Towards Refuting UGC

The MAX CUT Problem

- Input: G = (V,E)

The MAX CUT Problem

- Input: G = (V,E)
- Objective : Partition G in $\left(S, S^{\prime}\right)$ as to MAXIMIZE number of edges cut
G

- [Karp '72]: MAX CUT is NP-complete
- What about approximating MAX CUT?

The MAX CUT Problem

- Input: G = (V,E)
- Objective : Partition G in ($\mathrm{S}, \mathrm{S}^{\prime}$) as to MAXIMIZE number of edges cut Approximation algorithms: 1

G

- Random cut (trivial): half of optimal
- [GW'94]: $\alpha_{6 w=0.878}$ approximation algorithm of M^{1-2} How many of you bet this is

The MAX CUT Problem

- Input: G = (V,E)
- Objective : Partition G in ($\mathrm{S}, \mathrm{S}^{\prime}$) as to MAXIMIZE number of edges cut Approximation algorithms: 1

G

- Random cut (trivial): half of optimal
- [GW'94]: $\alpha_{6 w=0.878}$ approximation algorithm of $\mathrm{M}^{\text {a }}$ If Unique Games Conjecture

Can We Hope for Better Approximation Algorithms in P?

Previous inapproximability not a coincidence! Unique Games Conjecture (UGC) captures exact inapproximability of many more problems

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs
3. Towards Refuting UGC on almost-all Graphs
4. Open Questions

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs
3. Towards Refuting UGC on almost-all Graphs
4. Open Questions

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

Web Images Videos Shopping News Maps More I MSN Hotmail Unique Games Web		
RELATED SEARCHES	ALL RESULTS $1-10$ of $69,400,000$ results • Advanced	Make Bing your homepage
Unique Free Online	Crate \& Barrel ${ }^{\text {a }}$ Sponsored sites	
Unique Puzzle Games	wwv.crateandbarel.com - Today Only Save 15\% and Get Free Shipping On Select Orders.	Sponsored sites
Unique Family Games	Unique Games	Uncommon Games
Unique Party Games	SpencersOnline.com - Buy Novelty, Raunchy \& Fun Games. 54.99 Shipping on Orders Over 539!	Find unique, creatively designed board games for adults \& teens.
Unique Golf Games	Unique Games Card, Arcade, and Board game shareware site. Download a free game title, or link to other game sites. agcrump.com - Cached page	unique games
Unusual Games		Exquisite, Finely Detailed Wooden
		Board Games \& More. Shop Today! wnw BitsandPieces com

bingo million pages

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

bing30 million pages

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

bing 90 million pages

Gogle: 178 million pages

Unique Games = Unique Label Cover Problem

Given: set of constraints

Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

$$
\begin{aligned}
& \text { EXAMPLE } \\
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

The constraint graph

Unique Games, an Example

Given: set of constraints

Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

EXAMPLE

$$
\begin{aligned}
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

The constraint graph

Unique Games, an Example

Given: set of constraints

Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

EXAMPLE

$$
\begin{aligned}
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3)
\end{aligned}
$$

$$
x_{1}-x_{3}=1(\bmod 3)
$$

Rest of the talk: d-regular graphs

Unique Games Conjecture

- [Khot'02] For every positive ε and δ there is a large enough k s.t. for some instance of Unique Games with alphabet size k and OPT > $1-\varepsilon$, it is NP hard to satisfy a δ fraction of all constraints.
- Given a UG instance (graph and set of constraints over alphabet of size k) with the guarantee that it is 99% satisfiable, it is NP-hard to find an assignment that satisfies more than $1 / 2$ of the constraints (for some 99\% and some $1 / 2$).

Is Unique Games Conjecture True?

Unique Games Conjecture

- UGC: given a UG instance (graph and set of constraints over alphabet of size k) with the guarantee that it is 99\% satisfiable, it is NPhard to find an assignment that satisfies more than $1 / 2$ of the constraints (for some 99\% and some $1 / 2$).

> Really embarrassing not to know, since solving systems of linear equations (exactly) is very easy!

Where to begin if we want to refute UGC?

- Several attempts in recent years to refute or prove UGC.
- Lot of progress but still no consensus.

Plan of attack: start ruling out cases.

