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Abstract

Crowdsourced demarcations of object boundaries in images
(segmentations) are important for many vision-based appli-
cations. A commonly reported challenge is that a large per-
centage of crowd results are discarded due to concerns about
quality. We conducted three studies to examine (1) how does
the quality of crowdsourced segmentations differ for famil-
iar everyday images versus unfamiliar biomedical images?,
(2) how does making familiar images less recognizable (ro-
tating images upside down) influence crowd work with re-
spect to the quality of results, segmentation time, and seg-
mentation detail?, and (3) how does crowd workers’ judg-
ments of the ambiguity of the segmentation task, collected
by voting, differ for familiar everyday images and unfamiliar
biomedical images? We analyzed a total of 2,525 segmenta-
tions collected from 121 crowd workers and 1,850 votes from
55 crowd workers. Our results illustrate the potential benefit
of explicitly accounting for human familiarity with the data
when designing computer interfaces for human interaction.

Introduction

In a 2013 study, researchers discarded 33,508 crowdsourced
image segmentations of everyday content, i.e., 32% of col-
lected data, because the results were not “deemed to be
good” (Bell and et al 2013). Conversely, a 2015 study (Gu-
rari and et al 2015) demonstrated that crowdsourced image
segmentations on biomedical image content nearly matched
the quality of segmentations from domain experts. These
contrasting findings are surprising. Why are there differ-
ences in the quality of crowd work for the two studies?

One interpretation of the contrasting findings is to infer
the crowd workers in the 2013 study (Bell and et al 2013)
were not to be trusted. This perspective has been popularized
by Bernstein et al. (Bernstein and et al 2015) who posited
that crowd workers are often either “Lazy Turkers” or “Ea-
ger Beavers.” So, as “a rule-of-thumb, roughly 30% of the
results from open-ended tasks are poor.” However, in the
2013 study (Bell and et al 2013) workers were restricted to
the best 26 out of 530 workers whereas the 2015 study (Gu-
rari and et al 2015) employed less stringent worker filtering.

In this work, we hypothesize that the quality of crowd
work is not simply a consequence of the industriousness
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Figure 1: How does familiarity of content influence crowd
workers who annotate images? This work extends well-
known psychology studies about the effects of image famil-
iarity and flipping on human perception. We explore the in-
fluence of these factors on crowdsourced workers asked to
1) demarcate the boundary of an object in an image (seg-
mentation) and 2) judge the ambiguity of the segmentation
task. Our findings suggest that “tuning” the familiarity of
the content may be an important factor to consider to more
effectively employ crowd workers.

of a crowd worker but also largely a consequence of task
design. In particular, we were inspired to examine whether
the hidden secret for success for biomedical images lied in
the unfamiliarity of the data (Figure 1). To the best of our
knowledge, we are the first to study the influence of con-
tent familiarity in a crowdsourcing environment. We focus
on the open-ended segmentation problem of delineating the
boundary of a single object in an image. Our findings are sur-
prising. Not only did crowd workers make fewer egregious
errors on unfamiliar biomedical content than familiar every-
day content, but also rotating familiar images so content is
less recognizable led crowd workers to produce higher qual-
ity segmentations significantly faster!

The interest in crowdsourcing the collection of object seg-
mentations for everyday images spans research communi-
ties as diverse as computer human interaction (Hara, Le, and
Froehlich 2013), computer vision (Gurari et al. 2016), com-
puter graphics (Bell and et al 2013), and multimedia (Galli
and et al 2012). Crowdsourced segmentations are currently
valuable for offering run-time computations in final image
analysis system designs; e.g., navigation systems leverage
crowd workers’ demarcations of sidewalk obstructions in
Google Street View imagery to decide whether sidewalks are
inaccessible for wheelchairs (Hara, Le, and Froehlich 2013).
In addition, crowdsourced segmentations are exploited at
design-time to build better automated methods; e.g., object



segmentations serve as training data to teach machine learn-
ing systems to identify (i.e., classify) the type of observed
object (Jain and Grauman 2013).

The demand for collecting crowdsourced image segmen-
tations is growing as more novel image analysis systems are
proposed. This is because object segmentation is a critical
precursor for many downstream applications that aim to
leverage and interpret the rich abundance of visual data,
including to perform:

- Image Retrieval: find images in a database that are
similar to user-submitted images (Bell and et al 2013).

- Classification: differentiate between types of objects
such as flowers, cars, and boats (Jain and Grauman 2013).

- Tracking: follow objects over time (Paletta and et al
2014).

- Behavior Analysis: characterize how objects’ shapes
or trajectories change over time (Mancini and et al 2014).

