Towards Refuting UGC

• **Input:** G = (V,E)

- **Input:** G = (V,E)
- Objective : Partition G in (S,S') as to MAXIMIZE number of edges cut

- [Karp '72]: MAX CUT is NP-complete
- What about approximating MAX CUT?

G

- **Input:** G = (V,E)
- Objective : Partition G
 in (S,S') as to MAXIMIZE
 number of edges cut
 Approximation algorithms:
- Random cut (trivial): half of optimal
- [GW'94]: α_{GW}=0.878 approximation algorithm
 of M How many of you bet this is
 best we can do?

G

- **Input:** G = (V,E)
- Objective : Partition G
 in (S,S') as to MAXIMIZE
 number of edges cut
 Approximation algorithms:
- Random cut (trivial): half of optimal
- [GW'94]: α_{GW}=0.878 approximation algorithm
 of M If Unique Games Conjecture
 true, then it is!

Can We Hope for Better Approximation Algorithms in P?

Previous inapproximability not a coincidence! Unique Games Conjecture (UGC) captures exact inapproximability of many more problems

Problem	Best Approximation Algorithm Known	UGC-Hardness
MaxCut	0.878[GW94]	0.878 [KKMO07]
Vertex Cover	2	2-ε [KR06]
Max k-CSP	Ω(k/2 ^k)[CMM07]	Q(k/2 ^k)[ST,AM,GR)

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

4. Open Questions

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

4. Open Questions

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

2. We can purchase Unique Games on-line!

What are Unique Games?

1. Unique Games are popular not only among computer scientist!

2. We can purchase Unique Games on-line!

biog0 million pages

3. Unique Games are related to the Unique Games Conjecture...

Unique Games = Unique Label Cover Problem Given set of constraints Linear Equations mod k : The constraint graph $x_i - x_i = c_{ii} \mod k$ **X**1 GOAL k = "alphabet" size Find labeling that satisfies maximum number of constraints. $=1 \pmod{3}$ X_{1} G EXAMPLE $x_1 - x_2 = 0 \pmod{3}$ **X**3 $x_1 - x_2 = 0 \pmod{3}$ $x_{2} - x_{3} = 0 \pmod{3}$ $x_{2} - x_{3} = 0 \pmod{3}$ $x_1 - x_3 = 1 \pmod{3}$ **X**2

Unique Games Conjecture

- [Khot'02] For every positive ε and δ there is a large enough k s.t. for some instance of Unique Games with alphabet size k and OPT > 1ε , it is NP hard to satisfy a δ fraction of all constraints.
- Given a UG instance (graph and set of constraints over alphabet of size k) with the guarantee that it is 99% satisfiable, it is NP-hard to find an assignment that satisfies more than ½ of the constraints (for some 99% and some ½).

Is Unique Games Conjecture True?

Unique Games Conjecture

UGC: given a UG instance (graph and set of constraints over alphabet of size k) with the guarantee that it is 99% satisfiable, it is NP-hard to find an assignment that satisfies more than ½ of the constraints (for some 99% and some ½).

Really embarrassing not to know, since solving systems of linear equations (exactly) is very easy!

Where to begin if we want to refute UGC?

- Several attempts in recent years to refute or prove UGC.
- Lot of progress but still no consensus.

Plan of attack: start ruling out cases.

- Classify graphs according to their "spectral profile" (eigenvalues)
- Expanders [AKKTSV'08,KT'08],

nstances

SC

asy

- Local expanders, graphs with relatively few large eigenvalues [AIMS'09,SR'09,K'10]
- Find distributions that are hard?
 - Random Instances : NO! Follows from expander result.
 - Quasi-Random Instances? [KMM'10] NO!

