CSCI 6214- Randomized Algorithms- FALL 2021 Problem Set \#2

Problem 1:

This problem shows that Markov's inequality is as tight as it could possibly be.

- Given a positive integer k, describe a random variable X the assumes only non-negative values such that $\operatorname{Pr}[X \geq k E[X]]=\frac{1}{k}$
- Can you give an example that shows that Chebyshev's inequality is tight? If not, explain why not.

Problem 2:

Generalize the median-finding algorithm to find the k-th largest item in a set of n items for any given value of k. Prove that your resulting algorithm is correct, and bound its running time. Bonus: bound the probability of failure of this algorithm.

Problem 3:

- Suppose we have an algorithm that takes as input a string of n bits. We are told that the expected running time is $O\left(n^{2}\right)$ if the input bits are chosen independently and uniformly at random. What can Markov's inequality tell us about the worse-case running time of this algorithm on inputs of size n ?
- Let X be the sum of Bernoulli random variables, $X=\sum_{i=1}^{n} X_{i}$. The X_{i} need not be independent. Show that

$$
E\left[X^{2}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}=1\right] E\left[X \mid X_{i}=1\right]
$$

- Use the equation above to provide another derivation of the variance of a binomial random variable with parameters n and p .