The remainder of the paper is organized into seven sec-
tions. Related work is reviewed in the next section. Then,
we describe our image sets. In the subsequent three sections,
we describe three crowdsourcing studies that investigate: 1)
How does the quality of crowdsourced segmentations com-
pare for biomedical versus everyday images? 2) How does
crowdsourcing segmentation collection compare when im-
ages are upright versus upside down? and 3) How do crowd
workers judgements differ when they assess the ambiguity
of the segmentation task for biomedical versus everyday im-
ages? We finish with a discussion and concluding remarks.
The key contributions of our work are:
• Analysis of segmentations collected from the crowd for

familiar everyday and unfamiliar biomedical images re-
vealing that “mistakes” predominantly arise from task
ambiguity rather than worker reliability.

• Analysis showing crowd workers produced higher qual-
ity segmentations with less effort when familiar everyday
images were upside down and so less recognizable.

• Experiments demonstrating that crowd workers predicted
task ambiguity to be greater than observed in practice for
unfamiliar biomedical images and less than observed in
practice for familiar everyday images.

Related Literature

Commonly, researchers address poor quality crowd work
by introducing run-time machinery to improve the results.
For instance, mechanisms exist to weed out workers with
insufficient training qualifications (Lin and et al 2014),
edit/validate crowd work (Bernstein and et al 2015), or mit-
igate the influence of poor quality work through redun-
dancy (Hara, Le, and Froehlich 2013). Filtering workers has
the undesirable consequence of limiting the crowd worker
pool which, in turn, reduces the degree to which such a
crowdsourcing solution can scale. The remaining aforemen-
tioned approaches introduce extra monetary costs as well
as delays to acquire results, making such approaches less
amenable to “real-time” applications. Unlike these methods,

we address concerns about the quality of crowd work by
modifying the task at design time rather than at run time.

Limited prior work discusses design-time improvements
to yield higher quality crowdsourced segmentations. La-
belMe (Russell and et al 2008), one of the earliest and
still commonly emulated web-based user interfaces (Hara,
Le, and Froehlich 2013; Jain and Grauman 2013; Sorokin
and Forsyth 2008), sequentially connects user clicks on
the image with straight lines to produce a closed poly-
gon that demarcates the boundary of an object. Building
on this framework, recent work has added three features
to improve the quality of resulting segmentations: smooth
zoom, undo/redo, and automatic pan (Bell and et al 2013;
Lin and et al 2014). Alternatively, web-based segmentation
annotation tools, such as interactive scissors (Little, Abrams,
and Pless 2012) and Click’n’Cut (Carlier and et al 2014),
augment the basic user interface with algorithms that inter-
actively refine user-generated segmentations with the aim to
clean up boundary imperfections. In contrast to methods that
modify the basic segmentation interface, we instead only
modify the presentation of images (i.e., rotating images) to
yield significantly better segmentations.

Our experiments were partially inspired by psychology
experiments that reveal human behavior differs when im-
ages are familiar versus unfamiliar and upright versus up-
side down (Balas and et al 2010; Bartonô and et al 2006;
Gold, Mundy, and Tjan 2012; Murray 1997). Although, ex-
perimentally, we may understand that humans relate dif-
ferently to content of differing levels of familiarity, to our
knowledge, no work has quantified this impact either for the
segmentation task or in the crowdsourcing environment.

More broadly, our work relates to human factors research
aiming to improve crowdsourcing theories and methodolo-
gies (Lease 2011; Quinn and Bederson 2011). For instance,
when choosing how to attract a crowd, important considera-
tions are how crowds behave with different incentives (i.e.,
pay versus volunteer) (Mao and et al 2013) or cultural bi-
ases (Quattrone, Capra, and Meo 2015). In addition, one
may make different inferences about results based on the de-
mographics of the worker population (Ross and et al 2010)
or perceptions of malicious intent (Gadiraju and et al 2015).
Our findings complement existing human factors research
by examining how crowd worker behavior relates to data of
differing levels of familiarity for two types of tasks.

Finally, our work relates to image annotation crowdsourc-
ing literature. Pioneering works include crowdsourcing the
localization of objects with the Peekaboom (Ahn, Liu, and
Blum 2006) game, while more recent works include coarse-
grained object localization using a paintbrush (Welinder and
et al 2010) or bounding box (Su, Deng, and Fei-Fei 2012)
as well as pixel-accurate segmentations of specified types of
objects (Lin and et al 2014). Our work differs by address-
ing the general segmentation problem, where the focus is on
creating a pixel-accurate delineation of the most prominent
object according to human perception, rather than requiring
a crowd worker to draw a coarse bounding region (localiza-
tion) or segment one of a pre-defined set of object categories
(semantic segmentation).



Image Sets and Expert Annotations

We conducted our studies on a total of 405 images com-
ing from two image libraries (Alpert and et al 2007; Gurari
and et al 2015) that represent familiar everyday and unfa-
miliar biomedical content. To avoid the challenging prob-
lem of how to establish generalized image sets, we selected
publicly-shared datasets intentionally designed to represent
a diversity of objects in a variety of image conditions1. We
also chose these datasets because they were designed to only
include images that have a single, dominant object of inter-
est and include expert-drawn, pixel-accurate delineations of
the object of interest for each image.