	Algorithm		On 1-ε instanc	es		
	Khot		1-O(k ² ε ^{1/5} Vlog(1/ε))			
General	Trevisan		1-O(³√(ε log n))			SDP/LP
Graphs	Gupta-Talwar		1-0(ε log n)			based
	CMM1		k ^{-ε/2-ε}			
Special Graphs	CMM2		1-O(ε vlogn vlog	k)		
Expander	AKKTSV'08	Сс	onstant, depend	Ti	ight the	for SDP, ere is
				ςοι	unte	rexample
Local expander	AIMS'09, SR'09	Co or	onstant, depende l local expansior	S 1		

Almost all above approaches were LP or SDP based

	Algorithm		On 1-ε instance	s		
	Khot		1-O(k ² ε ^{1/5} νlog(1/ε))			
General	Trevisan		1-O(³√(ε log n))			SDP/LP
Graphs	Gupta-Talwar		1-0(ε log n)			based
	CMM1		k ^{-ε/2-ε}			
Special Graphs	CMM2		1-O(ε Vlogn Vlogk)		
Expander	AKKTSV'08	AKKTSV'08 Constant, depend Tig T'08,MM'10 on conductance coun		nt -ba	for SDP,	
	KT'08,MM'10			، coun	te	rexample
Local	AIMS'09,	9, Constant, depends on local expansion Qualit y and running time depends on eigenspace				
expander	SR'09				Purely SPECTRAL Approach "beats" SDP	
Few large eigenvalues	K'10					

	Algorithm		On 1-ε instances	
	Khot		$1-O(k^2 \epsilon^{1/5} V \log(1/\epsilon))$	
General	Trevisan		1-O(³√(ε log n))	
Graphs	Gupta-Talwar		1-0(ε log n)	
	CMM1		k ^{-ε/2-ε}	
Special Graphs	CMM2		1-O(ε √logn √logk)	
Expander	AKKTSV'08Constant, dependsKT'08,MM'10on conductance			
Local expander	AIMS'09, SR'09	Constant, depends on local expansion		
Few large eigenvaluesK'10Qu de		Qua dep	lity and running time ends on eigenspace	
ABS'10:	Subexponentia	l tim	e algorithm for ANY ir	ıstan

	Algorithm		On 1- ε instances	
	Khot		1-O(k ² ε ^{1/5} νlog(1/ε))	
General	Trevisan		1-O(³√(ε log n))	
Graphs	Gupta-Talwar		1-0(ε log n)	
	CMM1		k ^{-ε/2-ε}	
Special Graphs	CMM2		1-O(ε √logn √logk)	
Expander	AKKTSV'08 CC KT'08,MM'10 C		onstant, depends on conductance	
Local expander	AIMS'09, SR'09	Co	onstant, depends local expansion	
Few large eigenvalues	K'10	Quality and running time depends on eigenspace		
ABS'10:	Subexponentia	l tim	e algorithm for ANY i	nstar

		Algorithm		On 1-ε instances		
	Khot		$1-O(k^2 \epsilon^{1/5} \sqrt{\log(1/\epsilon)})$			
General		Trevisan		1-O(³√(ε log n))		
Graphs	J	Gupta-Talwar		1-0(ε log n)		
		CMM1		k ^{-ε/2-ε}		
Special Grap	hs	CMM2		1-O(ε √logn √logk)		
Expande	r	AKKTSV'08 KT'08,MM'10	Constant, depends on conductance			
Local expande	r	AIMS'09, SR'09	Constant, depends on local expansion Quality and running time			
Few large eigenvalu	e) es)	K'10				
KMM'10: Semi-Random instances are easy						

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

4. Open Questions

Spectral Graph Theory and Applications

- Image Segmentation

How to pick the right segmentation?

Spectral Graph Theory and Applications

Data clustering: find points of similarity

Gemcitabine sensitive tumor

Gemcitabine resistant tumor

Many more :

-Coding Theory

-Network Security

-...

-Convex Optimization

Representing Graphs

Representing Graphs

Can be used to multiply vectors

$$y = Ax$$

Amazing how this point of view gives information about graph

 $A:\mathfrak{R}^n\to\mathfrak{R}^n$ $A\mathcal{V}=\lambda\mathcal{V}$

v <mark>eigenvector,</mark> λ eigenvalue

 $A:\mathfrak{R}^n\to\mathfrak{R}^n$ $A\mathcal{V}=\lambda\mathcal{V}$

v <mark>eigenvector,</mark> λ eigenvalue

 $A:\mathfrak{R}^n\to\mathfrak{R}^n$

Graph SPECTRUM = $Av = \lambda v$ List of eigenvalues { $\lambda 1 \ge \lambda 2 \ge ... \ge \lambda n$ }

v <mark>eigenvector,</mark> λ eigenvalue

List of eigenvalues

 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$;graph SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

