρ2p]1/(2p) ≤ (E[Trace((M∗)2p)]− 1)1/2p

by Jensen’s inequality. �

We next relate the value of E[Trace((M∗)2p)] to E[Trace((A∗)2p)].

2We believe that it is possible to improve this bound to even C
√

d but this is not very important for our purposes.
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Claim 4 Let A = [aij ] be the adjacency matrix of a graph G and M be a block matrix with
Muv = Πuv if (u, v) ∈ E and 0 otherwise. Then E[Trace(M2p)] = Trace(A2p) where p is a positive
integer and the expectation on the left hand side is taken over the choice of permutations.

Proof: Let S be a set containing all the sequences of 2p+ 1 nodes of G that begin and end at the
same node. I.e S = {uu1 · · ·u2pu}. Each s ∈ S corresponds to a walk on G of length 2p that begins
and ends at the same node and therefore also corresponds to a sequence of blocks of the matrix M
above that begins and ends at the same block.

For any matrix Q = [qij ] and for any positive integer n we have

Trace(Qn) =
∑

i1,i2,...in

qi1i2qi2i3 . . . qini1

Observe that when Q is the adjacency matrix of a graph, each term in the above sum is 1 if
i1, i2, · · · in, i1 is a path in the graph and 0 otherwise.

Thus, for the matrices A and M we have

Trace(A2p) =
∑

u1u2...u2pu1∈S
au1u2 . . . au2pu1

Trace(M2p) =
∑

u1,u2,...,u2pu1∈S
i1,i2,...,i2p∈[k]

m(u1,i1)(u2,i2) . . .m(u2p,i2p)(u1,i1)

where the tuple (u, i) corresponds to the index of the ith element of block u.

We can write each term m(u,i)(v,j) = auv . . . I{πuv(i)=j}, where the random variable I{πuv(i)=j} is 1
when πuv(i) = j and 0 otherwise. We can now re-write the trace as

Trace(M2p) =
∑

u1u2...u2pu1∈S
au1u2 . . . au2pu1

∑
i1,i2,...,i2p∈[k]

I{πu1u2 (i1)=i2} . . . I{πu2pu1 (i2p)=i1}

and, taking expectation over all permutations

E[Trace(M2p)] =
∑

u1u2...u2pu1∈S
au1u2 . . . au2pu1

∑
i1,i2,...,i2p∈[k]

P [πu1u2(i1) = i2 ∧ . . .∧ πu2pu1(i2p) = i1]

For multi-indices U = u1u2 . . . u2p and I = i1i2 . . . i2p let EU,I be the event {πu1u2(i1) = i2 ∧ · · · ∧
πu2pu1(i2p) = i1}. For a fixed U , the events EU,I where I takes all possible values consist of a
partition of the whole probability space. Therefore with this notation,

E[Trace(M2p)] =
∑
U

au1u2 . . . au2pu1

∑
I

P [EU,I ] =
∑
U

au1u2 . . . au2pu1 = Trace(A2p)

�

Hence, to bound ρ, it suffices to bound E[Trace(A2p)]. The following lemma can be found in [BS87].

Lemma 5 Let A∗ as above and p = (2− ε′)logd/2n a positive integer. Then

E[Trace((A∗)2p)] ≤ 1
n1−ε′ + 1 +O(

(logn)4

n
)
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Claim 6 Let p be as above. Then for every ε > 0 we have the inequality :

E[ρ] ≤ (
2
d

)1/4(1 + ε+ o(1))

Proof: From claim 4 we have

E[Trace((M∗)2p)] = E[Trace((A∗)2p)]

Using lemma 5 we have

E[Trace((M∗)2p)] ≤ (
1

n1−ε′ + 1 +O(
(logn)4

n
))

Hence,
E[ρ] ≤ (E[Trace((M∗)2p)]− 1)1/2p = (E[Trace((A∗)2p)]− 1)1/(2(2−ε′)logd/2n)

≤ (
1

n1−ε′ )
1

2(2−ε′)logd/2n (1 + o(1)) = (
2
d

)1/4(1 + ε+ o(1))

Which follows by the appropriate choice of ε′. �

From the above calculations it follows that if λ is the second largest (in absolute value) eigenvalue
of M , then

E[λ] = O(d3/4)

We note that it is also possible to bound E[λ] by O(
√
d) by using the (more involved) bound on

Trace((A∗)2p) from [Fri91].