Familiar Everyday Images. We leveraged 100 images that
were collected with cameras that detect visible light and so
capture content detectable by the naked human eye (Alpert
and et al 2007). The designers of the dataset chose images
from royalty free databases that “avoid potential ambigui-
ties” regarding the object of interest because the objects of
interest differ from the “surroundings by either intensity, tex-
ture, or other low level cues.” Images show objects such as
animals, trees, buildings, and boats. We assume the objects
are familiar to crowd workers from daily life experiences re-
gardless of the workers’ cultural backgrounds.

Unfamiliar Biomedical Images. We leveraged 305
biomedical images which represent content undetectable to
the naked human eye (Gurari and et al 2015). These im-
ages come from six datasets created for biomedical research
studies that target health care problems such as cancer and
heart disease. Three datasets include phase contrast mi-
croscopy images that capture a variety of appearances of
different types of cells. Two datasets include fluorescence
microscopy images that show melanoma cells. One dataset
includes magnetic resonance images showing aortas. We as-
sume these images are unlikely to be familiar to a lay person.

Gold Standard Segmentations. To judge the quality of
crowdsourced segmentations, we established gold standards
using the multiple expert-drawn segmentations per image
provided with the datasets. Specifically, for each image, we
fuse the segmentations from the multiple experts into a sin-
gle final segmentation, using majority pixel vote. Our inten-
tion was to reduce the impact of biases and mistakes from a
single expert on performance analyses.

1: Segment Everyday vs Biomedical Image

Our first aim was to quantify the quality of crowd work for
the segmentation task and investigate the impact of data fa-
miliarity. Towards this effort, we first describe our exper-
imental methodology including the crowdsourcing system
and approach to measure segmentation quality. Then, we
describe our experiments to evaluate and compare crowd-
sourced segmentations collected for familiar everyday im-
ages and unfamiliar biomedical images. Our results uncover
possible reasons for the contrasting quality findings dis-
cussed in the Introduction for everyday (Bell and et al 2013)
and biomedical content (Gurari and et al 2015).

1The image sets can be found at the following links:
http://www.wisdom.weizmann.ac.il/⇠vision/Seg Evaluation DB/1obj/index.html

http://www.cs.bu.edu/⇠betke/BiomedicalImageSegmentation

(a)

(b)

Figure 2: Crowdsourcing segmentation system (a) instruc-
tions and (b) user interface showing a completed annotation
from a worker.



Figure 3: Comparison of the quality of crowdsourced segmentations for the familiar everyday and unfamiliar biomedical images.
(a) The cumulative distribution function shows for each IoU score on the x-axis the corresponding fraction of crowdsourced
segmentations with IoU scores at most that value from the 500 crowdsourced segmentations for the 100 everyday images (red)
and 1,525 crowdsourced segmentations for the 305 biomedical images (green). (b) Also shown are exemplar segmentation
results for the range of IoU scores.

Segmentation Crowdsourcing System. Our crowdsourc-
ing environment, described below, entails a two-step process
where crowd workers are first shown instructions and then
the interface they use for drawing.

Crowdsourcing Platform. We chose the Amazon Mechan-
ical Turk (AMT) marketplace because of “easy access to a
large, stable, and diverse subject pool” and “the low cost of
doing experiments” (Mason and Suri 2012). In AMT, crowd
workers browse among posted jobs, also called HITs (Hu-
man Intelligence Tasks), that are paired with a price that we
paid upon completion of each HIT. We accepted all AMT
workers that had previously completed at least 100 HITs and
received at least a 92% approval rating.

Instructions. When a crowd worker reviews our segmen-
tation HIT, (s)he is shown the instructions (Figure 2a). The
instructions emphasize that a worker should segment the sin-
gle object which is the largest and closest to the center of
the image. Included are also pictures exemplifying desired
and undesired segmentations to clarify that the aim of the
task is to create a highly detailed boundary of the single,
most prominent object in the image. Examples are intended
to address various annotation concerns, such as the common
complaint that crowd workers create coarse rather than de-
tailed segmentations (Lin and et al 2014).

Segmentation Tool. After a worker accepts our HIT, the in-
structions embedded in the AMT webpage are replaced with
the segmentation tool (Figure 2b). We employ the freely-
available LabelMe code (Russell and et al 2008). With this
tool, workers trace the boundary of an object by clicking
points on the image which are connected with straight lines.
A worker completes the segmentation by clicking on the first
clicked point. Then, the worker is prompted with a message
allowing him/her to delete the segmentation, in case (s)he
made a mistake and so wants to redraw the object. Other-
wise, the worker must specify a text label naming the ob-
ject and click “Done” to submit the completed segmentation.
The result is a file that records the sequence of (x, y) image
coordinates the crowd worker clicked.