- Classify graphs according to their "spectral profile" (eigenvalues)
- Expanders [AKKTSV'08,KT’08],
- Local expanders, graphs with relatively few large eigenvalues [AIMS'09,SR'09, K'10]
- Find distributions that are hard?
- Random Instances : NO! Follows from expander result.
- Quasi-Random Instances? [KMM'10] NO!

Summary: Algorithmic Results for UG

	Algorithm	On 1-8 instances	
General Graphs	Khot	$1-\mathrm{O}\left(\mathrm{K}^{2} \varepsilon^{1 / 5} \mathrm{~V} \log (1 / \varepsilon)\right)$	
	Trevisan	$1-\mathrm{O}{ }^{(3} \mathrm{V}(\mathrm{l} \log \mathrm{n})$)	SDP/LP based
	Gupta-Talwar	$1-0(\varepsilon \log n)$	
	CMM1	$\mathrm{k}^{\mathrm{E} / 2 \cdot \mathrm{~s}}$	
Special Graphs	CMM2	$1-\mathrm{O}(\mathrm{v}$ log \times (logk)	

Expander
Local expander

AKKTSV'08 Constant, depend

Tight for SDP, there is
counterexample
AIMS'09, Constant, depends SR'09 on local expansion

Almost all above approaches were LP or SDP based

Summary: Algorithmic Results for UG

Summary: Algorithmic Results for UG

	Algorithm	On 1-8 instances
General Graphs	Khot	$1-\mathrm{O}\left(\mathrm{k}^{2} \varepsilon^{1 / 5} \mathrm{~V} \log (1 / \varepsilon)\right)$
	Trevisan	$1-0(3 v(\varepsilon \log n))$
	Gupta-Talwar	$1-\mathrm{O}(\varepsilon \log \mathrm{n})$
Special Graphs	CMM1	$\mathrm{K}^{8 / 2 /-8}$
	CMM 2	1-O(\& V logn Vlogk)
Expander	АККTSV'08 Kт'08,MM'10	Constant, depends on conductance
Local expander	AIMs'09, SR'09	Constant, depends on local expansion
Few large eigenvalues	K'10	Quality and running time depends on eiaenspace

Summary: Algorithmic Results for UG

	Algorithm	On 1-8 instances
General Graphs	Khot	$1-\mathrm{O}\left(\mathrm{K}^{2} \varepsilon^{1 / 5} \log (1 / \varepsilon)\right)$
	Trevisan	$1-\mathrm{O}{ }^{3} \mathrm{v}(\varepsilon \log \mathrm{n})$)
	Gupta-Talwar	$1-\mathrm{O}(\varepsilon \log \mathrm{n})$
Special Graphs	CMM1	$\mathrm{k}^{8 / 2 / 8}$
	CMM2	1-O(V logn V logk)
Expander	AkkTsv'08 Kт'08,MM'10	Constant, depends on conductance
$\begin{gathered} \hline \text { Local } \\ \text { expander } \end{gathered}$	AIMS'09, SR'09	Constant, depends on local expansion
$\begin{gathered} \text { Few large } \\ \text { eigenvalues } \end{gathered}$	K'10	Quality and running time depends on eiaenspace
ABS'10	ubexponentia	time algorithm for ANY

Summary: Algorithmic Results for UG

	Algorithm	On 1-8 instances
General Graphs	Khot	$1-\mathrm{O}\left(\mathrm{k}^{2} \varepsilon^{1 / 5} \mathrm{~V} \log (1 / \varepsilon)\right)$
	Trevisan	$1-0(3 v(\varepsilon \log \mathrm{n})$)
	Gupta-Talwar	$1-\mathrm{O}(\varepsilon \log \mathrm{n})$
Special Graphs	CMM1	$\mathrm{k}^{8 / 2-8}$
	CMM2	1-O(\& V logn V logk)
Expander	$\begin{gathered} \text { AKKTSV'08 } \\ \text { KT'08,MM'10 } \end{gathered}$	Constant, depends on conductance
$\begin{gathered} \text { Local } \\ \text { expander } \end{gathered}$	AIMS'09, SR'09	Constant, depends on local expansion
$\begin{gathered} \text { Few large } \\ \text { eigenvalues } \end{gathered}$	K'10	Quality and running time

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs
3. Towards Refuting UGC on almost-all Graphs
4. Open Questions

Spectral Graph Theory and Applications

- Image Segmentation

How to pick the right segmentation?

