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An ultrasound imaging system includes transmitting ultrasound waves into a human
body, collecting the reflections, manipulating the reflections, and then displaying
them on computer screen as a grayscale image. The standard approach for ultra-
sound imaging is to use the fundamental frequency from the reflected signal to form
images. However, it has been shown that images generated using the harmonic con-
tent have improved resolution as well as reduced noise, resulting in clearer images.
Although harmonic imaging has been shown to return improved images, this has never
been shown with a B-mode, mechanical sector ultrasound system. In this thesis, we
demonstrated such a system. First there is a discussion of the theory of harmonic
imaging, then a description of the ultrasound system used, and finally experimental
results.
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Chapter 1

Introduction

Ultrasound imaging extends a part of superman’s super-powers to the average individ-

ual: the ability to view beyond the surface of the skin. This power is accomplished by

transmitting ultrasound waves into human body, collecting the reflections, and then

using the reflections to generate a grayscale image of the body.

1.1 General Problem

An ongoing problem in ultrasound is that undesired signals are contained in the

reflected data. Signals that corrupt the data include:

• Thermal noise generated by the transducer and receiver electronics.

• Reverberations of the ultrasound wave itself.

• Grating lobes which are sound waves that get transmitted from the transducer

at angles other than that of the ultrasound wave.

• Scattered and reflected waves resulting from interactions with the many smaller

structures throughout tissue.

Consequently, images may show features that are inconsistent with reality.

The standard approach for ultrasound imaging is to use the fundamental frequency

from the reflected signal to form images. However, it has been shown through “the

triumph of serendipity” that images generated using the harmonic content from reflec-

tions have improved resolution as well as reduced noise, resulting in clearer images[2].
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The choice to use harmonic imaging to image tissue began as a result of recent ex-

perimentation in which it was unexpectedly seen that harmonics are generated when

ultrasound waves travel through tissue.

The goal of the research presented in this thesis is to lay the foundation for a me-

chanical sector B-mode harmonic imaging system. The ultrasound system utilized

was designed by Dr. William D. Richard. Then, under his guidance, I assisted Dr.

Richard with building the system in the ultrasound laboratory at Washington Uni-

versity.

1.2 Overview of Report

In this thesis, there is first a discussion of the physical properties of sound waves in

Chapter 2. Then, in Chapter 3 there is a discussion about why harmonic generation

occurs as well as about current research that utilizes harmonic data. Next, there is

a description in Chapter 4 about the system used to collect the ultrasound data for

both fundamental and harmonic images. In Chapter 5, the techniques for displaying

the data are discussed. Finally, the experimental results are shown in Chapter 6.
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Chapter 2

Theory of Ultrasound

It is not the goal of this section to predict the amount of harmonic generation that will

occur in a particular tissue, but rather to explain the phenomenon essential to this

research. With this said, a sound wave can be thought of as a burst of acoustic energy

that passes through a medium. In an ultrasound system, the burst of mechanical

energy originates at a transducer head and then propagates through the medium as

a longitudinal wave [17]. In the following discussion, a medium can be imagined as a

large collection of particles where each is bound to all of its neighbors (Figures 2-1,

2-2).

Figure 2.1: Particles in a dense
material

Figure 2.2: Particles in a less
dense material

2.1 Generation and Detection of Ultrasound Waves

In ultrasonic imaging, there must be a way to both generate and detect ultrasound

waves. Historically, ultrasound sound waves were generated using whistles, sirens, and

tuning forks. With these techniques, the upper limit of the frequencies that could

be generated was approximately 40 kHz [4]. As for ultrasound wave detection, it
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consisted of observing how a cat responds (cats can hear higher sound wave frequencies

than humans) or watching the response of a flame after an ultrasound wave was

emitted [4].

2.1.1 Piezoelectric Effect

In the 1880s, the Curie brothers and Lippmann both made realizations that are the

basis for the current methods of ultrasound wave generation and detection. The Curie

brothers discovered that when a mechanical stress is applied to certain materials, an

internal electric field is generated such that opposite charges line the opposite sides

of the material [4] (Figure 2.3).

Figure 2.3: After a mechanical stress is
applied to piezoelectric materials, op-
posite charges line the opposite sides of
the material

A year later Lippmann predicted that applying an electric field to these materials

would cause the material to deform. Shortly afterwards, the Currie brothers proved

Lippmann’s prediction experimentally [4].

These realizations are the basis for the present day use of piezoelectric transducers

in ultrasonic imaging. A transducer is, by definition, a device that converts one form

of energy into another [11]. A piezoelectric transducer is a material that converts an

electric field into a mechanical stress and vice versa. In contrast to the older tools that

generated ultrasound waves with frequencies as high as 40 kHz, piezoelectric trans-

ducers allow for ultrasound waves in the 100s of MHz to be generated. Furthermore,

the precision of detection available by measuring the voltages in the transducer that
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result from the ultrasound wave reflections is much greater than relying on animals

and flames for ultrasound wave detection.

2.1.2 Piezolectric Materials

Materials that exhibit this piezoelectric behavior include the following crystals: quartz,

lead zirconate, barium titanate, and lithium niobate [11]. Typically, a slice of the ma-

terial is taken so that the parallel portions of the element lie normal to an axis of

non-symmetry (Figure 2.4).

Figure 2.4: Axis of non-symmetry on a
circular transducer

The cut is crucial, because a wrong cut can result in suppression of the piezoelectric

activity. Furthermore, in order to obtain the piezoelectric behavior, the mechanical

stress must be applied to the non-symmetrical axis. In general, ultrasound waves are

then generated and detected by placing the piezoelectric element between two plates

that can generate and measure an electric field [4].

2.1.3 Ultrasound Wave Generation and Detection

Before and after any electrical or mechanical force is applied to a piezoelectric element,

the charge of the material is neutral. In other words, there is no voltage across the

crystal. For generation of an ultrasound wave, an electric voltage is applied to the

material. The polarity of the voltage that reaches the material determines the type of

mechanical response of the element. The element either becomes thinner and longer

or shorter and fatter than the material was at rest. Since the change in shape depends

on the polarity of the voltage, the shape of the ultrasound wave can be controlled by

controlling the voltage across the piezoelectric element.

Detection of ultrasound waves is the reverse procedure of ultrasound wave generation.

The polarity of the voltage across the piezoelectric element is determined by whether
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the piezoelectric material is pushed (made thinner and longer) or pulled (made shorter

and fatter) by the reflection of the ultrasound wave.

In summary, a piezoelectric transducer is used for both ultrasound wave generation

and detection. Initially, to generate ultrasound waves, the piezoelectric element con-

verts an applied voltage to mechanical ultrasound waves. Then, as the reflections

of the sound waves arrive to the transducer face, it converts that mechanical energy

back into electrical energy.

2.2 Ultrasound Waves on a Particle Level

One way to describe the sound wave produced by the transducer is to explain the

response of each of the particles in the medium to a sound wave. In this description,

a sound wave is defined as the domino effect of one particle hitting the next particle

which, in turn, hits the next, and so on. Note that particles are not always directly

aligned and so, at times, particle-particle interactions cause energy to be passed at

angles (for ultrasound, this means that beam spread is occurring) (Figures 2.5, 2.6).

Figure 2.5: Particle interac-
tion head on

Figure 2.6: Particle interaction at
an angle (causes beam spread)

The impact from the collision of two particles can be represented mathematically as

the balance between two forces acting on a mass. The amount of force initially acting

upon each particle (the energy imparted to it) is given by Newton’s Second Law which

states that force is a function of the particle’s mass and acceleration (F = ma) [17]. In

the case that several particles hit a particle simultaneously, the striking energy is the

combined effect of all the striking particles. After a particle is struck and displaced

from equilibrium, a force acts in opposition returning the particle to its equilibrium.

