
Iterative Feature Transformation for Fast and
Versatile Universal Style Transfer

Tai-Yin Chiu and Danna Gurari

University of Texas at Austin

Abstract. The general framework for fast universal style transfer con-
sists of an autoencoder and a feature transformation at the bottleneck.
We propose a new transformation that iteratively stylizes features with
analytical gradient descent.1 Experiments show this transformation is
advantageous in part because it is fast. With control knobs to balance
content preservation and style effect transferal, we also show this method
can switch between artistic and photo-realistic style transfers and reduce
distortion and artifacts. Finally, we show it can be used for applications
requiring spatial control and multiple-style transfer.

1 Introduction

Style transfer is a task that renders a content image with the style from an-
other image. Modern methods typically rely on neural networks to extract high
level features for content and style representations. While achieving remarkable
results, they can suffer from a slow stylizing process [5] or lack the ability to
support universal style transfer [9,11,22,23,26,4,14], i.e., the ability to deal with
arbitrary style images. To address these limitations, the recent trend has been to
design frameworks that consist of an autoencoder that embeds a feature trans-
formation to support the style transfer [2,8,15,13,21], as shown in figure 1(A).

At present, the feature transformations used for style transfer mostly focus
on transferring style. For some methods [2,8,21], this leads to a distorted con-
tent in the resulting stylized images. This limits their applicability to scenarios
when a user is performing artistic style transfer. In contrast, some methods are
better suited to preserve the content and so produce photo-realistic transfer re-
sults [15,13]. However, these methods can result in unnecessary artifacts and
distortions in detailed content as initially examined in prior work [12,19,17] and
expanded upon in our experiments.

In this paper, we propose an iterative feature transformation. We conduct
experiments to show it realizes fast universal style transfer that can preserve
content. More generally, this transformation provides control knobs to change
the amount of style effect transferal, enabling it to switch between artistic and
photo-realistic style transfers. We also demonstrate that our method is versatile
in that it can be applied for spatial control and (non-linear) multi-style transfer.

1 Implementation is open-sourced at
https://github.com/chiutaiyin/Iterative-feature-transformation-for-style-transfer

2 T. Chiu and D. Gurari

2 Related Works

A summary of how our work differs from prior work is shown in table 1. We elab-
orate in this section on the details conveyed in this table, and how our approach
is uniquely able to meet the many interests of the style transfer community.

Neural style transfer. Gatys et al. [5] proposed a method of neural style trans-
fer (NST) which has opened a new era of using a deep neural network to extract
content and style representations of images, based on which we can synthesize
an image whose content and style are from two distinct images. Variants of this
algorithm include adding a Markov random field as a regularizer to reduce ar-
tifacts [10] and introducing extra histogram losses to help improve quality and
convergence [20]. Neural style transfer also allows fine-grained control such as
spatial/semantic control [1,6]. The drawback of Gatys’s framework [5] and vari-
ants is that solving for stylized images is time-consuming due to many iterations
of feed-forward and back-propagation to adjust pixel values. In the experiments,
we will demonstrate our approach leads to considerable speed ups and so ad-
dresses the limitation that NST is very slow.

Feed-forward style networks. Numerous methods address the issue that NST
is slow by training feed-forward networks [9,11,22,23] on a pre-defined set of
style images to reduce the content and style losses used in [5]. In testing time,
content images can then be stylized with learned styles fast or even in real time
for images that are not high resolution in one forward pass. However, these
algorithms did so at the cost of limiting how many styles they can transfer to a
few styles up to 1,000 styles [26,4,14]. In other words, this adaptation leads to a

Table 1: Shown is a summary of the differences between our proposed approach and
existing style transfer methods. The first four items are general characteristics of a
method, while the last four exemplify versatility. Our method realizes every listed
item. (Ava: Avatar-net. SS: Style swap. Ada: AdaIN. Learn-free: Style-learning-free.
Balance: Content-style balance. Art: For artistic style transfer only but no photo-
realistic transfer. NL/L: Non-linear/Linear fashion.) * [13] does not mention if LST
realizes multi-style transfer, but we believe it can as indicated in the table.

NST [5] WCT [15] Ava [21] SS [2] Ada [8] LST [13] Ours

Universal X X Art Art Art X X
Learn-free X X X X
Fast X X X X X X
Balance X X

Artistic X X X X X X X
Photo-realistic X X X X
Spatial control X X X X X X
Multi transfer NL L L L L* NL/L

Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 3

limitation that such methods do not support universal style transfer. Our work,
in contrast, supports universal style transfer.