Segmentation Quality Evaluation. To measure the qual-
ity of each crowdsourced segmentation, we measured its
similarity to the gold standard segmentation. To do this, we
adopted the widely-used intersection over union (IoU) met-
ric (Gurari and et al 2015; Hara, Le, and Froehlich 2013;
Jain and Grauman 2013) which computes the pixel level
similarity of each crowdsourced segmentation and the gold
standard segmentation. Formally, this measure is repre-
sented as |A\B|

|A[B| where A represents the set of pixels in the
crowd segmentation and B represents the set of pixels in the
gold standard segmentation. Resulting scores range from 0
to 1 with larger values indicating greater similarity between
the two segmentations.

Experimental Design. We collected segmentations from
crowd workers for the 405 familiar everyday images and
unfamiliar biomedical images. To capture the variability of
segmentation behaviors that may arise due to workers with
differing skills, we collected five crowd-drawn segmenta-
tions per each image. For each batch of images (i.e., biomed-
ical and everyday), we posted all HITs simultaneously while
randomizing the order of jobs. We allotted a maximum of ten
minutes to complete each HIT and paid $0.02 per HIT.

We next evaluated the similarity of each crowdsourced
segmentation to the gold standard segmentation using the
IoU metric. In total, we computed 2,025 IoU scores.

Results. Figure 3a shows the cumulative distribution of
IoU scores for both datasets. Figure 3b exemplifies the qual-
ity of segmentations associated with the range of IoU scores.

The main distinguishing factor between the quality of
crowdsourced segmentations for the two image sets is that
crowd workers made egregious errors approximately three
to five times more frequently for everyday images than
biomedical images (Figure 3a; IoU scores < 0.4). As ob-
served in Figure 3b, mistakes that lead to less than 40%
pixel agreement with the gold standard segmentation (i.e.,
IoU score = 0.4) arise from task ambiguity (i.e., segment
one egg versus three eggs?) as well as worker error (i.e., in-



correct annotation protocol). From visual inspection of all
outliers with IoU < 0.2 (4 from biomedical images, 25 from
everyday images), we observe they arise primarily because
of ambiguity; i.e., what is the appropriate object to annotate.

We observe more higher quality segmentations (i.e., IoU
> 0.7) for everyday images than biomedical images. These
results are consistent with our findings for expert annotators.
Specifically, when evaluating segmentations from the multi-
ple available expert annotations (included with the bench-
marks) against the gold standard segmentations, the median
IoU score is 0.85 for the biomedical images and 0.97 for
everyday images. As observed in Figure 3b, differences in
higher scores often arise due to difficulty in capturing the de-
tail for complicated boundaries, and the biomedical images
show objects with highly-complicated boundaries.

In total, 93 unique workers created the 2,025 segmenta-
tions with 3 workers in common across the two datasets.
The 500 segmentations for the everyday images were cre-
ated by 44 unique workers, with the average number of jobs
completed per worker and its standard deviation being 11
and 23. The 1,525 segmentations for the biomedical images
were created by 52 unique workers, with the average num-
ber of jobs completed per worker and its standard deviation
being 29 and 82.

Discussion. Our findings offer promising evidence that
crowdsourcing errors are more frequent for everyday images
than biomedical images because crowd workers bring more
conflicting opinions regarding how to interpret the segmen-
tation task. For example, when segmenting an image of a
basket with eggs, “experts” on the content may be focused
on asking whether they should annotate one egg versus three
eggs versus the basket holding the eggs. In contrast, when
segmenting an image of a cell, crowd workers that are “not
experts” on the content may be less distracted by the intrica-
cies of the nucleus, membrane, and other internal structures
that they could annotate within a cell. In the next section,
we explore whether crowd workers are making more mis-
takes (i.e., perceiving ambiguity) on everyday images than
biomedical images because the content is familiar. We de-
sign the next study to avoid the possible concern that find-
ings arise due to differences in the studied datasets.

2: Segment Upright Vs Upside Down Image

Our next goal is to learn how making familiar image content
less recognizable affects the quality of crowd work. Towards
this effort, we evaluate and compare crowdsourced segmen-
tations when the familiar everyday images are upright and
upside down. An upside down image of a dog, for example,
means the dog’s feet will reside where the dog’s head would
be expected (Figure 1). We also quantify how upside down
images influence crowd worker effort, with respect to seg-
mentation time and detail. Finally, we quantify how crowd
worker effort relates to the quality of his/her work.

Methods. Our methodology builds off of the crowdsourc-
ing system and approach to measure segmentation quality
discussed in Study 1. We describe below the measures we
adopted to quantify a crowd worker’s efforts to produce a

segmentation. Then, we discuss our methodology to mea-
sure how a crowd worker’s effort relates to the quality of
his/her completed work.

Measuring Crowd Worker Effort. Our measures were in-
spired by the observation that workers with complete free-
dom in drawing may require more clicks and time in or-
der to accurately capture the detail of objects (i.e., tree). In
addition, workers may need to allocate extra attention (i.e.,
time) to decide with certainty how to separate an object from
the background. Therefore, we quantify crowd worker effort
with the following three metrics:

• Segmentation Time (T): We leverage logged values in the
AMT system that report, for each completed HIT, the
lapsed time between when the crowd worker clicked the
“Accept HIT” button and the “Submit HIT” button.