Hooke’s Law, which assumes linear interactions, treats the particle as a mass on a

spring and says that the restoring force is proportional to the length the spring is

stretched (F = −kx) [17]. Typically, the restoring force causes so much inertia to the

particles that they overshoot and pass their equilibrium. Consequently, after particles
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are struck, they tend to vibrate around equilibrium [17]. The balance between these

two forces around equilibrium is shown below in Figures 2.7, 2.8, and 2.9.

Figure 2.7: Parti-
cles in a dense ma-
terial

Figure 2.8: Parti-
cles in a less dense
material

Figure 2.9: Parti-
cles in a less dense
material

Since ma = −kx and since k is a constant, if a particle is struck with a greater force

(F = ma), the particle will respond by traveling a larger distance, x. In other words,

force determines the distance the particle travels from its resting position; a greater

force means greater particle displacement. So for ultrasound, if a high energy (large

amplitude) sound beam is transmitted through a medium, then the particles in the

propagation path are displaced from their rest position more than if a low energy

beam is transmitted through a medium (Figures 2.10, 2.11).

Figure 2.10: Effect of low
energy pulse on particle

Figure 2.11: Effect of high energy
pulse on particle

In summary, at the particle level, a single sound wave is the passing of energy from

particle to particle from one side of a medium to the other. Furthermore, increased

energy means greater particle displacement.

2.3 Ultrasound Waves on a Cellular Level

A second model describes sound wave behavior at the cellular level focusing on the

cumulative effects from each of the particle-particle interactions. In this model, sound

waves can be described as compressions and rarefactions traversing through a medium.
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Zooming in to the individual particle interactions, when one particle hits the second,

the two particles are pushed together. As a result, a higher pressure region (compres-

sion) is generated. Then, when that first particle bounces backwards and the second

particle is flung forward, the two particles are pulled apart. In other words, a lower

pressure region (rarefaction) is created [11]. Zooming back to a cellular view of a

propagating sound wave, as a wave passes through a medium, most particles respond

similarly to the sound wave resulting in areas in the medium where the net sum of

the particles in the region are either simultaneously pulled apart or pushed together;

in other words, there are compressions and rarefactions (Figure 2.12).

Figure 2.12: Compressions and rarefactions in a sound wave

A higher energy sound beam causes individual particles to travel further from their

rest position than a lower energy sound beam. Consequently, the net effect of many

particles displacing simultaneously from a higher energy sound beam results in regions

of the medium with drastically higher and lower densities than would arise if a lower

energy sound beam passed through the medium.

In summary, at the cellular view, sound waves are viewed as rarefactions and com-

pressions propagating through a medium. Additionally, a higher energy sound wave

causes more drastic changes to the density of a medium than a low energy sound

wave.

2.4 Properties of Sound Waves

Several sound wave properties key to understanding the focus of this research are the

following: speed, frequency, reflection, and attenuation. For this section, discussion

of sound waves refers to sound waves on the cellular level.
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2.4.1 Speed

Speed is defined as the distance one compression or rarefaction in a sound wave travels

in the medium in a unit of time, and is determined with the following equation:

v = w × f (2.1)

where v is the speed of sound, w is the wavelength of the sound wave, and f is

the frequency of the sound wave [17]. The speed of a sound wave is determined

by the propagating medium. While media of varying properties propagate sound at

different speeds, the wave’s speed in a single medium remains constant as long as

the temperature and the properties of the medium are held constant [17]. Table 2-1

shows approximations for the speed of sound in seven materials.

Table 2.1: Speed of sound in different media [7]
Medium Speed of Sound (meters/second)

Air 330
Fat 1,450
Water 1,480
Human Tissue 1,540
Kidney 1,561
Muscle 1,585
Skull Bone 4,080

Mainly two properties of a medium are considered to affect sound wave speed: elas-

ticity and inertia of the particles within the propagating medium [19]. The first

property, elasticity, is defined as the degree to which a medium resists deformation

when a force is applied to it. Typically, solids have higher elasticity than liquids which

in turn have higher elasticity than gases. Furthermore, sound waves tend to propagate

faster in media with higher elasticity. The second property, inertia, determines the

responsiveness of individual particles to their neighboring particles. A greater inertia

indicates a medium is composed of particles with larger mass-densities. Sound waves

propagate faster in media with less particle inertia. The following equation shows the

relationship between sound wave speed and these two properties of a medium [19]:

v =

√
E

ρ
(2.2)
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where E is Young’s modulus of elasticity, ρ is the material density, and v is the speed

of sound.

2.4.2 Frequency

Frequency is defined as the number of wave lengths passing through a point per

second. In ultrasound, the frequency of a sound wave can be discerned by counting

how many times per unit of time either a high pressure (compression) or a low pressure

(rarefaction) passes a particular location. A detector can be used to record the

pressure variations propagating through the medium (Figure 2.13).

Figure 2.13: Detector recording and displaying the signal of a sound wave

When the frequency of the sound wave is not obvious from the recorded signal, a

Fourier Transform can be performed on the signal in order to determine the frequen-

cies of which the sound wave is comprised as well as the proportions of the sound

wave that are at each of these frequencies [17].

2.4.3 Reflection

When a sound wave encounters the end of one medium and the beginning of another

one (a boundary), a portion of the transmitted energy gets reflected. The equation

used to determine the amount of energy that gets reflected is as follows [17]:

R =
(

Z2 − Z1

Z2 + Z1

)2

(2.3)
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where Z1 is the acoustic impedance of the first medium, Z2 is the acoustic impedance

of the second medium, and R is the fraction of the energy that gets reflected. Clearly,

this equation depends on the acoustic impedances of the two media. Therefore,

measuring these acoustic impedances is necessary to evaluate the amount of reflection.

The equation for finding acoustic impedance is as follows [17]:

Z = p× v (2.4)

where Z is the acoustic impedance of a material, p is the density of the material, and

v is the speed that sound travels in the material. From the mathematical equation

for finding a reflection, it can be concluded that a greater difference in acoustic

impedances between two neighboring media results in a greater amount of reflection.

Note that any energy that is reflected at a boundary is lost from the energy of the

propagating sound wave.

2.4.4 Attenuation

Attenuation is the diminishing of the original sound wave’s energy resulting from

the combined effects of both scattering and absorption [8]. For ultrasonic imaging,

attenuation is significant because it determines the depth of wave penetration possible

and, thus, the depth of imaging that is possible. Scattering occurs when energy reflects

from a very small obstacle and absorption occurs when particles in the path of the

ultrasound wave retain some of the energy from the wave, possibly in the form of heat

[19]. It follows that sound wave and media characteristics that are more conducive

to scattering and absorption dissipate sound waves more quickly. One example is the

dependency of the degree of attenuation on the sound wave frequency. Sound waves

at a higher frequency tend to have greater amounts of energy absorbed by the media

and, consequently, higher frequency sound waves tend to dissipate more quickly than

low frequency sound waves within the same media.

2.5 Theory of Harmonic Generation

David T. Blackstock, an expert and leader in the field of non-linear acoustics, sum-

marized the historical development that led to the discovery of harmonic generation.

According to his account, it took over 200 years and a foundation of work from such

well-known individuals as Euler, Earnshaw, Riemann, Lagrange, Poisson, Stokes,
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Airy, Fay, Fubini, and Langevin to discover the non-linear nature of sound waves

[8]. From their work, it was eventually determined that sound waves propagate in a

non-linear manner and, furthermore, this non-linearity causes harmonic development.

When treating sound waves as having finite amplitudes, the explanation for the non-

linear behavior of sound waves is quite simple. Ultrasound waves behave as pressure

waves compressing and expanding the medium that they pass through with the com-

pressed regions having increased density and the expanded regions having decreased

density. The speed at which a wave propagates through a medium depends partly

on the medium’s density with waves traveling faster in denser media. Consequently,

the compressed regions of a medium propagate sound waves faster, and the expanded

regions propagate sound waves slower. As a result, sound waves experience a gradual

physical change similar to the one that is shown in Figure 2.14 [8]:

Figure 2.14: Physical change of the shape of a sound wave as it propagates
through a medium

A linear propagation of the sound wave would mean that the transmitting wave would

propagate in the physical shape shown in figure 2.14a. Thus, the physical change

seen in Figures 2.14b-d indicates that there is a growing addition of harmonics to the

propagating sound waves.

