CSCI 6214— Randomized Algorithms— FALL 2021 Problem Set #3

Problem 1:

Suppose that we have n jobs to distribute among m processors. For simplicity, we assume that m divides n. A job takes 1 step with probability p and k > 1 steps with probability 1-p. Use Chernoff bounds to determine upper and lower bounds (that hold with high probability) on when all jobs will be completed if we randomly assign exactly n/m jobs to each processor.

Problem 2:

• Let X_1, \dots, X_n be independent Poisson trials such that $Pr(X_i) = p_i$ and let a_1, \dots, a_n be real numbers in [0, 1]. Let $X = \sum_{i=1}^n a_i X_i$ and $\mu = E[X]$. Then the following Chernoff bound holds: for any $\delta > 0$,

$$Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$

. Prove a similar bound for the probability that $X \leq (1-\delta)\mu$ for any $0 < \delta < 1$.

• Let X_1, \dots, X_n be independent random variables such that $Pr(X_i = 1 - p_i) = p_i$ and $Pr(X_i = -p_i) = 1 - p_i$. Let $X = \sum_{i=1}^n X_i$. Prove that

$$Pr(|X| \ge a)2e^{-2a^2/n}.$$

Hint: You may need to assume the inequality $p_i e^{\lambda(1-p_i)} + (1-p_i)e^{-\lambda p_i} \leq e^{\lambda^2/8}$. This inequality is difficult to prove directly.

Problem 3:

Recall that a function f is said to be convex if, for any x_1, x_2 and for $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

- Let Z be a random variable that takes on a (finite) set of values in the interval [0,1] and let p = E[Z]. Define the Bernoulli random variable X by Pr(X = 1) = p and Pr(X = 0) = 1 p. Show that $E[f(Z)] \leq E[f(X)]$ for any convex function f.
- Use the fact that $f(x) = e^{tx}$ is convex for any $t \ge 0$ to obtain a Chernoff bound for the sum of n independent random variables with distribution Z as in part (a), based on a Chernoff bound for independent Poisson trials.