• Number of Points (P): We count the number of (x,y) im-
age coordinates recorded in the LabelMe result file de-
scribing the segmentation created by the crowd worker.

• Segmentation Speed (TpP): We compute the average time
per point as SegmentationTime

NumberOfPoints .

Correlating Worker Effort with Work Quality. We next
measure how a crowd worker’s effort relates to the quality
of his/her segmentation. We chose to model this relation-
ship with a regression model to capture that segmentation
quality ranges on a continuum from nearly perfect (i.e., IoU
score close to 1) to seemingly meaningless (i.e., IoU score
close to 0). In particular, we trained a multiple linear regres-
sion model with n crowdsourced segmentations to learn the
model parameters, where each segmentation is described by
the three worker effort parameters (T, P, and TpP) and an IoU
score indicating the quality of the segmentation. More for-
mally, the model is represented as y = X� where y denotes
an n-dimensional vector of segmentation quality scores, X
denotes a n x k matrix consisting of n vectors that each con-
tain k worker effort descriptors (k 2 {1, 2, 3}), and � de-
notes a k-dimensional vector of the model parameters (e.g.,
�T , �P , and �TpP ) to be learned. At test time, given a new
crowdsourced segmentation, the three learned model values
(�) are multiplied with their respective worker effort param-
eters and then summed to establish the predicted segmenta-
tion quality (IoU) score. To evaluate how well our models
generalize, we performed 10-fold cross-validation.

To evaluate how strongly correlated predicted IoU scores
are to actual IoU scores, we computed the Pearson’s cor-
relation coefficient (CC). We used the combination of pre-
dictions on the 10 test sets from the 10 iterations in cross-
fold validation. CC values range between +1 and -1 inclu-
sive, with values further from 0 indicating stronger predic-
tive power of a model.

Experimental Design. We collected a total of 10 crowd-
sourced segmentations per image for the 100 familiar every-
day images. Included were the five segmentations per image
collected for Study 1. We collected five additional segmen-
tations per image using the same crowdsourcing set-up as in
Study 1, except each image was presented upside down (i.e.,
rotate image by 180 degrees).



Figure 4: Analysis of 1,000 crowdsourced segmentations collected on 100 everyday images where five crowdsourced segmen-
tations were collected per image when it was upright as well as rotated 180 degrees. For each plot, the central marks of the
boxes denote the median values, box edges denote the 25th and 75th percentiles values, whiskers denote the adjacent value to
the data point that is greater than one and a half times the size of the inter-quartile range, and black cross-hairs denote outliers.
Overall, when images were upside down, (a) segmentation quality was higher, (b) crowd workers took less time to annotate,
(c) crowd workers denoted the boundary of objects with more points, and (d) crowd workers annotated at the same speed.

Then, for each crowdsourced segmentation, we com-
puted the segmentation time, number of points, segmenta-
tion speed, and IoU score. In total, 4,000 computed values
were the foundation for subsequent analyses.

Next, we analyzed whether there were significant differ-
ences in crowd performance for upright and upside down
images. For instance, do crowd workers differ in the amount
of time they take to annotate when images are upright versus
upside down? Inspired by previous work (Smucker, Allan,
and Carterette 2007), we chose the distribution-free boot-
strap test to compare the 500 segmentations on the upright
images and 500 segmentations on the upside down images.
The test returns a p-value which indicates the probability of
obtaining the two sets of observed results by chance. We
infer, with high probability, that observed differences are re-
flective of a true difference between the two sets of results
when the computed two-sided p-value is less than 0.05. We
performed four t-tests with respect to each of the four de-
scriptors (T, P, TpP, IoU score).

Finally, we evaluated a total of eight regression models
that indicate how crowd worker effort relates to segmenta-
tion quality. For both upright and upside down images, we
evaluated four models where we analyze how segmentation
quality relates to each of the three worker effort cues inde-
pendently (T, P, TpP) as well as in combination. We used
the freely-shared data mining software Weka (Hall and et al
2009) to train, test, and evaluate our models.

Results. Figure 4 illustrates the observed distribution of
values for segmentation time, number of points, segmen-
tation speed, and IoU score for both the upright and up-
side down images. Upside down images led to higher qual-
ity results and reduced efforts from crowd workers, as ob-
served by comparing median scores. Upside down images
also led to less variability in quality and effort, as evidenced
by smaller interquartile ranges as well as ranges excluding
the outliers.

We found that the observed improvement of segmenta-
tion quality on upside down images from upright images

Figure 5: When images are upside down, the majority of
egregious errors (i.e., IoU < 0.2) arose from crowd work-
ers (green overlays on right) because they consistently dis-
agreed with experts (red image overlays on left) regarding
the true segmentation. (Best viewed in color.)

was significant (p < 0.05). Interestingly, as we hypothesized
from Study 1, differences were predominantly isolated to
“poor quality” segmentations. Specifically, comparing up-
side down to upright images, the median and top 25th per-
centile scores are similar while scores demarcating the 75th
percentile score and outliers differ by 5% and 10% respec-
tively (Figure 4a). We visually inspected the most egre-
gious segmentation outliers (i.e., IoU < 0.2) for the upside
down images and found they arose predominantly because
crowd workers disagreed with experts regarding the true de-
lineation of the object of interest (Figure 5).