2.5.1 Variation of Wave Speed in a Wave

From Figure 2.14, it is clear that the wavelength of the sound waves remains constant

regardless of the degree of distortion occurring from point to point within the wave

form. Thus, assuming a linear sound wave where the frequency of the sound wave

remains constant during propagation, it makes sense that the speed of the sound

wave should be the value determined by v = w× f ; this speed is called c0. However,

it is clear from Figure 2.14 that the wave speed varies for different phases of the
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sound wave and this indicates that there is an addition of harmonics to the sound

wave. It was eventually discovered that two non-linear factors contribute to the speed

variation within the waveform. First, convection affects individual particle behavior

introducing the particle velocity, u, into the phase speed and, second, the relationship

between pressure variation and density variation in a medium is nonlinear introducing

a speed that depends on the properties of the medium into the phase speed (Table

2-2) [8].

Table 2.2: Factors Determining Phase Speed for a Sound Wave
Non-linear Linear

- Convection - Speed of sound wave
- Non-linear properties of the medium

By superimposing these three factors, one can derive the following mathematical

equations for approximating phase speed of a sound wave traveling through liquids

and gases [8]:

vt = c0 + u +
1

2
(γ − 1) u (2.5)

vt = c0 + u +
1

2

(
B

A

)
u (2.6)

Equation 2.5 is for gases, and equation 2.6 is for liquids. In these equations, vt is the

phase speed of the sound wave, c0 is the sound speed for a small-signal sound wave, u

is the particle velocity, and (γ − 1) and
(

B
A

)
are the coefficients for the nonlinearity

of a medium [8]. More generally, the equation can be written as follows:

vt = c0 + βu (2.7)

where β is the coefficient of nonlinearity and is defined as follows [5]:

β =
(γ + 1)

2
(2.8)

β = 1 +
B

2A
(2.9)

Equation 2-8 is for liquids and equation 2-9 is for gases. Because a portion of non-

linearity depends on the non-linear quality of the medium, it is important to know
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the contribution of speed resulting from the non-linearity of the medium 1. For the

purpose of this paper, it is sufficient to say that a significant amount of work has

been devoted to determining B
A values for a range of biomedical media. Table 2-3

lists several 2 [2].

Table 2.3: Media and their B/A values
Biomedical Medium B/A Values

Water 4.96
Whole Blood 6.1
Nonfat soft tissues 6.3-8.0
Fatty soft tissues 9.6-11.3

Although a larger value of B
A indicates that a greater amount of harmonics are gener-

ated by a medium, it will be seen that this value is not sufficient in itself to indicate

how effective harmonic imaging will be in a particular medium.

2.5.2 Amount of Wave Distortion

Something further that can be seen in Figure 2.14 is that sound wave distortion

increases with time. This is because the effects of convection and the non-linearity of

the pressure-density relation accumulate with propagation distance. More specifically,

the distortion occurring at any location merely adds to any distortion that was already

present [5]. The equation below is a computation that allows for the amount of sound

wave distortion to be discerned [8]:

σ = zβεκ (2.10)

where z is the distance the wave has traveled, β is the coefficient of nonlinearity, ε is

Mach’s number at the source, and κ is the wave number. From the equation above, it

follows that the amount of harmonics generated is linearly dependent on the following

factors:
1An in-depth description is given in Hamilton and Blackstocks book, Nonlinear Acoustics, about

techniques employed to determine B
A values [8].

2Since the scope of the presented research is focused on imaging biomedical media which are
considered to be liquids, the non-linear measurements for gases are ignored. Values for the coefficients
of non-linearity for gases can be found in Hamilton and Blackstock’s book titled Nonlinear Acousitcs
[8].
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• distance the sound wave travels

• coefficient of non-linearity which depends on the amount of non-linearity in the

medium (B
A )

• acoustic pressure at source (ε = u0
c0

where u0 is the acoustic pressure at the

source and c0 is the wave speed)

• frequency (κ = 2fπ
c0

where f is the frequency).

Therefore, the farther a sound wave travels, the greater the amount of harmonics

generated. Furthermore, a medium with a higher B
A value results in richer amounts of

harmonics. Since harmonic generation requires that the amplitude of the propagating

wave be large enough, a larger acoustic pressure at the source contributes to larger

amounts of harmonic generation. Conceptually, this is because greater energy causes

much higher and lower density regions in the medium, which in turn results in waves

propagating significantly faster and slower leading to greater sound wave distortion.

Finally, sound waves of higher frequencies arrive at acoustic shock more quickly.

Conceptually, this relationship makes sense too since less of a deformation is required

for the waveform to change from its current wave shape to a shock formation.

Values of σ range from 0 to 4 and larger values signify a greater amount of harmonic

content. Values below 1 indicate a small amount of harmonic content. However,

when σ equals 1 shock formation occurs. Shock generation implies that a part of the

propagating sound wave is exactly vertical; this is seen in both Figures 2.14c and

2.14d. When shock formation occurs, the amount of harmonic generation is said to

become significant. Values increasing from 1 up to 3 indicate a greater growth in

harmonic content; visually, this means that the amount of the wave that is vertical

becomes greater. Finally, values from 3 to 4 indicate a sawtooth formation [8]. Figure

2.14d represents the saw-tooth formation3. For this paper, it is sufficient to say that

from the moment that the saw-tooth formation occurs, enough dissipation of the

sound wave occurs to prevent any further distortion of the sound wave [8]. Table 2-4

summarizes the correlation between values of σ and the degree of harmonic generation.

3An in-depth description is given in Hamilton and Blackstock’s book, Nonlinear Acoustics, about
saw-tooth formation [8]
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Table 2.4: σ values and their meanings
σ value 0-1 1-3 3-4

Significant Harmonic Content? No Yes Yes
Shock Formation? No Yes Yes
Sawtooth Formation (Greatest Amount of harmonics)? No No Yes

2.5.3 Sound Wave Attenuation

Attenuation occurs whenever a sound wave propagates through a medium, and attenu-

ation is represented mathematically by the symbol α. Table 2-5 shows the attenuation

coefficients for some biological media [3].

Table 2.5: Attenuation coefficients for some biological media
Biomedical Temperature Frequency Attenuation Coefficient
Medium (Celsius) (MHz) (dB cm−1)

Amniotic Fluid 22 2 0.045
Blood 25 1 0.21
Breast in-vivo 1.76 0.5-1.1
Skin 23 1 3.5 ± 1.2

The degree of attenuation depends on the interaction between the sound wave and

the medium, or more precisely, the amount of the sound wave energy that is absorbed

and scattered. For example, sound waves of a higher frequency are attenuated more

than sound waves at a lower frequency, because more energy is absorbed by the

media during propagation. A more recent discovery has shown that attenuation

is the key player in limiting the amount of harmonics that can be generated in a

propagating wave. Theoretically and mathematically, there exists a saturation point

for the amount of harmonics that can be generated, and any attempt to add more

harmonics to the propagating sound wave is prevented by a corresponding increase

in attenuation [8].