A drum:

List of eigenvalues

 $\{\lambda \ 1 \ge \lambda \ 2 \ge ... \ge \lambda \ n \ \}$:graph SPECTRUM Eigenvalues reveal global graph properties

not apparent from edge structure

Hear shape of the drum

Its sound:

 $\{\lambda \ 1 \ge \lambda \ 2 \ge ... \ge \lambda \ n \}$: graph SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

Its sound (eigenfrequenies):

List of eigenvalues $\lambda \ge \lambda \ge \ldots \ge \lambda n$ graph SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

If graph was a drum, spectrum would be its sound

Eigenvectors are Functions on Graph

v(i) = value at node i

So, let's See the Eigenvectors

The second eigenvector

Third Eigenvector

Fourth Eigenvector

Representing Graphs (d-regular)

The further from 0, the more connected

Graph not well-connected when "easily" cut in two pieces

Graph not well-connected when "easily" cut in two pieces

Would like to know Sparsest Cut but NP hard to find

How does algebraic connectivity relate to standard connectivity?

Theorem(Cheeger-Alon-Milman):
$$\frac{d-\lambda}{2} \le h(G) \le \sqrt{2d} \sqrt{d-\lambda}$$

Graph not well-connected when "easily" cut in two pieces

Would like to know Sparsest Cut but NP hard to find

How does algebraic connectivity relate to standard connectivity?

Algebraic connectivity large

Graph well-connected

In fact, we can find a cut with the guarantee below, from the second eigenvector (and from all the eigenvectors)

$$\frac{d-\lambda}{2} \le h(G) \le \sqrt{2d} \sqrt{d-\lambda}$$

Graphs with no Small Cuts

Certain graphs have no small cuts: **Expanders**

Very useful for applications

- Constructing robust networks.
- Routing.
- Maximizing throughput with
 fixed network topology
 - fixed network topology.
- Error-correcting codes.
 - Complexity theory.

Expanders in a Nutshell

Edge expansion:
$$h(G) = \min_{S:|S| \le n/2} \frac{E(S,\overline{S})}{|S|}$$

(Spectral Gap): d- $\lambda = \gamma d$

Cheeger :
$$\frac{d-\lambda}{2} \le h(G) \le \sqrt{2d(d-\lambda)}$$

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

4. Open Questions

Unique Games = Unique Label Cover Problem Given set of constraints Linear Equations mod k : The constraint graph $x_i - x_i = c_{ii} \mod k$ **X**1 GOAL k = "alphabet" size Find labeling that satisfies maximum number of constraints. $=1 \pmod{3}$ X_{1} G EXAMPLE $x_1 - x_2 = 0 \pmod{3}$ **X**3 $x_1 - x_2 = 0 \pmod{3}$ $x_{2} - x_{3} = 0 \pmod{3}$ $x_{2} - x_{3} = 0 \pmod{3}$ $x_1 - x_3 = 1 \pmod{3}$ **X**2

•Replace each edge with the "permutation matching"

•Replace each edge with the "permutation matching"

Replace each edge with the "permutation matching"

M has each non – zero entry (u,w) replaced by a block corresponding to the permutation on edge

Sketch UGC False on Expanders

UGC FALSE on expanders[AKKTSV'08,KT'08 MM'10]:

When UG instance highly satisfiable and graph is expander, ptime algorithm finds labeling that satisfies 99% of the constraints

Why Expanders? Expansion of Unique Games and Sparsest Cut

Proof with Graph Theory: From Labelings to Spectra

•Set S that contains exactly one "small" node from each node group = labeling

Proof with Graph Theory: From Labelings to Spectra

 Set S that contains exactly one "small" node from each node group = labeling

0

0

1

0

1

0

0

 $\chi_{(0,0,0)}$

•Corresponds to a cut (S,S').

•Corresponds to a "characteristic vector".

Let's look at a perfectly satisfiable

game for intuition...