4.2 Concentration of λ around the mean

We will next prove that with probability that tends to 1 as n → ∞, λ deviates from its mean
by at most

√
d. For that we will first prove concentration of λ around its median, and then use

elementary probability techniques to show that the expectation and the median of λ are very close.
Namely, we will prove the following theorem :

Theorem 7 The probability that λ2 deviates from its median by more than t is at most 4e−t
2/128

. The same estimate holds for the probability that λkn deviates from its median by more than t.
Therefore Pr[|λ− µ(λ)| ≥ t] ≤ 2e−t

2/128, where µ(λ) denotes the median of λ.

For that reason, we will use Talagrand’s inequality in a similar manner as in [AKV02].

Theorem 8 (Talagrand’s Inequality) Let Ω1,Ω2, · · · ,Ωm be probability spaces, and let Ω denote
their product space. Let A and B be two subsets of Ω and suppose that for each B = (B1, · · · , Bm) ∈
B there is a real vector α = (α1, α2, · · · , αm) such that for every A = (A1, · · · , Am) ∈ A the
inequality ∑

i:Ai 6=Bi

αi ≥ t(
m∑
i=1

αi
2)1/2

holds. Then
Pr[A]Pr[B] ≤ e−t2/4
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We now apply Talagrand’s inequality to prove theorem 7. We will show the case for λ2, but the
same proof easily carries out for λkn. Some notation follows:
Let

(
m=n+1

2

)
and consider the product space Ω of the blocks Mij ,1 ≤ i, j,≤ n where each block is

a k× k permutation matrix. We identify each element of Ω with the vector consisting of the corre-
sponding m k × k blocks. Instead of i, j we will use indices u, v for the block of M corresponding
to vertices u, v. Let µ denote the median of λ2.
Let A = {M |λ2(M) ≤ µ} and B = {M |λ2(M) ≥ µ+ t}. By definition of the median, Pr[A] ≥ 1/2.

For any vector f = (f(1), · · · , f(nk)) ∈ Rnk we will denote by fi ∈ Rk,1 ≤ i ≤ n the vector that
corresponds to the i-th block of k coordinates of f , i.e. fi = (f((i−1)k), f((i−1)k+1), · · · , f(ik)).
Let ‖f‖ be the euclidean norm of f .

Proof:(Of theorem 7) Fix a vectorB ∈ B. Let f (1), f (2) denote the first and second unit eigenvector
of B. We define the following cost vector α = (auv) for B.

αuu = (‖f (1)
u ‖+ ‖f (2)

u ‖)

αuv =
√

2αuuαvv, v 6= u

Let D = {(u, v)|Auv 6= Buv}. We will show that∑
(u,v)∈D

αuv ≥ c · t · (
∑

1≤u≤v≤n
α2
uv)

1/2

Note that ∑
1≤u≤v≤n

α2
uv = (

∑
αuu)(

∑
αvv) = (‖f (1)‖2 + ‖f (2)‖2)2 = 4

Let z = c1f
(1) + c2f

(2) be a unit vector (i.e. c1
2 + c2

2 = 1) which is perpendicular to the first
eigenvector of A. Note that such a vector can always be found, since the orthogonality of f (1) and
f (2) implies that the subspace span{f (1), f (2)} is 2-dimensional. Then

zTAz ≤ λ2(A) ≤ µ

and

zTAz ≥ λ2(B) ≥ µ+ t

which implies

t ≤ zT (B −A)z ≤
∑

(u,v)∈D

zu
T (Buv −Auv)zv ≤

∑
(u,v)∈D:(Buv−Auv)ij 6=0

|zui||zvj |

≤
∑

(u,v)∈D

√
2‖zu‖2

√
2‖zv‖2

≤
∑

(u,v)∈D

2
√
αuu
√
αvv =

√
2
∑

(u,v)∈D

αuv
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The fourth inequality holds because each coordinate appears at most twice (each block is a permu-
tation matrix). By combining the above, we obtain

∑
(u,v)∈D

αuv ≥
t

4
√

2
(
∑

αvv
2)1/2 ⇒ Pr[B] ≤ 2e

−t2
128

�

We conclude by showing that the eigenvalues are also concentrated around their expectation.
Namely,

Theorem 9 Pr[|λ− E[λ]| ≥ t] ≤ e−(1−o(1))t2/128

To prove this, we show that the expectation and the median of eigenvalues are very close. We show
the result for λ2 but the result holds for all eigenvalues (with different constants in the exponent).