We also found that the observed reduction in effort to cre-
ate the higher quality segmentations on upside down images
was significant (p < 0.05). This finding was true for two of
the three effort measures: segmentation time and number of
points. Crowd workers took 16% less time with an average
of 73 seconds for upright images and 61 seconds for flipped
images. Crowd workers marked 7% fewer points to create
each segmentation for upright images than upside down im-
ages (i.e., 33.9 and 31.4 number of points respectively).

Overall, we observed similar trends for how worker ef-
fort correlated to segmentation quality on upright and up-
side down images (Table 1). Comparing CC scores (Table 1,

rows 1-4), we observed that the segmentation quality could



Upright Images Upside Down Images

Parameters IoU = CC IoU = CC

Time (T) 0.0002T + 0.7767 0.03 -0.0001T + 0.8368 -0.21
# Points (P) 0.0022P + 0.7173 0.23 0.0024P + 0.7592 0.22
Speed (TpP) -0.0121TpP + 0.8362 0.33 -0.0052TpP + 0.8498 0.33

All 0.0007T + 0.0006P - 0.0146TpP + 0.7726 0.40 0.0002T + 0.0016P - 0.0051TpP + 0.7847 0.34

Table 1: We compare worker effort to the quality of a segmentation when images are upright and upside down. We report learned
linear regression models with respect to 1) time to segment, 2) number of points, 3) segmentation speed, and 4) the combination
of the three parameters. We also report correlation strengths (CC) for each model. Larger CC scores indicate greater correlation
between worker effort and segmentation quality. The main difference between models for upright and upside down images is
that comparable segmentation speeds (TpP) leads to considerably worse segmentation quality on upright images.

best be predicted by considering all three worker effort met-
rics followed by relying exclusively on the segmentation
speed, number of points, and segmentation time. In addition,
when examining the learned correlation models (Table 1,

rows 1-4), we observed that higher quality segmentations
typically arose when a crowd worker took more time (posi-
tive valued multiplier �T ), marked more points (positive val-
ued multiplier �P ), and segmented at faster speeds (negative
valued multiplier �TpP ).

The key difference between learned models for the up-
right and upside down images lies in the multipliers learned
for the segmentation speeds (�TpP ). The difference is ap-
proximately a factor of 2.5 (Table 1, rows 3 & 4). This
means that workers annotating all upright images were ob-
served to produce worse quality results than workers an-
notating all upside down images when spending the same
amount of time on the annotation task.

In total, 75 unique workers created the 1,000 segmenta-
tions with three workers in common for both datasets2. The
500 segmentations for the upright images were created by 44
unique workers, with the average number of jobs completed
per worker and its standard deviation being 11 and 23. The
500 segmentations for the upside down images were created
by 34 unique workers, with the average number of jobs com-
pleted per worker and its standard deviation being 15 and 18.

Discussion. We continue to observe an advantage of fewer
segmentation errors from crowd workers when data is less
familiar. Moreover, our analysis of crowd mistakes on up-
side down images raises an important question for future
work of what should the truth should be when the majority
of the crowd disagree with experts regarding the truth.

Our findings also offer insight into why crowd work-
ers may produce significantly higher quality segmentations

2We found that our study results are not impacted by learning
effects. Specifically, for both the upright and upside down every-
day image experiments, we created a plot showing the quality of
each worker’s segmentations in the sequential order the jobs were
completed (x-axis = job number, y-axis = IoU score). We then com-
puted a best fit line for every worker who completed multiple jobs.
A positive slope for a best fit line indicates that segmentation qual-
ity improved with more worker experience. However, the median
slope for all best fit lines was negligible for the upright images
(0.00175) and upside down images (0.000395), with roughly equal
portions of slightly positive and negative slopes across all workers.

with considerably less effort on upside down images than
upright images. In general, we expect crowd workers to
be more physically constrained and so annotate at slower
speeds when annotating objects with highly-jagged bound-
aries, such as a tree. Moreover, we expect that crowd work-
ers would find it more challenging to achieve pixel-perfect,
high quality segmentations on objects with complicated ob-
ject boundaries like a tree than rigid objects like a box.
In other words, it makes sense that greater worker effort
(slower segmentation speeds) could be correlated with lower
quality segmentations. However, we hypothesize that this
tendency is even more pronounced for everyday images be-
cause crowd workers are distracted by additional thoughts
about the object, which could include analysis regarding the
appropriate level of granularity to segment. In other words,
we hypothesize that recognition leads to extra cognitive pro-
cessing that causes crowd workers to be less focused and
therefore effective at performing the segmentation task. We
hypothesize that rotating an image upside down disrupts the
holistic perception of what an object is (recognition) and so
channels a worker’s attention to more effectively focus on
demarcating the prominent boundaries in an image.