Graph is disconnected, it has second eigenvalue $\lambda = d$ (in fact, it has k eigenvalues = d)

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. (d- λ =0)

If graph G was originally connected, those are the only "sparsest cuts". They correspond to perfect labelings.

S

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. (d- λ =0)

If graph G was originally connected, those are the only "sparsest cuts". They correspond to perfect labelings.

S

game for intuition...

A 1-ε game is an almost-perfectlysatisfiable one

= d

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. (d- λ =0)

expander

If graph G was originally connected, those are the only "sparsest cuts". They correspond to perfect labelings.

If graph G was originally connected, those are the only "sparsest cuts".

They correspond to almost-perfect labelings

1-ε Game

Think of it as "coming from" adversarialy perturbed completely satisfiable game

Proof: Reverse Engineering + Graph Spectra 1-ε Game **Perfect Game:** $x_u - x_w = 0$ $x_u - x_w = 0$ mod 3 $x_v - x_u = 0 \mod 3$ $x_v - x_u = 1 \mod 3$ mod 3 Think of it as "coming Λ 0 from" adversarialy $x_{w} - x_{v} = 0 \mod 3$ $x_{w} - x_{v} = 0 \mod 3$ perturbed completely satisfiable game \widetilde{M} M

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few eigenvectors:

The k "labeling vectors" have large projection onto espace W with evalues >(1- 200ε)d

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

for
$$\|\chi\| = 1$$
, $\chi^T \widetilde{M} \chi = d$
 $\chi^T M \chi \ge (1 - 2\varepsilon) d$

Write:
$$\chi = \alpha w + \beta w_{\parallel}$$

First few eigenvectors:

The k "labeling vectors" have large projection onto espace W with evalues >(1- 200ε)d

 $(1-2\varepsilon)d \leq \chi^T M \chi_{=} a^2 w^T M w + \beta^2 w^T M w_{\perp}$

 $\leq a^2d + \beta^2(1 - 200\varepsilon)d \Longrightarrow |\beta| \leq$

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few eigenvectors:

The k "labeling vectors" have large projection onto espace W with evalues >(1- 200ε)d

If we knew the projection w of χ then we could just "read off" a good labeling

Searching for a Needle in a Haystack?

But we need to find a particular vector in this whole space W!

Searching for a Needle, but "Efficiently"

But we need to find a particular vector in this whole space W!

Idea: Discretize the space by net!

One point of the net is close to the vector we want

We find this vector and then "read offer the coordinates

Most blocks have (unique) maximum entry in the position that corresponds to the original value of node u

Searching for a Needle, but "Efficiently"

$(Spectral Gap) = d -\lambda = \gamma d$

W is "perturbed analog" of Y

"The sin µ" Theorem [DK'70] : Angle between Y and "perturbed analog of Y" small

Equivalently, we can write every vector w in W as w = α y + β y \perp , y in Y

$$|\beta| \leq \frac{||(M - M_{\epsilon})w||}{absgap} \leq O(\sqrt{\frac{\epsilon}{\gamma^3}})$$

W is "perturbed analog" of Y

"The sin µ" Theorem [DK'70] : Angle between Y and "perturbed analog of Y" small

W is close to Y so dim(W) ≤dim(Y) =k

exponential in the dimension of eigenspace W

exponential in the dimension of eigenspace W

exponential in the dimension of eigenspace

quasi-polynomial

UGC and the Spectrum of General Graphs

- After expanders, we realized that other constraint graphs are easy for UGC.
- How "easy" the graph is, depends on the number of large (close to d) eigenvalues of the adjacency matrix of the label-extended graph.
- Could solve previously "hardest" cases, where all Other techniques failed.
- Essentially only one case left, reflected by the Boolean Hypercube!! (?)

Plan for Today

1. Unique Games Conjecture(UGC)

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

4. Open Questions

Open Questions

Disprove the Unique Games Conjecture

• Can we argue about UGC on the cube?

- •About 2 years ago a group of Quantum Computing Theorists came together and tried to find a quantum algorithm...
- •Proved Maximal Inequality on the Cube, failed for UGC.
- •What is the quantum complexity of UGC?

THANKYOU!