Claim 10 E[λ2]− µ ≤ 8
√

2π

Proof:

E[λ2]− µ ≤ E[|λ2 − µ|] =
∫ ∞

0
P [|λ2 − µ| > t]dt ≤

∫ ∞
0

2e
−t2
128 dt = 8

√
2π

�

5 Recovering solutions by spectral methods

For a given instance of unique games on a graph G = (V,E), let M denote (as before) the nk× nk
symmetric matrix such that the k×k block Muv is equal to the permutation matrix Πuv if (u, v) ∈ E
and 0 otherwise. We shall now show how the eigenvectors of M may be used to recover good
assignments to highly satisfiable instances of unique games in some special cases.

Specifically, we handle the cases when the instances are random regular graphs with random con-
straints, and also when the constraints are arbitrary Γ-max-lin instances and the underlying graph
has some significant expansion. The properties used in both cases are the eigenvalue gap of the
underlying graph and small number of eigenvectors of M with high eigenvalue.

We give the analysis for d-regular graphs in both cases to give a unified treatment. While our
arguments for random graphs work give better bounds for regular graphs, the ones for expanding
Γ-max-lin instances can easily be generalized to non-regular graphs by considering the eigenvectors
of the matrix D−M instead of M . Here D denotes an nk×nk diagonal matrix with Duu = deg(u)·I.
If we think of M as the adjacency matrix of graph with vertex set V ×[k] and each edge of G replaced
by a matching, then D −M can be thought of as the Laplacian matrix of that graph.

We construct an “almost satisfiable” instance according to the following model, which captures
both the cases mentioned above:

• Pick a d-regular graph G = (V,E) according to some distribution DG.

• To every u ∈ V , assign a value A(u) ∈ [k].
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• For every edge (u, v) ∈ E, pick a constraint πuv consistent with A(u) and A(v) from some
distribution Duv. Let M be tha matrix of this completely satisfiable game. We denote the
game by (G, k,M).

• Let an adversary pick any ε|E| edges and replace their constraints by arbitrary constraints.
Let the new matrix be M̂ and let (G, k, M̂) denote the perturbed game.

The above model captures the random model with planted solutions if we take DG to be the
distribution over random d-regular graphs and Duv to be uniform over permutations consistent
with A(u) and A(v). The second case can be realized by taking DG as any arbitrary distribution
over graphs with second eigenvalue (say) at most (1−γ)d andDuv as arbitrary Γ-max-lin constraints.

Let W the span of the eigenvectors of M̂ with eigenvalue at least (1− 2ε)d. The algorithm simply
looks at a set S ⊆ W of polynomialy many candidate vectors and “reads-off” an assignment as
described below. The set S is chosen differently in each case.

Recover-SolutionS(G, k, M̂)

• For each x ∈ S, construct an assignment Ax by assigning to each vertex u, the index corre-
sponding to the largest entry in the block (xu1, . . . , xuk) i.e. A(u) = argmaxixui.

• Out of all assignments Ax for x ∈ S, choose the one satisfying the maximum number of
constraints.

To choose S, we will look at the analog ofW for the matrixM . Let Y denote the span of eigenvectors
of M with eigenvalue at least (1− ε). We will first show that if G has a large eigenvalue gap, then
every vector in W is close to some vector in Y . We then identify some “nice” vectors in W such
that the algorithm works for any vector which close to some nice vector. We then identify a set
S ⊆W such that at least one vector in S is close to a nice vector.

To show that the eigenspaces W and Y are close, we use the following claim which essentially
appears in [DK70] as the sin θ theorem. We give the proof below for self-containment.

