Problem 1:

Consider throwing \(m \) balls into \(n \) bins, and for convenience let the bins be numbered from 0 to \(n - 1 \). We say there is a \(k \)-gap starting at bin \(i \) if bins \(i, i+1, \cdots, i+k-1 \) are all empty.

- Determine the expected number of \(k \)-gaps.
- Prove a Chernoff-like bound for the number of \(k \)-gaps. (Hint: If you let \(X_i = 1 \) when there is a \(k \)-gap starting at bin \(i \), then there are dependencies between \(X_i \) and \(X_{i+1} \); to avoid these dependencies, you might consider \(X_i \) and \(X_{i+k} \).)

Problem 2:

Suppose that we vary the balls-and-bins process as follows. For convenience let the bins be numbered from 0 to \(n - 1 \). There are \(\log_2 n \) players. Each player randomly chooses a starting location \(l \) uniformly from \([0, n - 1]\) and then places one ball in each of the bins numbered \(l \mod n, l+1 \mod n, \cdots, l+n/\log_2 n - 1 \mod n \). Argue that the maximum load in this case is only \(O(\log \log n/\log \log \log n) \) with probability that approaches 1 as \(n \to \infty \).

Problem 3:

We consider another way to obtain Chernoff-like bounds in the setting of balls and bins without using the relationship between the real distribution and the Poisson distribution we saw in class. Consider \(n \) balls thrown randomly into \(n \) bins. Let \(X_i = 1 \) if the \(i \)-th bin is empty and 0 otherwise. Let \(X = \sum_{i=1}^{n} X_i \). Let \(Y_i, i = 1, \cdots, n \), be independent Bernoulli random variables that are 1 with probability \(p = (1 - 1/n)^n \). Let \(Y = \sum_{i=1}^{n} Y_i \).

- Show that \(E[X_1X_2 \cdots X_k] \leq E[Y_1Y_2 \cdots Y_k] \) for any \(k \geq 1 \).
- Show that \(E[e^{tX}] \leq E[e^{tY}] \) for all \(t \geq 0 \). (Hint: Use the expansion for \(e^x \) and compare \(E[X^k] \) to \(E[Y^k] \).)
- Derive a Chernoff bound for \(Pr(X \geq (1 + \delta)E[X]) \).