Spectral Graph Theory and Applications

- Data clustering:
find points of similarity

Gemcitabine sensitive tumor

Many more :
-Coding Theory -Network Security
-Convex Optimization

Representing Graphs

V : in nodes $\quad G=\{V, E\}$
E : m edges

Obviously, we can represent a graph with an nxn matrix

Adjacency matrix

Representing Graphs

V : n nodes $\quad G=\{V, E\}$
E : m edges

Obviously, we can represent a graph with an nxn matrix

Adjacency matrix

Can be used to multiply vectors

$$
y=A x
$$

Amazing how this point of view gives information about graph

Graph Spectrum

Adjacency matrix

Well-known:
spectrum of linear operators gives information about them

Already know: A multiplies vectors

There are "special" vectors that don't "rotate" just scale:

eigenvectors

$$
A v=\lambda v
$$

v eigenvector,
λ eigenvalue ("scaling" factor)

Graph Spectrum

Adjacency matrix

v eigenvector, λ eigenvalue

Graph Spectrum

Adjacency matrix

$A v=\lambda v$

$$
\begin{gathered}
A: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n} \\
A v=\lambda v
\end{gathered}
$$

v eigenvector, λ eigenvalue

Graph Spectrum

Adjacency matrix

$$
A: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}
$$

$\begin{aligned} & \text { Graph SPECTRUM }= \\ & \text { genvalues }\{\lambda 1 \geq \lambda 2 \geq \ldots \geq \lambda n\}\end{aligned} \quad A v=\lambda v$

v eigenvector, λ eigenvalue

"Listen" to the Graph

Adjacency matrix

List of eigenvalues
$\{\lambda 1 \geq \lambda 2 \geq \ldots \geq \lambda n\}:$ graph SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

A drum:

"Listen" to the Graph

Adjacency matrix

List of eigenvalues
$\{\lambda 1 \geq \lambda 2 \geq \ldots \geq \lambda n\}: g r a p h$ SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

Its sound:

"Listen" to the Graph

 Adjacency matrix

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

Its sound
(eigenfrequenies):

"Listen" to the Graph

Adjacency matrix

List of eigenvalues
$\{\lambda 1 \geq \lambda 2 \geq \ldots \geq \lambda n\}: g r a p h$ SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

If graph was a drum, spectrum would be its sound

Eigenvectors are Functions on Graph

$$
v \in \mathfrak{R}^{n}, \quad v: V \rightarrow \mathfrak{R} \quad A v=\lambda v
$$

$v(i)=$ value at node i

Eigenvectors are Functions on Graph "Coloring"

V : 2 n nodes

$$
v \in \mathfrak{R}^{n}, \quad v: V \rightarrow \mathfrak{R} \quad A v=\lambda v
$$

$v(i)=$ value at node $\mathrm{i} \quad$ different shade of grey

So, let's See the Eigenvectors

The second eigenvector

Third Eigenvector

Fourth Eigenvector

Representing Graphs (d-regular)

List of eigenvalues $\left\{d=\lambda_{1} \geq \lambda 2 \geq \ldots \geq \lambda n\right\}: g r a p h$ SPECTRUM
$\lambda \equiv \lambda_{2}<d \Leftrightarrow \quad$ Graph connected $!$
$d-\lambda_{2}$ also called "algebraic connectivity"
The further from 0, the more connected

Cuts and Algebraic Connectivity

Cuts in a graph:
$\operatorname{cut}\left(S, S^{\prime}\right)=\frac{E\left(S, S^{\prime}\right)}{|S|},|S| \leq n / 2$

Graph not well-connected when "easily" cut in two pieces

Cuts and Algebraic Connectivity

Sparsest Cut:
$h(G)=\min _{S:|S| \leq n / 2} \frac{E(S, \bar{S})}{|S|}$

Graph not well-connected when "easily" cut in two pieces
Would like to know Sparsest Cut but NP hard to find
How does algebraic connectivity relate to standard connectivity?
Theorem(Cheeger-Alon-Milman): $\frac{d-\lambda}{2} \leq h(G) \leq \sqrt{2 d} \sqrt{d-\lambda}$

Cuts and Algebraic Connectivity

Sparsest Cut:
$h(G)=\min _{S:|S| \leq n / 2} \frac{E(S, \bar{S})}{|S|}$

Graph not well-connected when "easily" cut in two pieces
Would like to know Sparsest Cut but NP hard to find
How does algebraic connectivity relate to standard connectivity?