Claim 11 Let w be a unit length eigenvector of M̂ with eigenvalue λ̂ ≥ (1− 2ε)d and let λs denote
the largest eigenvalue of M which is smaller than (1− 2ε)d. Then, w can be written as αy + βy⊥

with |β| ≤
∥∥∥(M − M̂)w

∥∥∥ /(λ̂− λs)
Proof: We have

(M − M̂)w = αMy + βMy⊥ − λ̂w = α(My − λ̂y) + β(My⊥ − λ̂y⊥)

Since (M − λ̂I)y and (M − λ̂I)y⊥ are in orthogonal eigenspaces, we have∥∥∥(M − M̂)w
∥∥∥2

= α2
∥∥∥(M − λ̂I)y

∥∥∥2
+ β2

∥∥∥(M − λ̂I)y⊥
∥∥∥2
≥ β2

∥∥∥(M − λ̂I)y⊥
∥∥∥2

However,
∥∥∥(M − λ̂)y⊥

∥∥∥ ≥ (λ̂− λs) which proves the claim. �

Hence, to prove that the space Y does not change by much due to the perturbation, we simply
need to bound

∥∥∥(M − M̂)w
∥∥∥. We shall also need the fact that w is somewhat “uniform” over each

block. To formalize this, let w̄ be the n-dimensional vector such that w̄u = ‖wu‖ where wu is the
k-dimensional vector (wu1, . . . , wuk)T . We then show that w̄ is very close to the all-one’s vector ~1.
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Claim 12 If w is an eigenvector of M̂ with eigenvalue more than (1 − 2ε)d and G has second
eigenvalue less than (1− γ)d, then w̄ can be written as a~1 + b~1⊥ with |b| ≤

√
2ε
γ

Proof: Since, w corresponds to a large eigenvalue, we have that

(1− 2ε)d ≤ (ŵ)T M̂ŵ ≤
∑
u,v

‖wu‖Auv ‖wv‖ = (w̄)TAw̄

Writing w̄ as a√
n
~1 + b~1⊥, we get

(w̄)TAw̄ ≤ a2d+ b2(1− γ)d

⇒ (1− 2ε)d ≤ a2d+ b2(1− γ)d ⇒ |b| ≤
√

2ε
γ

�

Using the above, and the fact that the matrix M is only perturbed in ε fraction of the edges, we
can now bound

∥∥∥(M − M̂)w
∥∥∥ as follows.

Claim 13
∥∥∥(M − M̂)w

∥∥∥ ≤ 5
√

ε
γ

Proof: Define the n×n matrix R as Ruv = 1 when the block (M−M̂)uv has any non-zero entries,
and Ruv = 0 otherwise. Note that if (M − M̂)uv is non-zero, then it must be the difference of two
permutation matrices. Thus, for all v

∥∥∥(M − M̂)uvwv
∥∥∥ ≤ 2Ruv ‖wv‖. We have that

∥∥∥(M − M̂)w
∥∥∥ =

√√√√∑
u

∥∥∥∥∥∑
v

(M − M̂)uvwv

∥∥∥∥∥
2

≤

√√√√∑
u

(∑
v

∥∥∥(M − M̂)uvwv
∥∥∥)2

≤

√√√√∑
u

(∑
v

2Ruv ‖wv‖

)2

≤ 2 ‖Rw̄‖

To estimate ‖Rw̄‖, we break it up as

‖Rw̄‖ ≤ a√
n

∥∥∥R ·~1∥∥∥+ b
∥∥∥R ·~1⊥∥∥∥

Since R has at most d 1s in any row, b
∥∥∥R ·~1⊥∥∥∥ ≤ √2ε

γ d. Also,
∥∥∥R ·~1∥∥∥ =

√∑
u (
∑

v Ruv)
2. Since

R has a total of εnd 1s, this expression is maximized when it has d 1s in εn rows. This gives
1√
n

