CSCI 6214- Randomized Algorithms- FALL 2021 Problem Set \#3

Problem 1:

Suppose that we have n jobs to distribute among m processors. For simplicity, we assume that m divides n . A job takes 1 step with probability p and $k>1$ steps with probability $1-p$. Use Chernoff bounds to determine upper and lower bounds (that hold with high probability) on when all jobs will be completed if we randomly assign exactly n / m jobs to each processor.

Problem 2:

- Let X_{1}, \cdots, X_{n} be independent Poisson trials such that $\operatorname{Pr}\left(X_{i}\right)=p_{i}$ and let a_{1}, \cdots, a_{n} be real numbers in $[0,1]$. Let $X=\sum_{i=1}^{n} a_{i} X_{i}$ and $\mu=E[X]$. Then the following Chernoff bound holds: for any $\delta>0$,

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

. Prove a similar bound for the probability that $X \leq(1-\delta) \mu$ for any $0<\delta<1$.

- Let X_{1}, \cdots, X_{n} be independent random variables such that $\operatorname{Pr}\left(X_{i}=1-p_{i}\right)=p_{i}$ and $\operatorname{Pr}\left(X_{i}=-p_{i}\right)=1-p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$. Prove that

$$
\operatorname{Pr}(|X| \geq a) 2 e^{-2 a^{2} / n}
$$

Hint: You may need to assume the inequality $p_{i} e^{\lambda\left(1-p_{i}\right)}+\left(1-p_{i}\right) e^{-\lambda p_{i}} \leq e^{\lambda^{2} / 8}$. This inequality is difficult to prove directly.

Problem 3:

Recall that a function f is said to be convex if, for any x_{1}, x_{2} and for $0 \leq \lambda \leq 1$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

- Let Z be a random variable that takes on a (finite) set of values in the interval $[0,1]$ and let $p=E[Z]$. Define the Bernoulli random variable X by $\operatorname{Pr}(X=1)=p$ and $\operatorname{Pr}(X=0)=1-p$. Show that $E[f(Z)] \leq E[f(X)]$ for any convex function f .
- Use the fact that $f(x)=e^{t x}$ is convex for any $t \geq 0$ to obtain a Chernoff bound for the sum of n independent random variables with distribution Z as in part (a), based on a Chernoff bound for independent Poisson trials.