Algebraic connectivity large

Graph
well-connected

Cuts and Algebraic Connectivity

Sparsest Cut:

$$
h(G)=\min _{S:|S| \leq n / 2} \frac{E(S, \bar{S})}{|S|}
$$

In fact, we can find a cut with the guarantee below, from the second eigenvector (and from all the eigenvectors)

$$
\frac{d-\lambda}{2} \leq h(G) \leq \sqrt{2 d} \sqrt{d-\lambda}
$$

Graphs with no Small Cuts

Certain graphs have no small cuts: Expanders

Very useful for applications

- Constructing robust networks.
- Routing.
- Maximizing throughput with fixed network topology.
- Error-correcting codes.
- Complexity theory.

Expanders in a Nutshell

Edge expansion: $\quad h(G)=\min _{S: S \mid \leq n / 2} \frac{E(S, \bar{S})}{|S|}$
(Spectral Gap): $d-\lambda=\gamma d$

Cheeger: $\quad \frac{d-\lambda}{2} \leq h(G) \leq \sqrt{2 d(d-\lambda)}$

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs
3. Towards Refuting UGC on almost-all Graphs
4. Open Questions

Unique Games = Unique Label Cover Problem

Given: set of constraints

Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

$$
\begin{aligned}
& \text { EXAMPLE } \\
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

The constraint graph

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each vertex with
k vertices- one for each label

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each vertex with
k vertices- one for each label
-Replace each edge with the "permutation matching"

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

- Replace each vertex with
k vertices- one for each label
-Replace each edge with the "permutation matching"

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

k vertices- one for each label
-Replace each edge with the "permutation matching"

More Graph Theory: The Label-Extended

GRAPH THEORY?

it's a graph, it has adjacency matrix!

M has each non - zero entry (u, w) replaced by a block corresponding to the permutation on edge

Sketch UGC False on Expanders

UGC FALSE on expanders[AKKTSV'08,KT'08 MM'10]:

When UG instance highly satisfiable and graph is expander, ptime algorithm finds labeling that satisfies 99% of the constraints

Why Expanders? Expansion of Unique Games and Sparsest Cut

Problem	Best Approximation Algorithm Known	UGC-Hardness		
MaxCut	$0.878[\mathrm{GW} 94]$		\quad	U.878[KKMO07]
:---:				
Vertex Cover				
Max k-CSP				

Uniform
Sparsest

No hardness even assuming UGC unless expansion

Proof with Graph Theory: From Labelings to Spectra

-Set S that contains exactly one "small" node from each node group = labeling

Proof with Graph Theory: From Labelings to Spectra

- Set S that contains exactly one "small" node from each node group = labeling
- Corresponds to a cut $\left(S, S^{\prime}\right)$.
-Corresponds to a "characteristic vector".

$$
X_{(0,0,0)}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Proof Intuition: a Perfect Game

Graph is disconnected, it has second eigenvalue $\lambda=d$ (in fact, it has k eigenvalues $=d$)

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)

If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)

If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)
expander
If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

A $1-\varepsilon$ game is an

almost-perfectlysatisfiable one

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)
expander
If graph G was originally conhected, those are the only "sparsest cuts".
They correspond to almost-perfect labelings

Proof: Reverse Engineering + Graph Spectra

1- ε Game

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

Think of it as "coming from" adversarialy

perturbed completely satisfiable game

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

Proof: Reverse Engineering + Graph Spectra

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few eigenvectors:
The k "labeling vectors" have large projection onto espace W with evalues >(1-200ع)d

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

"Labeling" eigenvectors:

First few eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

The k "labeling vectors" have large projection onto espace W with evalues >(1-200ع)d
for $|\chi|=1, x^{T} \widetilde{M}_{\chi}=d$
$\chi^{T} M_{\chi} \geq(1-2 \varepsilon) d$

$$
(1-2 \varepsilon) d \leq \chi^{T} M \chi=a^{2} w^{T} M w+\beta^{2} w_{\perp}^{T} M w_{\perp}
$$

Write: $\chi=\alpha w+\beta w_{\perp}$

$$
\leq a^{2} d+\beta^{2}(1-200 \varepsilon) d \Rightarrow|\beta| \leq \frac{1}{10}
$$

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few eigenvectors:
The k "labeling vectors" have large projection onto espace W with evalues >(1-200ع)d

If we knew the projection w of χ then we could just "read off" a good labeling

Searching for a Needle in a Haystack?

But we need to find a particular vector in this whole space W!

Searching for a Needle, but "Efficiently"

But we need to find a particular vector in this whole space W!

Idea:
 Discretize the space by net!

One point of the net is close to the vector we want
We find this vector and then "read offydthe coordinates

Searching for a Needle, but "Efficiently"

Idea:

Discretize the space by net!

Algorithm runs in time ~ \#points in the net
二
exponential in the dimension of eigenspace W

The Dimension of W for Expanders

(Spectral Gap)=

$$
d-\lambda=\gamma d
$$

The Dimension of W for Expanders

The Dimension of W for Expanders

Perfect Game:

(Spectral Gap)=

$$
d-\lambda=\gamma d
$$

(Spectral gap between Y, Y_{\perp}) $=$ absgap $=\gamma d$

W is "perturbed analog" of Y

"The sin μ " Theorem [DK'70] : Angle between Y and "perturbed analog of $Y^{\prime \prime}$ small

Equivalently, we can write every vector w in W as $w=\alpha y+\beta y+, y$ in Y

$$
|\beta| \leq \frac{\left\|\left(M-M_{\epsilon}\right) w\right\|}{a b s g a p} \leq O\left(\sqrt{\frac{\epsilon}{\gamma^{3}}}\right)
$$

The Dimension of W for Expanders

Perfect Game:

(Spectral Gap)=

$$
d-\lambda=\gamma d
$$

(Spectral gap between Y, Y_{\perp}) $=$ absgap $=\gamma d$

W is "perturbed analog" of Y

"The $\sin \mu^{\prime}$ Theorem [DK'70] : Angle between Y and "perturbed analog of $Y^{\prime \prime}$ small

W is close to Y so $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{Y})=k$

A General Algorithm

For expanders, W is close to Y so $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{Y})=\mathrm{k}$

Running time is

 $2^{\mathrm{k}} \approx 2^{\log \mathrm{n}} \approx \operatorname{poly}(\mathrm{n})$Algorithm runs in time ~\#points in the net

$$
=
$$

exponential in the dimension of eigenspace W

A General Algorithm

Algorithm runs in time ~ \#points in the net
二
exponential in the dimension of eigenspace W

Another Special Case: The "Khot-Vishnoi"

Graph that "cheats" a canonical semidefinite program for UG

We show: Eigenspace in question has polylogarithmic dimension

Algorithm runs in time ~ \#points in the net
二
exponential in the dimension of eigenspace

Another Special Case: The "Khot-Vishnoi"

Graph that "cheats" a canonical semidefinite program for UG

We show: Eigenspace in question has polylogarithmic dimension

Algorithm runs in time ~ \#points in the net

$$
=
$$

quasi-polynomial

UGC and the Spectrum of General Graphs

- After expanders, we realized that other constraint graphs are easy for UGC.
- How "easy" the graph is, depends on the number of large (close to d) eigenvalues of the adjacency matrix of the label-extended graph.
- Could solve previously "hardest" cases, where all Other techniques failed.
- Essentially only one case left, reflected by the Boolean Hypercube!! (?)

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs
3. Towards Refuting UGC on almost-all Graphs
4. Open Questions

Open Questions

Disprove the Unique Games Conjecture

- Can we argue about UGC on the cube?
-About 2 years ago a group of Quantum Computing Theorists came together and tried to find a quantum algorithm... - Proved Maximal Inequality on the Cube, failed for UGC. -What is the quantum complexity of UGC?

THANKYOU!

