CSCI 6214- Randomized Algorithms- FALL 2021 Problem Set \#7

Problem 1:

Consider the MaxCut problem where each node has at most neighbors. Give the best poly-time probabilistic approximation algorithm you can. De-randomize that algorithm if possible. (hint:one approach is to consider a maximal matching in a graph, your ratio should be at least 5/9)

Problem 2:

A random variable $X \in\{0,1\}^{n}$ is called pairwise-independent if for all $1 \leq i<j \leq n$ and all $a, b \in\{0,1\}, \operatorname{Pr}\left[X_{i}=a\right.$ and $\left.X_{j}=b\right]=1 / 4$. That is, the restriction of X to any 2 coordinates is uniformly distributed in $\{0,1\}^{2}$. A function $H:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$ is pairwise independent if the random variable $X=H(U)$ is pairwise independent, where $U \in\{0,1\}^{r}$ is uniformly chosen. In this case, we say that X has seed length r . We will show a construction of such a H with seed length $r=\log n+O(1)$. H is called a "pseudorandom generator". Assume that $n=2^{k}$. We will define a function $H:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$, where we identify the coordinates of the output of H with $\{0,1\}^{k}$, which is the binary expansion of the coordinate. Let $U \in\{0,1\}^{k+1}$ be uniformly chosen. Write $u=u_{1}, \cdots, u_{k+1}$ where $u_{i} \in\{0,1\}$. Define $H(U) \in\{0,1\}^{n}$ as follows. For every $x \in\{0,1\}^{k}$, the x-coordinate of $H(U)$ is defined to be

$$
H(U)_{x}=\left(\sum_{i=1}^{k} u_{i} x_{i}\right)+u_{k+1} \quad \bmod 2
$$

- Prove that $H(U)$ is pairwise independent.
- Prove that for general n (not necessarily a power of 2) this can be used to give a pairwise independent random variable $X \in\{0,1\}^{n}$ with seed length $r=\log n+O(1)$.
- Prove that the construction is optimal: for any $H:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$ which is pairwise independent, it must hold that $r \geq \log n$.

Hint: consider the $2 \times n$ matrix $M_{u, i}=(-1)^{H(u)_{i}}$. Prove that its columns are pairwise orthogonal. Conclude that the columns must be linearly independent, and hence $2^{r} \geq$ n.

Problem 3:

Recall the factor-2 randomized algorithm for MAXCUT in the book. For $x \in\{0,1\}^{n}$ define its associated set $S(x)=\left\{v_{i}: x_{i}=1\right\}$.

- Prove that if $X \in\{0,1\}^{n}$ is chosen from a pairwise independent distribution then also $E_{X}[e(S(X))]=m / 2$, where $e(S(X))$ are the cut edges.
- Combine this with the construction from problem 2, to give an alternative deterministic algorithm which finds a factor-2 approximation of the MAXCUT value.