2.5.4 Goldberg’s Number

In conclusion, the amount of harmonics generated can be viewed as a battle between

two forces: harmonic generation arising from the nonlinear nature of sound waves

and attenuation. Both of these values can be input into an equation from which the

amount of harmonics can be estimated [8]:
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Γ =
la
ld

(2.11)

In this equation, Γ is the Goldberg number, la is the absorption length ( 1
α), and ld is

the distance at which a shock first forms in the absence of dissipation ( 1
βεκ). Values

of the Goldberg number less than one signify that attenuation effects dominate the

propagation of the wave form, equaling one signify that the contributions from the

nonlinearity and attenuation are about equal, and exceeding one signify that the

nonlinear effects dominate. The third case is desirable for harmonic imaging.
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Chapter 3

Harmonic Imaging

In ultrasonic imaging, imaging is done directly from the reflections of a transmitted

ultrasound wave. The common assumption is that ultrasound waves behave linearly;

in other words, the frequency content of a sound wave remains constant through

propagation. It follows then that reflections from the sound wave will only reflect at

that propagated frequency. Therefore, only the frequency of the transmitted sound

wave should be extracted from the reflected signal and used for imaging. This type

of imaging is the standard mode of imaging. However, because sound waves behave

non-linearly, it is clear that frequencies other than the transmitted frequency are

produced within a propagating sound wave. Thus, reflections from the sound wave

at boundaries are also at harmonic frequencies (frequencies that are multiples of

the fundamental frequency). Imaging that extracts the harmonic frequencies from

a reflected signal and uses those for imaging is called harmonic imaging. Harmonic

imaging is advantageous over the standard mode of imaging because images tend to

have less noise and higher resolution, and consequently improved image clarity [2].

3.1 Research That Lead To Harmonic Imaging

Although the theory for harmonic imaging has been around since the 1950s, the use of

harmonics to image biological tissues did not occur until the 1990s. The development

of tissue harmonic imaging resulted from “the triumph of serendipity over logical

progression” [2].

Initially, in ultrasound, harmonic imaging was limited to experiments that imaged

blood flow with the use of contrast agents (free gas bubbles). It was known that gas
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bubbles are highly nonlinear and so, once struck by an ultrasound wave, gas bubbles

generate large amounts of harmonics [3]. Consequently, by releasing contrast agents

into the bloodstream and then imaging areas for harmonics, areas of blood flow were

located.

With time, it became evident that harmonic content was produced within the body

in areas without contrast agents albeit to a much lesser degree. As a result, research

utilizing harmonic generation was performed without the use of contrast agents. In

one research project, ultrasound waves were propagated through the bladder and

the amount of generated harmonics was correlated to a distance of liquid through

which the wave must have traveled. Using the estimated liquid distance, the bladder

volume was then predicted [1]. This research was possible because the surrounding

regions of the bladder are made of tissue, and tissue generates insignificant amounts

of harmonics relative to liquids due to the greater absorption of energy from the

medium.

Although harmonic generation in tissues is relatively insignificant, enough harmonics

are generated in the tissue to allow for harmonic imaging. A less technical article

titled “EnsembleTM Tissue Harmonic Imaging: The Technology and Clinical Utility”

discusses several doctors’ testimonials about using the ultrasound harmonic imaging

system SONOLINE Elegra, sold by Siemens Medical. Four doctors describe how

diagnoses that were missed through fundamental imaging were able to be made with

harmonic imaging and that, in general, diagnoses are more easily made using harmonic

images [7].

3.2 Benefits of Harmonic Imaging

An ongoing problem in ultrasonic imaging is that undesired signals are contained in

the reflected data. For emphasis, the signals that corrupt the data are reiterated

below:

• Thermal noise generated by the transducer and the receiver electronics.

• Reverberations of the ultrasound wave itself.

• Grating lobes which are sound waves that get transmitted from the transducer

at angles other than that of the ultrasound wave.
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• Scattered and reflected waves resulting from interactions with the many ‘smaller

structures throughout tissue.

These signals are mixed with the propagated sound beam. Recall that a sound beam

is transmitted from a vibrating piston called a transducer [19]. The piston causes a

sound wave at a specified frequency to propagate through the medium. One would

expect the emitted sound beam to propagate in the direction at which the energy is

imparted to the body (Figure 3-1). However, in actuality, beam spread occurs [14].

Figure 3.1: Propagating sound beam show-
ing regions of beam spread [15]

The area of the sound beam where the energy content is greatest is within the center

of the beam; in other words, the area of the sound beam shown in Figure 3-1 that

is lighter in color [5]. Areas external to the center of the sound beam contain sig-

nificantly less energy. Recall that insignificant amounts of harmonics develop from

low energy sound waves, while lots of harmonics generate from high energy sound

waves. Consequently, reflections from the central portion of the sound beam contain

large amounts of harmonic signal while reflections from other parts of the sound beam

contain relatively insignificant amounts of harmonic signal.

Therefore, images derived from the harmonic signal are indicative mainly of the re-

flections coming from the center of the sound beam. Since a portion of the undesired

signal is contained outside of the center of the sound beam, harmonic imaging succeeds

in removing some of the signals that corrupt the image. Consequently, fewer artifacts

and noise arise in harmonic images. Additionally, because the harmonic content is

mainly contained in the central portion of the sound beam, the lateral beam width

is narrower. This, in turn, means that there is improved lateral resolution. Also, a
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medium reflects energy for the length of time that the waveform passes through a

boundary. This means that the less time a waveform passes through a boundary the

less amount of time it generates reflections resulting in higher axial resolution. Con-

sequently, since harmonic imaging utilizes higher frequency waves, the images benefit

from improved axial resolution.

3.3 Ideal Conditions for Harmonic Imaging

Although harmonic imaging has clear benefits, these benefits are not seen in all imag-

ing environments. As is suggested by theory and supported by experiments, there are

significant variations in the amount of harmonics generated in varying media, and the

farther a wave travels the greater the amount of harmonic generation. Thus, imaging

a region of interest using harmonic imaging requires that it is possible for enough

harmonics to be generated by the time the ultrasound wave arrives at the region of

interest. This depends largely on the type of media that is being imaged [1]. For

instance, in tissue, imaging shallow objects using harmonic imaging returns inferior

images to that of fundamental imaging since very few harmonics have been generated

in the shallower regions.
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Chapter 4

Ultrasound System

Discussion of the ultrasound system will refer to the system shown in Figure 4-1.

Figure 4.1: Overview of the ultrasound system

This system was designed in the Ultrasound Laboratory at Washington University in

St. Louis and consists of a PCI card with a control circuit, pulser, transmitter/receiver

(T/R) switch, servo, position detection system, probe, amplifier (receiver), and an

A/D converter, and a computer. Gray scale, B-mode images are produced with this

system, where a B-mode image is defined to be a 2-D image that is created using a

succession of 1-D reflected ultrasound signals [18]. The resulting brightness at each

pixel in the 2-D image indicates the amplitude of the reflections with whiter shades
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indicating signals with higher amplitudes and blacker shades indicating signals with

smaller amplitudes [18]. The focus in this chapter is on how the succession of 1-D

reflections is obtained, and the focus in the next chapter is on how a 2-D image is

generated from these 1-D reflections.

4.1 Data Sampling

The probe utilized in this research is a GP2000 sold by Interson. The transducer

within the probe has a natural frequency of 5 MHz with 100 percent bandwidth.

Data collection begins when the pulser on the PCI card sends a pulse of electrical

energy to the transducer in the probe. The pulse in this research is a single cycle of

a sine wave that can be as large as ±125 V. Figure 4-2 shows a single cycle of a sine

wave with a range of ±10 V.

Figure 4.2: Single sine wave pulse

The transducer, because of its piezoelectric nature, transforms this electrical energy

into mechanical energy. This energy is then emitted as an ultrasound wave with a

center frequency of approximately 3.5 MHz. After emission, the T/R switch causes

the electronics to switch to receive mode, and the reflected wave is received as a

continuous time signal using the transducer as a piezoelectric microphone1. As the

acoustic energy arrives to the probe, the piezoelectric property of the transducer

causes this mechanical energy to transform into an electric voltage, which is then

1A direct connection between the pulser and amplifier would result in the amplifier being dam-
aged. In order to prevent the passage of the electrical energy from the pulser to the amplifier, a
T/R switch is used.
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forwarded through a coaxial cable to the receiver on the PCI card. At the receiver,

the signal is amplified and then is sampled using an 8-bit A/D converter at a sampling

frequency of 50 MHz. After 2048 samples are collected, the T/R switch returns the

electronics back to pulse mode and the servo and position detection system cause the

transducer within the probe to rotate. This collection of data is repeated until 256

vectors of 2048 sample points each are collected, with the resulting collection of data

spanning 90 degrees (Figures 4.3 and 4.4).