Universal style transfer. Chen and Schmidt [2] introduce a framework of an
autoencoder with a “Style swap” feature transformation at the bottleneck, with
the transformation the key behind it being able to learn to generalize to unseen
styles and virtually realize universal style transfer after trained on a large corpus
of 80k paintings. Other works [7], with the most recent being AdaIN [8] and Lin-
ear Style Transfer (LST) [13], follow the same idea of training on a large dataset
of style images but use different transformation mechanisms to achieve univer-
sality. In contrast, style-learning-free methods, including whitening and coloring
transform (WCT) [15] and Avatar-net [21], realize universal artistic style trans-
fer without the need to learn from style images. In our experiments, we compare
our method to five modern universal style transfer methods to reveal its advan-
tage in being able to support a larger range of tasks, also often more effectively
than existing more constrained methods. It does so without pre-training.

Photo-realistic transfer. Compared to artistic transfer, photo-realistic trans-
fer is more constrained in that the results need to look convincingly realistic to
an end user. NST and its variant [18] pioneered the use of neural networks for
photo-realistic transfer. Among the aforementioned autoencoder-based methods
for universal style transfer, the transformations in WCT and LST are appli-
cable [16,13], while other transformations [2,8,21] are only suitable for artistic
transfer. Our experiments demonstrate an advantage of our transformation for
photo-realistic transfer in balancing content preservation and style transfer, with
it considerably reducing artifacts and distortion compared to WCT and LST.

3 Method

In this section, we show how we derive our new transformation for style transfer.
Throughout the derivation, we will explain why this transformation is GPU-
friendly, how it balances content information and style effect, and how it can be
employed for the applications of spatial control and multi-style transfer.

3.1 General Framework - Background

The general framework for fast style transfer consists of an autoencoder (i.e., an
encoder-decoder pair) and a feature transformation at the bottleneck, as shown
in figure 1(A). An encoder first extracts features from content and style images,
features are transformed by the transformation method, and a transformed fea-
ture is mapped to an image by the decoder.

Transferring style features from multiple layers can be done by a cascade
of autoencoders as in WCT [15]. A standard approach pioneered by Gatys et
al. with NST [5] is to use as the content information of the image a feature
map of the image that comes from a higher layer of VGG network and use
as the style information of an image the Gram matrices of feature maps from
different layers in VGG network. Formally, the set-up consists of relu4 1 layer

4 T. Chiu and D. Gurari

Fig. 1: (A) General framework for universal style transfer: an encoder extracts features
Fc and Fs from content and style images Ic and Is respectively. Fc is transformed
with reference to Fs and then decoded to a stylized image Istylized. (B) Schematic
diagram of our style transfer algorithm by analytical gradient descent. Style image Is

is suppressed for clarity and style information resides in the gradients dl
dF

’s. Content
image Ic is first encoded as a feature F4. F4 is gradually stylized by our new iterative
transformation with gradient descent and then decoded to a coarsely stylized image Ij

4 ,
which is treated as a new content image to the next autoencoder for finer stylization.
The same procedure applies iteratively until the last autoencoder to derive the final
result Ij+3

1 . If more style effect is wanted, a user can repeat from the first autoencoder
by setting Ij+3

1 as the content.

for content feature extraction and relu1 1, relu2 1, relu3 1, and relu4 1 layers for
style feature extraction.

We denote the reshaped feature map of the image I from the layer reluN 1
as FN (I) 2 RCN�HN (I)WN (I), where HN (I), WN (I), and CN are height, width,
and channel length of the layer output. Suppose Ic and Is are the content and
style images, respectively, and FN (Ic) , FN;c and FN (Is) , FN;s. Then the
stylized image I of the same size of Ic can be derived by solving the following
optimization problem:

min
I
jjF4(I)� F4;cjj2F| {z }

content loss

+

4X
N=1

�N jj
1

nN
FN (I)FN (I)T � 1

mN
FN;sFT

N;sjj2F| {z }
style loss

; (1)

where �N ’s are weights between content and style losses, nN and mN equal to
HN (I)WN (I) and HN (Is)WN (Is), respectively.

Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 5

3.2 New iterative transformation with analytical gradient descent

Our novelty lies in approximating the solution to the NST [5] objective by em-
bedding a new transformation that iteratively updates features in the cascade of
four autoencoders using analytical gradient descent. An overview of our method
is illustrated in �gure 1(B).