3: Assess Segmentation Ambiguity

In our final study, we ask crowd workers to predict which
images would be ambiguous to segment among everyday
and biomedical images. In practice, this task could be valu-
able as a preliminary step to establish when to forego the ex-
pensive segmentation task or to expect disagreement. More
broadly, this study highlights how data familiarity may in-
fluence crowd workers’ perceptions.
Methods. We prepared our crowdsourcing system as an
internal HIT in AMT. When a crowd worker on AMT
reviews one of our posted HITs, (s)he can see the task
header and voting task on the same webpage before deciding
whether to accept the HIT (Figure 6a).

Our task header includes the problem motivation, task
question, and two steps instructing how to perform the task
(Figure 6a). We ask workers to answer the following ques-
tion about an image: “If we asked multiple people to draw
the boundary of a single object in the given image, do you
think all people would pick the same object?” We intention-
ally specify criteria that aligns with the segmentation task
we used in practice. In an effort to help workers feel their



(a)

(b)

Figure 6: Crowdsourcing voting system (a) instructions and
(b) user interface.

contributions are valued, we state that the long-term aim of
the task is to support computer scientists to build systems.
Finally, to clarify the aim of the task, we include pictures ex-
emplifying when to label an image with “Yes” versus “No.”

To increase study efficiency, we present a set of five im-
ages per HIT. Each image is shown in a column on the left
and the crowd worker casts a vote by selecting one of two
radio buttons to the right of each image to indicate ”Yes” or
”No” (Figure 6b). Once a worker completes voting on the
five images, the workers clicks a button to submit the results.
AMT records the submitted results along with the lapsed
time between when the crowd worker clicked the “Accept
HIT” button and “Submit HIT” button.

Experimental Design. We collected crowd votes for the
100 familiar everyday images and 270 unfamiliar biomedi-
cal images (i.e., BU-BIL:1-5) used in Study 1. To minimize
concerns about worker quality, we use the majority vote an-
swer from five collected answers to assign the image label.
To avoid concerns about voting biases related to the same
groupings and orderings of images per HIT, for each dataset,
we randomly assigned five groupings of five images per HIT.

We then quantified the correlation between perceived and
actual “easy” and “hard” segmentation problems. We la-
beled images as perceptually difficult when the majority vote
indicated there was not a clear object to annotate. We labeled
images as actually difficult when at least two crowdsourced
segmentations of the image (collected in Study 1) were in-
correct detections. Incorrect detections are identified by IoU
scores below 0.5, which means the crowdsourced segmen-

Precision Recall Avg Voting Time

Everyday 90% 81% 23.4 seconds
Biomedical 97% 51% 20.2 seconds

Table 2: Results illustrating how closely crowd votes regard-
ing the perceived ambiguity of segmenting images matched
the actual observed segmentation task ambiguity for every-
day and biomedical images. For biomedical images, crowd
workers more frequently perceived the segmentation task as
more ambiguous than in reality. For everyday images, crowd
workers tended to perceive the segmentation task as less am-
biguous than in reality.

tation shares less than 50% of pixels with the gold standard
segmentation. We report the relationship between perceived
and actual labels using the evaluation measures precision
and recall. Precision indicates what fraction of images that
were perceived as easy to segment were actually easy to seg-
ment. Recall indicates what fraction of images that were ac-
tually easy to segment were perceived as easy to segment.
Both measures return scores ranging from 0 to 1 with better
performance reflected by higher scores.

Finally, we compared time to complete voting HITs for
the everyday and biomedical images. As in Study 2, we mea-
sure the significance in time differences using a distribution-
free bootstrap test and infer observed differences are signifi-
cant when the computed two-sided p-value is less than 0.05.

Results. Overall, crowd workers typically voted images to
be more ambiguous for unfamiliar biomedical image con-
tent and less ambiguous for familiar everyday image con-
tent (Table 2). Specifically, the absolute difference of 7% in
precision (i.e., 90% vs 97%) indicates that crowd workers
more often perceived images as providing an unambiguous
segmentation task than actually observed in practice. In ad-
dition, the absolute difference of 30% for recall (i.e., 81% vs
51%) reveals that crowd workers more often perceived im-
ages that are unambiguous to segment as ambiguous for the
biomedical images.

Our findings highlight the interesting question of why is
popular perception of task ambiguity contrasting what is ob-
served in practice regarding the ambiguity of the segmen-
tation task? Exemplar results illustrate how crowd workers
judgements are influenced by the type of content (Figure 7).
We suspect that, for instance, crowd workers’ understanding
of the three eggs perhaps blocked them from recognizing
the actual ambiguity regarding whether to instead annotate
a single egg or vice versa (Figure 7, upper right quadrant).
In contrast, we suspect crowd workers lack of recognition of
the cell led them to infer the task is ambiguous despite the
observation that there is a single, clearly-defined “blob” in
the image (Figure 7, lower left quadrant).