Figure 4.3: The transducer
is shown at five time frames
during the data collection
process. The black point
represents the pivot point of
the transducer.

Figure 4.4: The 256 vectors of
data over a 90 degree sweep

The transducer, during data collection, pivots about a point offset from the transducer

face as shown in Figure 4.3. As a result, the first sample values for each of the 256

vectors of data do not all meet at the same point. This is shown in Figure 4.4.

4.2 Data Trimming and Hanning Window

Once the sampling is completed, the data is forwarded from the PCI card to the

memory inside the computer. An example of a vector of data that arrives in memory

is shown below in figure 4.5.

This data was obtained using the ultrasound system to image a part of a phantom,

Gammex RMI 404GS [6].

An undesirable part of this data is the initial portion containing samples with values

around ±100 (approximately the first 400 samples). The data in these reflections

arise when the sound wave crosses the probe membrane into the phantom. Since

the objective is to image the tissue-mimicking substance within the phantom, it is

not necessary to retain the first portion of the data. Additionally, the amplifier
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Figure 4.5: A vector of data prior to signal processing

is saturated when receiving this data meaning that the amplification is non-linear.

Therefore, removing this initial portion of the signal is desirable to ensure the data

is indicative of only the reflections from within the phantom. Consequently, the first

400 sample values are all set to zero.

A windowing function is then applied to the remaining 1648 samples in order to min-

imize the amount of DFT leakage. Minimizing DFT leakage is an important task in

itself; however, for this research, it is even more critical because the higher frequency

content is the data used for imaging. If higher frequencies resulting from leakage

overwhelm the higher frequency content in the data, the images will be indicative of

the information in the artifacts as opposed to the information in the reflected sound

wave itself. The windowing function used to minimize DFT leakage is a Hanning

window. A description of DFT leakage is given in Appendix B.

The signal multiplied with each vector of reflected data consists of two parts. The

first part sets the values in the initial portion of data to zero and the second part

multiplies the remaining part of the untouched data with a Hanning window. The

coefficients of the Hanning window are derived from the following equation:

r[k] = 0.5

(

1− cos

(

2π
k

n− 1

))

(4.1)

where r is the vector holding the Hanning window coefficients, k is the index into

the vector, and n is the number of samples. More specifically, a vector of 400 values
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set to zero was inserted into a vector2 and then a 1648 point Hanning window was

appended to the vector. Figure 4-6 shows the resulting window:

Figure 4.6: A Hanning window

Figure 4-7 shows the effect of multiplying the Hanning window with the signal shown

in figure 4-5.

Figure 4.7: A vector of data after the Hanning window is applied

Note, that this windowing function may not be the optimal window. This window

preserves the frequency content of the data at the expense of diminishing the intensity

of the data in the time domain.
2The number of samples in the initial part of the signal that show saturation was determined,

through observation, to be the first 400 samples.
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4.3 Filtering the Data for Harmonic Frequencies

in Software

The subsequent data processing depends on the type of image that is being generated:

fundamental, harmonic using high-pass filtering, or harmonic using pulse inversion.

For a fundamental image, the signal is ready for the imaging process. This process is

discussed in Chapter 5. For the harmonic images, the signal processing for the two

techniques is described below.

4.3.1 High-Pass Filter

Since high-pass filtering requires using a Discrete Fourier Transform (DFT), a brief

discussion on the DFT is given in Appendix A. First the signal is passed through a

DFT and then a high-pass filter is applied to the transformed signal to remove the fre-

quency components not in the harmonic portion. The resulting filtered signal is then

passed through an inverse DFT to return the signal back to the time domain. This

resulting signal is used for imaging and goes through the imaging process described

in Chapter 5.

The high-pass filter utilized is a Butterworth filter of order 8 with a cut-off frequency

that is 1.5 times the fundamental frequency. The coefficients for the Butterworth

filter are found using the following equation:

H(d) =
1

1 +
(

D0
d

)2n (4.2)

where H is the vector of Butterworth coefficients, d is sample number of the data, D0

is the cut-off frequency, and n is the order of the filter.

The general form of the magnitude plot of the Fourier Transform for a reflected

ultrasound pulse in this ultrasound system is shown in figure 4.8.

Note that the first harmonic has a reduced amplitude; this is due to the greater at-

tenuation that higher frequencies experience during propagation within a medium.

Also, the reflected ultrasound waves have a range of frequency information that are

centered around the fundamental and harmonic frequencies meaning that other fre-

quencies than simply the fundamental and harmonic frequencies are included in the

data. The reason for this non-spike like shape is that, in practice, the frequency
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Figure 4.8: Overlap of fundamental and first harmonic

content for the emitted ultrasound waves has this non-spike like form. Consequently,

the reflections have this form too. This overlap of the fundamental and harmonic fre-

quencies means that any filtering will, inevitably, cut part of the harmonic signal out

while retaining part of the fundamental signal. Therefore, high-pass filtering provides

a flawed means for extracting the harmonic signal from the reflected ultrasound data.

One way to reduce, or even remove, the overlap would be to alter the shape of the

emitted ultrasound energy. For example, by driving a transducer with several cycles

of a sine wave, the bandwidth of the transmitted pulse would be narrowed.

4.3.2 Pulse Inversion

The second method, pulse inversion, returns harmonic data which is, in theory, free of

the fundamental information. Due to the non-linear nature of harmonic frequencies,

adding two echo signals that are generated by transmitting pulses out of phase by

180 degrees causes the linear portions (the fundamental portions) as well as the odd

harmonics to zero out while the even harmonics double. Figures 4.9 and 4.10 show

the general form of two acoustic waves that are emitted from the probe in order to

obtain the two sets of vector data containing linear signals that are out of phase by

180 degrees.
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Figure 4.9: Wave form of
an acoustic pulse emitted by
the probe

Figure 4.10: Wave form of an
acoustic pulse 180 degrees out of
phase from the pulse shown in fig-
ure 4.9

In order to arrive at the harmonic data using pulse inversion, the two sets of data that

are out of phase are literally added together. The resulting signal then goes through

the imaging process described in Chapter 5.



30

Chapter 5

Image Display

The goal in this mechanical sector, B-mode ultrasound system is to manipulate the

collection of 1-D signals such that the resulting 2-D image will show gray-scale bands

in areas where there are physical boundaries in the medium. In order to get the desired

image, the data must be processed. For each of the techniques (pulse inversion, high-

pass filter, and fundamental), as the 256 vectors of data are read into a PC, they are

stored into a 2048 x 256 matrix. Each point (x, y) in the matrix stores a number

between 0 and 255 (Figure 5-1).

Figure 5.1: A 2048 x 256 collection of data

The remaining steps are all performed in Matlab. For pulse inversion, the two pulses

of data are added. Then, for all three techniques, as described in the previous section,

the saturated samples are removed and the data is windowed using a hanning window.
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Next, for the high pass filtered harmonic data, the high pass filter is applied. Finally,

for all three techniques, each of the vectors of data is rectified, then envelope detected.

Once this is done to all 256 vectors of data, the matrix of modified data is scaled to a

dynamic range of [0, 255] and then forwarded to another algorithm for scan conversion

and then image display.

5.1 Rectification

Rectification is the same as taking the absolute value of a signal. In software, this is

achieved by replacing all the values with their absolute values. Figure 5.2 shows five

periods of a sine wave before and after rectifying the sine wave.