We introduce our approach to address the limitation that Equation 1 cannot
be analytically solved and optimization requires gradient descent with back-
propagation, which is time consuming. We borrow the idea of alternating mini-
mization used in convex optimization to speed up and approximately solve this
equation. In alternating minimization of a function f (x; y), we �rst �x y to an
initial value y0 and optimize over x to x1, then we optimize over y to y1 with
x �xed to x1, and repeat, alternating until convergence. By analogy, we �rst
optimize for F4 in equation 1:

min
F 4

jjF4 � F4;c jj2
F + � 4jj

1
n4

F4FT
4 �

1
m4

F4;s FT
4;s jj2

F : (2)

Suppose the value ofF4 found by solving equation 2 isF (1)
4 , which is the feature

map of image I (1)
4 from layer relu4 1. Note that this image can be derived by

exploiting an autoencoder as in [15]. Since feature maps from di�erent layers
are coupled through the imageI (1)

4 , we also have feature mapsF (1)
N = FN (I (1)

4),
N = 3 ; 2; 1. Due to the coupling, �xing F4, F2, and F1 to F (1)

4 , F (1)
2 , and F (1)

1 ,
respectively, can be done by �xingF3 to F (1)

3 . Therefore, in the next step where
we optimize for F3 with other feature maps �xed, we solve the following problem:

min
F 3

jjF3 � F (1)
3 jj2

F + � 3jj
1
n3

F3FT
3 �

1
m3

F3;s FT
3;s jj2

F ; (3)

where the �rst term captures the concept of the hard �xation F3 = F (1)
3 that

is relaxed to a soft proximity. Let F (2)
3 , F3(I (2)

3) be the result of optimization
and F (2)

2 = F2(I (2)
3). Similarly, we can solve forF2 in equation 1 with extra soft

proximity jjF2 � F (2)
2 jj2

F . In general, with F (0)
4 , F4;c the objective of each step

is as follows:

min
F N

l j (FN) = min
F N

jjFN � F (j)
N jj2

F| {z }
soft proximity loss

+ � N jj
1

nN
FN FT

N �
1

mN
FN;s FT

N;s jj2
F

| {z }
style loss

: (4)

We alternate between the minimization of FN 's until convergence.
To incorporate soft proximity, we use gradient descent to solve the opti-

mization problem in equation 4.2 Unlike solving equation 1 that uses back-
propagation to compute the gradients, the gradient dl j (F N)

dF N
has an analytical

2 Previous analysis [3] shows that the feature F wct derived by applying WCT to F N;c

and F N;s makes the value of the style loss in equation 4 go to zero, and hence could
serve as an approximate solution. However, WCT does not consider the balance
between soft proximity loss and style loss.

6 T. Chiu and D. Gurari

form, and the optimization process can be done fast using GPU acceleration.
Speci�cally, the gradient can be written in the following form (detailed deriva-
tion is given in Supplementary Material):

dl j
dFN

= 2(FN � F (j)
N) +

4� N

nN
(

1
nN

FN FT
N �

1
mN

FN;s FT
N;s)FN ; (5)

and the gradient descent updatesFN by repeating the following update rule
nupd times:

FN FN � �
dl j

dFN
; (6)

where� is the learning rate. Equations 5 and 6 together form the iterative
feature transformation method. We can observe that the computation of it
is a mix of matrix multiplication and matrix addition, and thus is GPU-friendly.

The whole style transfer algorithm by analytical gradient descent is summa-
rized in �gure 1. The cascade of four autoencoders is the same structure as used
in WCT style transfer algorithm [15]. Here encoderN denotes the part of the
VGG network from the input layer to reluN 1 layer. The structure of decoderN
is symmetrical to encoderN and implements an inverse function ofencoderN . At
the bottleneck of each autoencoder, the feature map updatesnupd times, where
the value can be decided by trial and error. If more style e�ect is wanted, we can
iterate over the autoencoder cascade for multiple rounds, sayniter times3. These
two parametersnupd and niter together with the learning rate � and the weights
� N 's are the four knobs that control how much style e�ect to be transferred.