Aligning with our findings from Study 2, we found crowd
workers took more time for familiar everyday images than
the unfamiliar biomedical images (p < 0.05). Similar to the
previous study, we suspect that recognition of content adds
extra cognitive processing, and so time, to complete the task.

In total, 55 unique workers completed all tasks. The 100



Figure 7: Examples illustrating when crowd workers’ judgments of the segmentation ambiguity differ and match actual seg-
mentation ambiguity observed for biomedical and everyday images.

voting HITs for everyday images were created by 13 unique
workers, with the average number of jobs completed per
worker and its standard deviation being 38 and 54. The 275
voting HITs for the biomedical images were created by 45
unique workers, with the average number of jobs completed
per worker and its standard deviation being 34 and 75.

Discussion

While the reliability of humans depends on many factors,
our findings offer promising evidence that familiarity of the
data may be an important factor to consider when designing
human computer interaction systems.

Segmentation Collection. By broadening our analysis of
crowd work to include familiar and unfamiliar data, we were
inspired to rethink generally held assumptions about how to
collect segmentations for familiar image content. In abso-
lute terms, the practical importance of our findings may be
great. Rotating familiar images to make content less recog-
nizable would yield higher quality results while eliminat-
ing over eight 40-hour work weeks and 7,000 user clicks at
the scale of 100,000 crowdsourced segmentations, assuming
the findings observed in Study 2. This simple image rotation
step may yield great savings and quality improvement for
individuals hoping to design novel systems that leverage the
rich abundance of visual data.

Trustworthy Crowd Workers for Open-Ended Tasks. We
found the 115 unique crowd workers in our studies were
generally highly trustworthy. We were pleasantly surprised
to learn that less than 0.2% of crowdsourced segmentations
(4 out of 2,525) in Studies 1 and 2 appeared to be “mali-
cious” poor quality results. Our findings suggest that most
of the remaining egregious outliers were avoidable problems
through, for example, better gold standards used for evalu-
ation. Our results offer hints that poor crowd performance
may be due to workers’ cognitive overload from a compli-
cated task rather than lack of sufficient effort in accomplish-
ing the task.

We offer our study as a meaningful example for the value
of trusting crowd workers when designing systems. Teasing

out richer information as to why crowd workers make “mis-
takes” can offer valuable feedback regarding our blind spots
where tasks may be ambiguous. Analogous experiments in
other domains could include examining how crowd work-
ers perform in text-based or audio-based tasks that are in
English when their first language is English versus is not
English. Additional experiments could include investigating
how a crowd worker’s behavior changes over time as (s)he
becomes more experienced and perhaps begins to see and/or
become blind to task ambiguities.

Influence of Image Familiarity on Humans. Our findings
augment existing psychology studies that examine how im-
age familiarity influences human behavior (Balas and et al
2010; Bartonô and et al 2006; Gold, Mundy, and Tjan 2012;
Murray 1997). Our findings are surprising in that workers
perform the given task faster when images are upside down
than upright. We posit that our contrasting finding to prior
work is due to the distinction in our studied task as, to our
knowledge, our work is the first to examine the image seg-
mentation task.

We hypothesize that humans that work with image con-
tent that is familiar accrue extra mental processing related
to recognition that can both lead to better and worse crowd
results. While removing familiarity may eliminate extra cog-
nitive processing competing for a human’s attention and so
lead to faster and better segmentations (Study 2), removing
familiarity may also lead workers to misjudge the ambiguity
of tasks (Study 3). Future work will investigate the impact of
differing levels of content familiarity for other image analy-
sis tasks, such as object detection, counting, and tracking.

Free-Hand Drawing. After completing our studies, we
were surprised to discover that it is a well-established un-
derstanding in the art community that individuals draw bet-
ter when looking at images flipped upside down. Although a
different drawing scenario than ours, in the New York Times
bestselling book “Drawing on the Right Side of the Brain”
the authors recommend to beginners to flip a photograph up-
side down and then try to draw the contents of the photo-
graph on a blank piece of paper (Edwards 1997). Possible



future research would be to collaborate with members of the
art community to gain inspiration for additional insights for
how to improve the design of human computer interaction
systems for image annotation tasks.

Conclusion

We examined the segmentation task and how crowd work-
ers’ skills and judgments relate to data of differing levels
of familiarity. Our results highlight familiarity can lead to
better and worse crowd results. Study 1 shows crowd work-
ers make more egregious errors when segmenting familiar
than unfamiliar data due to greater perceived task ambiguity.
Study 2 reveals better results are obtained when familiar data
is artificially made less familiar. Study 3 demonstrates crowd
workers predict task ambiguity more accurately when data is
familiar than unfamiliar. We hope our segmentation studies
will encourage rethinking generally held assumptions that
one should expect large fractions of poor quality work when
crowdsourcing open-ended tasks. Our studies offer promis-
ing evidence that researchers can improve designs of crowd-
sourcing systems by explicitly studying the influence of con-
tent familiarity on human behavior.
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