Figure 5.2: The first image shows five periods of a sine wave and the second image
shows the signal after rectification

Looking at the above images, it is clear that rectification causes the introduction of

higher frequency components. The magnitude of the DFT of both of the above signals

are shown below in Figure 5.3.
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Figure 5.3: The first image shows the DFT for five periods of a sine wave and the
second image shows the DFT for the five periods of a sine wave after rectification

In fact, rectification causes the fundamental frequency of the rectified signal to be

two times that of its corresponding non-rectified signal. Additionally, harmonics of

the new fundamental frequency get introduced into the frequency make-up of the

rectified signal.

5.2 Envelope Detection

Envelope detection is performed to help with visualization of RF data on a com-

puter display. A simplified example is used here to illustrate the concept of envelope

detection. The data initially coming from a boundary from a single reflection is a

wave that is similar, conceptually, to the wave shown in Figure 5.4. Rectification of

the data introduces large jumps in gray scale values for adjacent samples. This is

shown in Figure 5.5. Since, the goal is to see a gray-scale band in the image where a

boundary exists, the goal of envelope detection is to adjust the data such that there

is a smooth transition of gray scale values in a neighborhood of pixels. An example

of an envelope for a single sine wave is denoted by the dotted line in Figure 5.6.
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Figure 5.4: Origi-
nal RF signal

Figure 5.5: Recti-
fied signal

Figure 5.6: Dotted
line shows the de-
sired effects of en-
velope detection on
the rectified signal

A mental exercise to visualize the desired effects of envelope detection for more com-

plex signals is to imagine the shape of a blanket if it were dropped on top of a jagged

signal, for example, the signal shown in Figure 5.7.

Figure 5.7: Ultrasound data

The transition from point to point in the signal should be smoothed so that the

difference in gray scale values between neighboring values is reduced. A low pass

filter performs this signal smoothing. The low pass filter can either be applied in the

time domain using convolution or in the frequency domain using multiplication. Since

the overall goal of this research is to build the system in hardware, the technique that

can be done more easily in hardware is desirable. Since the data is already in the

time domain, it is easier to perform convolution and therefore, avoid performing the

DFT and the IDFT functions.
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5.2.1 Averaging Envelope Detector

Initially, the averaging filter was employed as the envelope detector in this research.

The function for this envelope detector is as follows. Each of the sample values in the

vector was summed with the four sample values before it and then the total sum was

divided by five. The corresponding filter shown graphically in Figure 5.8, slid over

each vector of data with the fifth filter value starting at the first sample and ending

at the fifth from the last sample. Along the way, the value which the fifth sample

multiplied with was the sample that got replaced.

Figure 5.8: Averaging filter in spatial domain

This process is identical to convolution. Recall that a convolution performs the fol-

lowing using the functions f(x) and h(x):

1. Flip h(x) about the origin.

2. Shift h(x) over f(x), having h(x) start before f(x) and finish after f(x).

3. Each time h(x) is shifted, the sum of the product of the overlapping values

from the two functions is calculated and the resulting value replaces the sample

value.

The averaging process is an example of performing convolution where the signal shown

in Figure 5.8 is h(x) and the vector of data is f(x). This process is shown mathemat-

ically with the following equation:

y(x) =
M−1∑

u=0

h(u)f(x− u (5.1)
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where y(x) is the output sequence. Since performing convolution in the spatial domain

is equivalent to performing multiplication in the frequency domain, this envelope

detector is also a meaningful in its frequency domain representation. Figure 5.9

shows the magnitude of the DFT of h(x).

Figure 5.9: Magnitude of the DFT of the averaging filter

The envelope detector is intended to behave as a low-pass filter, and an ideal low pass

filter is a rectangular function in the frequency domain [12]. Since the DFT of the

averaging signal returns a function that only vaguely resembles a rectangular function

in the frequency domain, a better envelope detector was created.

5.2.2 Optimized Envelope Detector

Since an ideal low pass filter, the desired envelope detector, is a rectangular function

in the frequency domain, an envelope detector with a function that strongly resembles

the ideal filter was created. First, a sinc function was created. This is because the

inverse DFT of a rectangular function is an infinitely long sinc function. Since com-

puters only can analyze finite length signals, the sinc function for the ideal low-pass

filter inevitably must be truncated. This truncation many times is accomplished by

setting all values outside of a portion of the continuous function to zero and leaving

the remainder of the values untouched. This process is identical to multiplying a

rectangular window with an infinitely long sinc function. Multiplying a rectangular

window with the sinc function is a bad choice due to the large side lobes in the fre-

quency domain representation of the rectangular window. These side lobes cause high

frequencies to arise in the low pass filter. To limit the amount of high frequencies in
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the low pass filter, a windowing function with minimized side lobes in its frequency

domain representation was chosen. Although many windowing functions have min-

imized side lobes, in this research, a Hanning window was selected. Therefore, the

resulting low pass filter used for envelope detection was a sinc function truncated

using a Hanning Window. These functions are shown in Figure 5.10.

Figure 5.10: First image shows the sinc function and the second image shows the
hanning window

In this research, two envelope detectors were created using this technique: a 31-tap

filter for the fundamental data and a 27-tap filter for the harmonic data.

A graphical representation of the harmonic envelope detector in the time domain is

shown in Figure 5.11. This filter was convolved with each vector of the harmonic

data. Notice from the magnitude plot of the Fourier transform for this filter, the

filter has a passband of approximately 3.24 MHz and almost no side lobes.
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Figure 5.11: First image shows the harmonic enveloping detector the second image
shows the DFT of the signal

Because a 3.5 MHz pulse frequency is used in this research, the second harmonic is

at 7 MHz, and so the rectified data for the harmonic data is 14 MHz. As can be seen

in Figure 5.11, this filter almost completely levels off to zero after 14 MHz. This is

desirable for the harmonic frequencies which contain important information up to 14

MHz.

A graphical representation of the fundamental data envelope detector in the time

domain is shown in Figure 5.12.

Figure 5.12: First image shows the fundamental enveloping detector the second image
shows the DFT of the signal

Ffigure 5.12, it is seen that the 31-tap filter has a passband of 2.9 MHz and that

the filter almost completely levels off at zero after 7 MHz. This is desirable for the
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fundamental frequencies which only contain important information at frequencies as

high as 7 MHz.

To summarize, envelope detectors were selected that most strongly resembled a low

pass filter. Initially, an averaging filter was utilized. However, due to the large

amount of higher frequencies contained in the averaging signal, a more optimal low

pass filter was created using a sinc function and a Hanning window. Furthermore, in

the optimized filter, more taps were taken in order to cause the cut-off frequency to

be at a lower frequency.

5.3 Scan Conversion

Once data processing is complete, scan conversion is performed. Scan conversion

converts the collected ultrasound data (which is in polar coordinates) into Cartesian

coordinates. The technique utilized in this research comes from a paper titled Real-

Time Ultrasonic Scan Conversion Via Linear Interpolation of Oversampled Vectors,

by William D. Richard and R. Martin Arthur [9].

To summarize, the final image used to display the ultrasound data is composed of

512 x 512 pixels (Figure 5.13). The objective is to fit the data from the 256 x 2048

matrix into the image. Furthermore, the final image needs to be in Cartesian form,

as shown in Figure 5.14.
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Figure 5.13: A 512 x 512
matrix of pixel values used
to display the ultrasound
data

Figure 5.14: A 512 x 512 image
where the white portion denotes
areas where sample data is in-
serted

The algorithm checks every pixel in the 512 x 512 image to determine if the point is

within 45 degrees of the center axis and within a radius of 512 pixels from the pixel

location (1, 256.5) (this area is the white region displayed in figure 5.14)1. Pixels

external to this region are set to be black, which is a grayscale value of zero. For

every pixel located within the white region, a point from the image data is found to

insert into that pixel location. Looking at Figure 5.15, the challenge in determining

what sample to use is exemplified.