∥∥∥R ·~1∥∥∥ ≤ √εd. Combining with the above, we have that∥∥∥(M − M̂)w
∥∥∥ ≤ 2

√
εd+ 2

√
2ε
γ
d ≤ 5

√
ε

γ

�

Combining the above bound with claim 11, we get that any unit-length vector w ∈ W can be
expressed as αy + βy⊥ where y ∈ Y and |β| ≤ 5

√
ε
γ ·

1
(1−2ε)d−λs . Recall that λs was the largest

eigenvalue of M smaller than (1 − 2ε)d. We now obtain bounds on λs and define the set S of
candidate vectors separately for each case.
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6 The planted solution model on random graphs

Since G is a d-regular graph and each block of M is a permutation matrix, the first eigenvector of
M (with eigenvalue d) is the vector 1

nk
~1. It is easy to verify that the following vector y is orthogonal

to ~1 and also has eigenvalue d.

yui =


k−1√
nk(k−1)

if i = A(u)

−1√
nk(k−1)

otherwise

The following claim shows that w.h.p. all other eigenvalues of the matrix M are small and hence
y is the only vector orthogonal to ~1 with eigenvalue more than (1− 2ε)d.

Claim 14 With high probability over the choice of M , λi(M) ≤ O(
√
d) for all i ≥ 3.

Proof: Let z be a vector perpendicular to both ~1 and y such that ‖z‖ = 1. Then, we must have
that ∑

u

∑
i

zui = 0 and
∑
u

(k − 1)zuA(u) −
∑

i 6=A(u)

zui

 = 0

which implies ∑
u

zuA(u) =
∑

i 6=A(u)

zui = 0

We now define z1 as (z1)ui = yui for all i 6= A(u) and (z1)uA(u) = 0. Also, let z2 = y− y1. Then for
every u, (z2)uA(u) = zuA(u) is the only non-zero coordinate of z2. Also ‖z1‖ , ‖z2‖ ≤ 1. We have,

‖Mz‖ = ‖M(z1 + z2)‖ = ‖Mz1 +Mz2‖ ≤ ‖Mz1‖+ ‖Mz2‖

However, since all constraints are satisfied by the assignment xu = A(u), ‖Mz2‖ =
∥∥AzG2 ∥∥, where

zG2 is an n-dimensional “projection” of z2 on the graph by setting (zG2 )u = (z2)u, and A is the
adjacency matrix of the graph. From the above equations we have that

∑
u zuA(u) = 0, which

means that zG2 is perpendicular to the first eigenvector of A. Thus, w.h.p.

‖Mz2‖ =
∥∥AzG2 ∥∥ ≤ O(

√
d
∥∥zG2 ∥∥) ≤ O(

√
d)

We now consider a new game with matrix Mk−1 with alphabet size k − 1 obtained by deleting
the value A(u) for each u. Note that this is a completely random unique game for alphabet size
k−1, since we chose constraints for M randomly after fixing πuv(A(u)) = A(v). Finally, it remains
to notice that ‖Mz1‖ =

∥∥∥Mk−1z
(k−1)
1

∥∥∥, where z(k−1)
1 is the n(k − 1)-dimensional projection of z1

obtained by deleting coordinates zuA(u) for all u. We also have∑
u,i

(z(k−1)
1 )ui =

∑
u,i 6=A(u)

zui = 0

which gives that z(k−1)
1 is perpendicular to the first eigenvector of Mk−1 and hence by the previous

eigenvalue estimates,
‖Mz1‖ =

∥∥∥Mk−1z
(k−1)
1

∥∥∥ ≤ O(
√
d)

12



�

From the above, we get that w.h.p. λs ≤ O(
√
d). Also, if the underlying graph G is random, then

its second eigenvalue is O(
√
d) and γ is 1 − o(1). Combining this with claims 11 and 13, we see

that every vector w ∈ W can be expressed as w = αy + βy⊥, with |β| ≤ 6
√
ε. Also, this gives

α ≥ 1− 6
√
ε.