3.3 Applications that demonstrate the versatility of our method

Spatial control. In spatial control of style transfer [6], a content image I c and a
style image I s are segmented into regions. Ther -th region of the content image
is stylized with the corresponding r -th region in the style image (exempli�ed in
�gure 4). Suppose the setSr

N;c of indicesf r 1
N;c ; r 2

N;c ; : : : g indicates the columns of
feature FN;c that correspond to the pixels in the r -th region of I c, and similarly
we haveSr

N;s for FN;s and I s. Let F r
N 2 RCN �jS r

N;c j be FN [:; Sr
N;c] and F r

N;s 2
RCN �jS r

N;s j be FN;s [:; Sr
N;s], where jSj is the size ofS. To realize spatial control

with our style transfer method, we modify equation 5 as follows:

dl j
dF r

N
= 2(F r

N � (F (j)
N)r) +

4� N

nN
(

1
jSr

N;c j
F r

N (F r
N)T �

1
jSr

N;s j
F r

N;s (F r
N;s)T)F r

N ; 8r;

(7)
and dl j

dF N
is the collection of dl j

dF r
N

's.

Multiple-style transfer. Our algorithm can be easily extended from single-style
transfer to multiple-style transfer (exempli�ed in �gure 5). In particular, if now

3 We found n iter = 3 is su�cient for convergence with little di�erence from n iter = 2.

Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 7

we have q style images I s;1, I s;2, : : : , I s;q with feature maps F1
N;s , F2

N;s , : : : ,
Fq

N;s , the optimization problem in equation 4 should be modi�ed as

min
F N

jjFN � F (j)
N jj2

F +
qX

k=1

� k
N jj

1
nN

FN FT
N �

1
mk

N

F k
N;s (F k

N;s)T jj2
F : (8)

Unlike equation 4 where� N controls only the balance between content and style
losses,� k

N 's in equation 8 are also the weights between di�erent style e�ects.
We provide the derivation of the gradient equation to solve this objective in the
Supplementary Materials

4 Experiments

In the experiments, we �rst validate that our transformation is GPU-friendly.
To do so, we show our approach is the fastest among modern universal transfer
methods that do not require pre-training. Our next experiments demonstrate
that the knobs controlling the balance between content preservation and style
e�ect transfer bene�t photo-realistic style transfer by reducing artifacts and
distortion. Finally, we demonstrate the versatility of our method by showing it
can be used for two additional applications.

4.1 Single-style transfer

We �rst demonstrate how our method compares to existing style transfer meth-
ods in terms of speed. We also show qualitative results.

Baselines. We evaluate two groups of methods that support universal transfer
style transfer. Their properties are summarized in table 1.

One subset of existing methods requires pre-training on style images: Style
swap [2], AdaIN [8], and LST [13]. Style swap is the �rst to introduce the frame-
work of an autoencoder with an embedded feature transform to realize univer-
sal style transfer. To achieve faster speed, AdaIN replaces the computationally
expensive style swap layer with a lightweight transformation that matches vari-
ances between style images and stylized images. Furthermore, LST introduces a
transformation that aims to match covariances.

Our method is more similar to the second group which are methods that
can perform style transfer without pre-training . These methods include: NST
[5], WCT [15], and Avatar-net [21]. NST is the �rst deep learning method that
realized style transfer. WCT is the �rst style-learning-free method for fast style
transfer. For WCT, we use the version of a cascade of four autoencoders due to
its better performance [16]. Avatar-net introduces a style decorator that com-
bines the transforms of WCT and Style swap.

Implementation details for our method. We use the following hyperparameter
setting for our algorithm for artistic style transfer: learning rate � = 0 :01, weights

8 T. Chiu and D. Gurari

f � 1; � 2; � 3; � 4g = f 104; 104; 103; 102g, number of update nupd = 20, and number
of iteration niter = 2.

Experimental Design. We benchmarked speed performance for each method on
an Nvidia GTX 1080 Ti with 11 GB memory. To enrich our analysis, we ana-
lyzed speed across four di�erent resolutions for the content image: 256� 256,
512� 512, 768� 768, and 1024� 1024. In doing so, we captured common im-
age resolutions for the two use cases we study: photo-realistic and artistic style
transfer. While photo-realistic transfer typically is conducted with higher res-
olution images, artistic transfer supports the range of resolutions from low to
high. This analysis also enables us to identify limitations of some methods in
handling the full range of image resolutions. The size of style images are �xed
to 512 � 512. We conducted experiments with 20 style images each applied to
5 content images. Elapsed time in seconds is estimated by averaging the time
from 100 experimental results.