1The hole at the top of the white region results from the fact that the transducer head moves as
it collects each vector of data (pivot-to-face distance).



40

Figure 5.15: Overlap of the vectors
from collected data introduces a chal-
lenge in determining what value should
be displayed at a pixel location

It is possible that several or none of the vectors of data contain a sample value within a

single pixel square. The method used to determine which vector to select the sample

from is based on the mathematical equation supplied by the manufacturers of the

GP2000 probe. The pixel location is input to an equation which returns an angle

measure. Ideally, there would be a vector of data that would have been measured at

that angle. However, because there may not be a vector of data at that precise angle,

the nearest vector is chosen. An example is shown in Figure 5.16 where the dotted

line shows the measured angle calculated by the sinusoidal equation. The nearest

vector, B, is the vector that would be chosen by the algorithm.

Figure 5.16: A pictorial example show-
ing the method used to select a vector
for sampling
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Then, the sample value from the selected vector is chosen. Since the image is 512

pixels long while the vector sample contains 2048 points, there is a relationship of

1 pixel to every 4 samples. Therefore, the sample chosen is the sample that has an

index value into the vector equal to four times the radius of the pixel location in the

image.

As mentioned, this method of scan conversion is an example of nearest neighbor-

interpolation. Although this method is sufficient for displaying images, there are other

methods that perform better. For example, in the case of oversampling, it has been

shown that both bilinear interpolation and linear interpolation with oversampling

provide improved results [9].

5.3.1 Image Display

Once the algorithm finishes filling in the 512 x 512 image with grayscale values ranging

from 0 to 255, the image is displayed such that each pixel in the image displays the

gray scale value assigned to it.
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Chapter 6

Results

In this section, images from a B-mode, mechanical sector system are shown.

6.1 Comparison of Envelope Detectors

Initially, an averaging filter was used to perform envelope detection. Then, an im-

proved envelope detector for both fundamental and harmonic data was generated by

utilizing the sinc function and a Hanning window.

Figure 6.1 shows the results of using the averaging filter envelope detector and the

optimized envelope detector on the same set of fundamental data.
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Figure 6.1: Two fundamental images: the first utilized an averaging envelope detector
and the second utilized an optimized envelope detector

As seen in the images above, using the optimized envelope detector results in smoother

transitions in gray-scale values.

Below, in Figure 6.2, are two images of the same harmonic data that result by applying

the averaging filter and the optimized envelope detector.
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Figure 6.2: Pulse inversion harmonic images: the first utilized an averaging envelope
detector and the second utilized an optimized envelope detector

The optimized envelope detector returns data with less artifacts quantitatively. Pic-

torially, as seen in Figure 6.2, the checkered appearance in the images in which the

averaging envelope detector was applied is not seen in the images in which the opti-

mized envelope detector was applied.

In all images that follow, the optimized envelope detectors were employed.
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6.2 Fundamental vs. Harmonic Images

In the figures that follow, the two data files used for pulse inversion are shown in their

fundamental form and then in their high-pass filtered harmonic form. Then, the fifth

image shows the harmonic image derived from using pulse inversion.

An image of a cyst inside of a tissue mimicking phantom is shown in Figure 6.3.

Figure 6.3: Fundamental and harmonic images of a cyst
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An image of tissue in a tissue mimicking phantom is shown in Figure 6.4.

Figure 6.4: Fundamental and harmonic images of tissue-mimicking substance

The success of harmonic imaging with a B-mode, mechanical sector ultrasound system

is illustrated in these images. Enough harmonic data was captured in the reflected

signal to generate images. Furthermore, these images contain less noise than the

fundamental images and have improved axial and lateral resolution.
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6.3 Future Work

The next step is to make optimizations to the ultrasound system. An undesirable

effect seen in the high-pass filtered images are ray-like lines running almost vertically

throughout the images.

One possible cause of the undesirable effects in the high-pass filtered harmonic im-

ages could be the large amount of overlap of the fundamental and the first harmonic

signal. Currently, the ultrasound system emits a single cycle of an ultrasound wave

which causes the fundamental and harmonic bands to overlap. As a result, the filter

inevitably removes some of the harmonic signal while keeping some of the funda-

mental signal. Altering the shape of the emitted ultrasound wave pulse so that the

fundamental and harmonic signals do not overlap can be accomplished by emitting

more cycles of the ultrasound wave. Such an alteration in sound wave shape would

preserve the frequency content of the data, but would diminish the axial resolution

in the images.

Another cause of the undesirable effects in the high-pass filtered harmonic images

could be due to a poor choice of a high-pass filter. The importance of the choice of

the high-pass filter can be seen in Figure 6.5.
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Figure 6.5: First plot shows an image obtained where an ideal filter is applied to the
data and the second plot shows an image obtained where a Butterworth filter of order
8 is applied to the data

The two images were generated from the same set of data. The two images differ

in that the first image was generated using an ideal high-pass filter while the second

image was generated using a Butterworth high pass filter of order 8 with cut off

frequency equal to 1.5 times the fundamental frequency. Figure 6.6, shows the two

filters that were employed.
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Figure 6.6: First plot shows an ideal filter and the second plot shows a Butterworth
filter of order 8

It is clear that using the Butterworth filter diminished the ray-like effect that arises

when using the ideal filter. It is possible that using a different filter may remove the

ray-like effect even more.

To summarize, future work could be devoted to improving the high-pass filtered

harmonic images by doing the following: alter the number of ultrasound waves emitted

from the probe to reduce fundamental and harmonic frequency overlap and test more

high-pass filters to find an optimal high-pass filter.
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Chapter 7

Conclusions

Harmonic generation results from the physics of sound waves and their interactions

with the media through which they travel. As sound waves propagate through a

medium, they compress and expand the medium. Sound waves travel at a faster speed

in compressed regions than in expanded regions. Consequently, as an ultrasound wave

propagates through a medium, the shape of the sinusoidal wave that was initially

pulsed into the medium transforms. This transformation indicates that there is an

introduction of harmonic information into the propagating ultrasound wave.

The work presented in this paper demonstrates that this harmonic data can be utilized

to generate harmonic images with a mechanical sector, B-mode ultrasound system.

Furthermore, as predicted, objects in the images show higher resolution and less noise.

The work presented so far is a preliminary step for implementing this system in real-

time in hardware. It is worth noting that the system used for the testing above is

not of optimal quality. Because harmonic images were able to be generated using a

non-optimal system, the results indicate that future work into a real-time harmonic

imaging system is not only possible, but may also be worthwhile.
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Appendix A

Fourier Transform

Signals can be observed in both the spatial domain and the frequency domain. Signals

in the frequency domain are expressed as a summation of sine and cosine functions at

a multitude of frequencies (Fourier series). The key idea is that by adding together the

sine and cosine functions specified from the frequency domain, the resultant function

ends up being identical to the signal in the time domain. The Fourier transform

is used to determine the frequencies making up a spatial domain signal while the

inverse Fourier transform returns a signal in the frequency domain to the spatial

domain representation. These two functions are called the Fourier transform pair.

The transformation between these two domains results in no loss of information.

The research presented in this paper uses a 1-D discrete Fourier transform (DFT).

DFT is a Fourier series representation of a discrete, finite length signal. This rep-

resentation is desirable because a computationally fast algorithm, the Fast Fourier

Transform (FFT), can evaluate DFTs on a digital computer or for implementation in

digital hardware very quickly [6]. The equation for the DFT is as follows:

F (u) =
1

M

M−1∑

x=0

f(x)e
−jux2π

M (A.1)

where M is the total number of samples, u is the uth frequency, and f(x) is the value

of the xth sample. Looking at Eulers equation in equation A-2 the concept of finding

a signals component frequencies becomes clearer.

ejθ = cos θ + j sin θ (A.2)
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The exponential in the DFT equation decomposes into a cosine and sine component

and so the DFT actually evaluates frequency components.