To choose S, note that M̂ has at least one eigenvector orthogonal to ~1 with eigenvalue more than
1− 2ε, since y ⊥ ~1 and yT M̂y ≥ (1− k−1

k ε)d ≥ (1− 2ε)d. Also, the dimension of W can be at most
2 since every unit vector in W must be close to a unit vector in Y and w.h.p. Y has dimension 2.
Let w ∈W be the eigenvector of M̂ orthogonal to ~1. We take S = {w,−w}.
Also, since w ⊥ ~1, we can express w = αy + βy⊥ with both y and y⊥ orthogonal to ~1. Then, for
one of the vectors w or −w, y must be the second eigenvector of the matrix M as described earlier.
We now show that the algorithm recovers the corresct assignment to most of the variables.

Claim 15 Let w = αy+βy⊥ with yui = (k−1)/
√
nk(k − 1) if i = A(u) and yui = −1/

√
nk(k − 1)

otherwise. Then, for ε small enough, the coordinate wuA(u) has the maximum value within its block
for at least (1− 99ε)n blocks u .

Proof: Within each block u, in order for coordinate A(u) to be no longer the maximum one, it
must happen that for some j

α
k − 1√
nk(k − 1)

+ β · (w⊥)uA(u) ≤ −
α√

nk(k − 1)
+ β · (w⊥)uj

This gives

(w⊥)uj − (w⊥)uA(u) ≥
k√

nk(k − 1)
· α
β

⇒ [(w⊥)uj ]2 + [(w⊥)uA(u)]
2 ≥ 1

2
[(w⊥)uj − (w⊥)uA(u)]

2 ≥ k

2n(k − 1)
· α

2

β2

⇒ ‖(w⊥)u‖2 ≥
k

2n(k − 1)
· (1− 6

√
ε)2

36ε

.

We call such a block “bad”. Assume that there are ηn bad blocks. Then

1 ≥
∑

bad u

‖(w⊥)u‖2 ≥ ηn ·
k

2n(k − 1)
· (1− 6

√
ε)2

36ε
⇒ η ≤ 72ε

(1− 6
√
ε)2
≤ 99ε

�

Therefore, for all but at most 99ε fraction of the blocks, the maximum coordinate remains at the
same place. The assigment recovered by our algorithm then fails to satisfy at most 99εnd constraints
corresponding to these blocks and εnd constraints perturbed initially. Thus, the solution violates
at most 100εnd = 200ε|E| constraints and has value at least 1− 200ε.
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7 Expanding instances of Γ-max-lin

In the case of Γ-max-lin, for each edge (u, v) in the graph G, we have a constraint of the form
xu − xv = cuv, where xu, xv are variables taking values in Γ and cuv ∈ Γ. Let k denote the size
of the group Γ. As before, we consider a matrix M̂ for the given instance, and think of it as
an adversarial perturbation on ε-fraction of the edges of another matrix M corresponding to a
fully satisfiable instance. Let A be an assignment such that the values xu = A(u) satisfy all the
constraints in the instance corresponding to M .

As in the previous analysis, we assume that the graph is d-regular with second eigenvalue at most
d(1 − γ). We will be able to distinguish instances of Γ-max-lin in which (1 − ε) fraction of the
constraints are satisfiable from those in which at most δ fraction of the cosntraints are satisfiable
for γ = Ω(ε1/3).

For the matrix M , we define the eigenvectors y(0), . . . , y(k−1) as

y
(s)
ui =

{
1√
n

if i = A(u) + s mod k

0 otherwise

Note that for Γ-max-lin, if ∀u : xu = A(u) is a satisfying assignment, then so is ∀u : xu = A(u)+s.
Hence, the vectors y(0), . . . , y(k−1) correspond to satisfying assignments and are eigenvectors with
eigenvalue d for the matrix M . We now show that any eigenvector which is orthogonal to all these
vectors has eigenvalue at most d(1− γ).

Claim 16 Let x be a vector such that x ⊥ y(s)∀s . Then xTMx ≤ (1− γ)d.