Speed Performance Results.Results are shown in table 2.4

As shown, our method is consistently faster than all baselines which similarly
do not require pre-training. For example, our method is approximately 100 times
faster than NST and approximately 3-10 times faster than WCT and Avatar-net.
We attribute the slowest speed observed from NST to it using gradient descent
with back-propagation to solve the equation 1. While our method consistently
outperforms all these methods, we observe that the performance gains can fall
with higher resolution images. Speci�cally, at the largest resolution of 1024x1024,

4 Our reported times include the computation time for style image encoding and its
relevant terms, as done for some papers [2,15,8,13] but not others [21].

Table 2: Speed performance of universal style transfer methods. Four di�erent sizes of
content images are considered. For WCT and our algorithms, we report two values for
n iter = 1 and n iter = 2 (in parentheses). The former value transfers less of the style,
which is better-suited for photo-realistic transfer. The latter value transfers more style,
which is better-suited for artistic transfer. Results show our method is consistently
faster than all baselines which similarly do not require pre-training. OOM : Out of
memory. Unit : Second. (* means average over three results, due to out-of-memory
error midway)

Content
image size

No pre-training Pre-training

NST[5] WCT[15] Ava[21] Ours SS[2] Ada[8] LST[13]

256 � 256 15.28 1.15 (2.31) 0.96 0.15 (0.28) 0.55 0.036 0.04
512 � 512 33.29 1.24 (2.47) 1.08 0.33 (0.65) 1.89 0.046 0.05
768 � 768 64.50 1.38 (2.69) 1.28 0.64 (1.29) 4.29* 0.068 0.10

1024 � 1024 108.94 1.63 (3.28) 1.54 1.07 (2.15) OOM 0.105 0.15

Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 9

we observe our method is roughly 1.5 times faster than WCT and Avatar-net. We
attribute this to the repeated computation of FN FT

N in equation 5 with a large
size of FN . While our advantage is still shown over existing methods, further
speed-ups could be achieved by increasing the learning rate� and accordingly
decreasing the number of updatesnupd . We also observe that Avatar-net works
slightly faster than WCT, despite the fact that both avoid any pre-training. This
is because Avatar-net only exploits one autoencoder composed ofencoder4 and
decoder4. The drawback of Avatar-net though is that the style transfer primarily
results from the relu4 1 style feature, while the features fromrelu1 1, relu2 1,
and relu3 1 layers are marginally transferred.

Compared to the methods which require pre-training, our method is both
slightly better and slightly worse. For example, we observe that Style swap is
both slower and cannot handle large content images; e.g., at least roughly three
times slower. In contrast, we observe speed gains for AdaIN and LST. We at-
tribute this advantage to their training on a large dataset of style images and so
embedding knowledge of styles in the values of the learned model parameters.
However, this pre-training brings a downside in that users have less
exible con-
trol on the transfer e�ect which can lead to distorted content. We quantify such
disadvantages below in Section 4.2.

Qualitative Style-Transfer Results. Examples of style transfer results are shown
in �gures 2 and 3 for artistic style transfer and photo-realistic style transfer re-
spectively. Of note, only a subset of the methods support photo-realistic style
transfer: NST, WCT, LST, and ours. As shown, like prior methods, our approach
can produce visually-pleasing style transfer results.

Qualitatively, the strength of our approach is more evident for the photo-
realistic results, which is the setting where the content must be convincing that
it is plausibly real. We observe that our method can preserve content well while
NST, WCT, and LST su�er from some artifacts and distorted content. In the
�rst example of the canal, NST introduces extra light strokes, WCT produces
unpleasant artifacts in the clouds and their re
ection on the water, and LST
does not hold content well (as shown in the zoomed-in picture). In the second
example of the monastery, we can clearly see in the result of our method the
boundaries on the brick wall and the pattern and the re
ection on the ground.
These are ruined to some extent in the results from other methods. Furthermore,
LST shows no re
ection of light on the river in the third example. In the next
section, we quantify this disadvantage.

4.2 Photo-realistic style transfer - quantitative analysis

We aim to show that our method can preserve content better/produce fewer
artifacts than existing methods while still transferring style e�ects.

Baselines. We compare our method with NST, WCT and LST, which have
been considered for photo-realistic style transfer. For the other related meth-
ods, Avatar-net, Style swap and AdaIN are prone to distort content much and

	Iterative Feature Transformation for Fast and Versatile Universal Style Transfer