The number of samples in the time domain equals the number of samples in the

frequency domain. Consequently, the frequency for each sample in the frequency

domain can be determined. For example, with a 50 MHz sampling rate, if 8 samples

are taken, the frequencies in the Fourier transform are multiples of 6.25 MHz up

to 50 MHz. However, with a 50 MHz sampling rate, if 256 samples are taken, the

frequencies in the Fourier transform are all multiples of 195 kHz. The following

equation can be used to determine frequency interval between two successive data

points in the transform:

frequencyinterval =
samplingfrequency

numberofsamples
(A.3)

Therefore, the frequency at the uth tick mark in the frequency domain would be u

times the frequency interval.

As seen from equation A-2, performing the transform on a signal returns two values:

a real value and an imaginary value. The following equation shows what is expected

from the transform more generically:

z = x + j × y (A.4)

where x represents the real component, j is equal to
√
−1, and y represents the imag-

inary component. The magnitude of the frequency is determined using the following

equation:

|F (u)| =
√

x2 + y2 (A.5)

The phase shift for each frequency is determined using the following equation:

φ(u) = tan−1
[
y

x

]
(A.6)

The resulting magnitude plot from a transform always is centered around u = 0 such

that the functions to the left and right of the y-axis mirror each other over the y-axis.

Both the positive and negative values have identical real values with the difference

between the frequency values lying in the phase shifted portion. Filtering out a
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particular frequency requires filtering out both the positive and negative portion in

the transform.

The Matlab program represents DFTs slightly differently. The transform ranging

from the leftmost position all the way to the y-axis is cut and pasted to the end of

the positive portion of the transform. So the frequency value needs to be removed

from both the positive transform and the pasted negative portion in order to filter

out a particular frequency, both of which will be lying in the positive x-axis.

The inverse discrete Fourier transform is represented by the following equation:

f(x) =
1

M

M−1∑

u=0

F (u)e
jux2π

M (A.7)

This equation is used to return the frequency domain signal back to the spatial

domain.
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Appendix B

DFT Leakage and Windowing

Functions

When a continuous signal that is periodic by nature is sampled, the signal may still

appear non-periodic in the transform; this is because the sampling did not capture

an exact integer number of cycles of the period [9]. This is exemplified pictorially in

figures B.1-B.3.

Figure B.1: A continuous periodic signal

Figure B.2: Sampling exactly 2 samples of the contin-
uous periodic signal and replicating this sampled signal
into a periodic signal
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Figure B.3: Sampling a non-integer amount of periodic
sample and replicating this sampled signal into a peri-
odic signal. Discontinuities arise

From figures B.1-B.3, it is clear that if the starting and stopping values of the signal

do not meet up in a continuous manner, when the sampled data is replicated into a

periodic signal, a discontinuity arises. Because the sampled signal in figure B.2, when

replicated, does not contain any discontinuities, the DFT results in only a single spike

at the frequency of the signal. On the contrary, the sampled signal in figure B.3 does

not capture the periodic nature of the naturally periodic signal. In order to represent

the signal in the DFT, the discontinuity must be represented by higher frequencies.

Therefore, the DFT for figure B.3 contains higher frequencies simply because a non-

integer number of cycles were sampled. This introduction of artificial frequencies is

called leakage.

The standard method of sampling data from a continuous time signal is an example

of multiplying a rectangular window with a width of the sample interval against the

continuous time signal [Figure B.4]. All values outside the sampled interval are set

to zero while all values within the sampled interval are multiplied by one.

Figure B.4: Rectangular window

This is important to note, because rectangular windows introduce a great amount of

leakage. The DFT of the rectangular function is the sinc function (sin(x)/x), and a

plot of the sinc function shows that there are many side lobes with large magnitudes

with respect to the main lobe. These side lobes cause the DFT leakages. Therefore,

in order to minimize the leakage, it is necessary to reduce the side lobe amplitudes.
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This is achieved by using windowing functions other than the rectangular function to

collect the sampled data [12].

Three indicators for determining the effectiveness of a window can be determined by

the frequency domain representation of a window. These indicators are [12] :

• Peak side lobe magnitude with respect to the main lobe magnitude

• Speed at which the side lobes decrease as the frequency increases

• The width of the main lobe

Windowing functions are a tradeoff between these three criteria, which are shown

pictorially in figure B.5.

Figure B.5: An example of a frequency domain for a
windowing function

An extensive analysis and comparison of windowing functions is found in Harris arti-

cle, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Trans-

form” [9]. From his work, it is shown that each window has unique strengths and

weaknesses. The choice of a window function depends on the requirements for the

windowing function by the application in which it is used [9].



57

References

[1] Bouakaz, Ayache, Egon Merks, Charles Lancee, and Nicolaas Bom. 2004. Non-

invasive Bladder Volume Measurements Based on Nonlinear Wave Distortion.

Ultrasound in Medicine & Biology 30:469-476.

[2] Duck, Francis A. 2001. Nonlinear Acoustics in Diagnostic Ultrasound. Ultrasound

in Medicine & Biology 28:1-18.

[3] Duck, Francis A. 1990. Physical Properties of Tissue: A comprehensive Reference

Book. London: Academic Press. 28:1-18.

[4] A.P. Cracknell. 1980. Ultrasonics. Great Britain: Wykeham Publication (Lon-

don) Ltd.

[5] Frinking, Peter J. A., Ayache Bouakaz, Johan Kirkhorn, Folkert J. Ten Cate, and

Nico de Jong. 2000. Ultrasound Contrast Imaging: Current and New Potential

Methods. Ultrasound in Medicine & Biology 29:965-975.

[6] Precision Small Parts Grey Scale Phantom. Gammex.

https://www.gammex.com/catalog/ (Accessed 8 July, 2005).

[7] Haerten, R., C. Lowery, G. Becker, M. Gebel, S. Rosenthal, and E. Sauerbrei.

1999. EnsembleTM Tissue Harmonic Imaging: The Technology and Clinical Util-

ity. Electromedica 1:50-56.

[8] Hamilton, Mark F. and David T. Blackstock, eds. 1998. Nonlinear Acoustics.

San Diego: Academic Press.

[9] Harris, F. 1978. On the Use of Windows for Harmonic Analysis with the Discrete

Fourier Transform. Proceedings of the IEEE. 66: 51-83.

[10] Hsu, Hwei P. 1995. Signals and Systems. New York: McGraw-Hill.



58

[11] Lempriere, Brian M. 2002. Ultrasound and Elastic Waves. New York: Academic

Press.

[12] Lyons, Richard G. 2004. Understanding Digital Signal Processing. New Jersey:

Prentice Hall.

[13] Macovski, Albert. 1983. Medical Imaging. London: Prentice-Hall International,

Inc.

[14] Pierce, Allan D. 1981. Acoustics. New York: McGraw-Hill Book Company.

[15] Radiated Fields of Ultrasonic Transducers. NDT Resource Center.

http://www.ndt-ed.org/EducationResources/CommunityCollege/Ultrasonics/

EquipmentTrans/radiatedfields.htm (Accessed 8 July, 2005).

[16] Richard, William D., Martin Arthur. 1994. Real-time Ultrasonic Scan Conversion

Via Linear Interpolation of Oversampled Vectors. Ultrasonic Imaging. 16:109-

123.

[17] Rossing, Thomas D. 1982. The Science of Sound. Reading: Addison Wesley

Publishing Company, Inc.

[18] Rumack, Carol M., Stephanie R. Wilson, J. William Charboneau, and Jo-Ann

M. Johnson. 2005. Proceedings of the IEEE. China: Elsevier Mosby.

[19] Stephens, R. W. B., and A. E. Bate. 1966. Acoustics and Vibrational Physics.

Great Britain: William Clowes and Sons.



59

Vita
Danna Gurari

Date of Birth July 5, 1982

Place of Birth Buffalo, New York

Degrees B.S. Cum Laude, Biomedical Engineering, May 2005

August 2005