Proof: Since x ⊥ y(s)∀s, we have

∀s ∈ {0, . . . , k − 1}
∑
u

xuA(u)+s = 0

We then decompose x into x0, . . . , x(k−1), where

x
(s)
ui =

{
xui if i = A(u) + s mod k
0 otherwise

It is immediate from the definition that x =
∑

s x
(s) and that ‖x‖2 =

∑
s

∥∥x(s)
∥∥2

. To bound the
eigenvalue corresponding to x, note that

xTMx =
∑
s,t

(x(s))TMx(t)

Let ei denote the ith unit vector in k-dimensions. We can then write x(s)
u as xuA(u)+seA(u)+s. Using

this notation, we compute the terms in the above equation as

(x(s))TMx(t) =
∑

(u,v)∈E

(x(s)
u )TΠuv(x(t)

v ) =
∑

(u,v)∈E

xuA(u)+sxvA(v)+t · (eA(u)+s)
TΠuveA(v)+t

14



Since the permutation maps A(u) to A(v) and A(u) + s to A(v) + s for all s, (x(s))TMx(t) = 0
when s 6= t. For the rest of the terms, we have

(x(s))TMx(s) =
∑

(u,v)∈E

xuA(u)+sxvA(v)+s ≤ d(1− γ)
∥∥∥x(s)

∥∥∥2
(Since

∑
u

xuA(u)+s = 0)

Hence,

xTMx =
∑
s

(x(s))TMx(s) ≤ d(1− γ)
∑
s

∥∥∥x(s)
∥∥∥2

= d(1− γ) ‖x‖2

�

We take Y to be the span of y(0), . . . , y(k−1). From the above, we know that the next eigenvalue
smaller than (1 − 2ε)d for M is λs ≤ (1 − γ)d. Note that for all s ∈ {0, . . . , k − 1}, we have
(y(s))T M̂y(s) ≥ d(1 − ε). Let w be any unit-length eigenvector of M̂ , with eigenvalue at least
(1− 2ε)d. By claims 11 and 13, we can express w as

∑
s αsy

(s) + βy⊥ with

|β| ≤ 5
√
ε

γ
d · 1

(1− 2ε)d− λs
≤ 5

√
ε

γ
· 1
γ − 2ε

≤ 6
√

ε

γ3

Note that this also implies that the eigenspace of vectors with eigenvalue greater than (1− ε)d has
dimension at most k (otherwise we would find a vector othogonal to y(0), . . . , y(k−1) which cannot
be close to their span).

Hence, for γ = Ω(ε1/3), the eigenspace of the first k eigenvectors of M̂ (W ) is close to the eigenspace
of the first k eigenvectors of M (Y ). Also, Y contains the vectors y(0), . . . , y(k−1) which encode the
solutions. As in claim 15 we can show that the algorithm works for any vector close to one of the
vector y(s).

Claim 17 If x is a vector such that v = αy(s) + βy⊥ for some y(s) with α > 0, then the coordinate
xuA(u)+s is maximum in at least (1− β2

α2n) blocks.

Proof: Within each block u, in order for coordinate A(u) + s to be no longer the maximum one,
it must happen that for some j

α
1√
n
≤ β · (y⊥)uj

However,this gives

‖(y⊥)u‖ ≥ (y⊥)2
uj ≥

α2

β2n

Since ‖y⊥‖ = 1, this can only happen for at most β2

α2n blocks. �

To find a vector v close to one of the vectors y(s), we discretize the eigenspace of the first k
eigenvectors of M̂ . Let w(0), . . . , w(k−1) be the eigenvectors. We define the set S as

S =

{
v =

k−1∑
s=0

αsw
(s) | αs ∈

1
10
√
k

Z, ‖v‖ ≤ 1

}

S contains at least one vector v such that v = αy(s) +βy⊥ for some s and β ≤ 1/10+6
√
ε/γ3 < 1/5

for γ > 20ε1/3. Thus, for this vector v, Recover-SolutionS(G, k, M̂) recovers an assignment
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which agrees with y(s) in (1 − 1
24) fraction of the block. Hence, the assignment violates at most

1
24nd + εnd < nd/20 constaints. Since the total number of constraints is nd/2, this satisfies more
than 90 percent of the constraints.

Finally, it remains to argue that the running time of the algorithm is polynomial. It can be
calculated (see, for instance [FO05]) that the number of points in the set S is at most ek ln 90. Since
k = O(log n) (this must hold for the long-code based reductions to be polynomial time), the number
of points is polynomial in n. Hence, the algorithm runs in polynomial time.
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