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This document supplements Sections 3 and 4 of the main paper. In particular,
it includes the following;:

— Derivation of the analytical gradient (supplements Section 3.2).

— Training details of the autoencoders (supplements Section 4).

— Stylized results for quantitative analysis of photo-realistic transfer (supple-
ments Section 4.2).

— Formulation of NST and WCT for multi-style transfer and double-style
transfer results from AdaIN and Avatar-net (supplements Section 4.3).

1 Derivation of the analytical gradient

For simplicity, we suppress the subscript N. Here we show that if
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We first find the partial derivatives with respect to f;:
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and similar to tr[FFTFFT], we have tr[FFTF,FT] =>"_ S (£If:)2.
For the partial derivatives with respect to f;, we only have to focus on the
terms associated with f;. Therefore,
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Putting everything together, we have
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2 Multiple-style transfer
Starting from equation 8 in the main paper:
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holds, which can be shown by completing the square and removing the constant
parts, we can rewrite equation into an equivalent form with Ay £ Z:l )\fvz
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The gradient of objective is then given by
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Note that when ¢ = 1, equation [31] reduces to equation

3 Training details of the autoencoders

The four autoencoders are trained by minimizing an image reconstruction loss
and a perceptual loss. In particular, if the functions of the encodery and decodery
are denoted ¢y () and ¥y (-), respectively, the decodery is trained by minimizing
the loss L4Eg:

Lap =[¥n(0n(D) = IIE + lon (@n(on (1)) = on (DI, (32)
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where [ is an input image. We train the autoencoders on the MS-COCO dataset.
To support batch training, each image from the dataset is resized to 512 x 512
and randomly cropped to 256 x 256 as a training example in a batch. For the
autoencoders associated with relus _1 and relu3_1 layers, they are trained with a
batch size of 8 for 5 epochs, while for relu2_1 and relul _1 cases, the autoencoders
are trained for 3 epochs, due to their smaller sizes. We use Adam optimizer with
the learning rate 1 x 10~* and without weight decay. Moreover, we use up-
sampling layers with bilinear interpolation in the decoders as the symmetric
part of the max-pooling layers in the encoders.
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4 Stylized results for quantitative analysis of
photo-realistic transfer

Cont. & Style NST Ours

Fig. 1: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part

1/4).
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Table 1: Speed performance of our method under nyupqs = 15 and niter = 1 for gener-
ating the results in ﬁguresEI, @ EI, and El Unit: Second.

256 x 266 512 x 512 768 x 768 1024 x 1024
time 0.13 0.31 0.62 0.92

Cont. & Style NST WCT LST Ours

Fig. 2: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part

2/4).



Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 7

Cont. & Style NST WCT LST Ours

Fig. 3: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part

3/4).
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Cont. & Style LST

Fig. 4: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part

4/4).



Iter. Feat. Transformation for Fast and Versatile Universal Style Transfer 9

5 Formulation of NST and WCT for multi-style transfer

The objective of NST for multi-style transfer is as follows:
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where F’fv,s’s are the feature maps of ¢ style images extracted from encodery.
The stylized image is then derived by solving equation [33| using gradient descent
by back-propagation. How different style features are included in equation [33] is
non-linear.

On the other hand, WCT realizes multiple-style transfer by linear interpola—
tion of transformed features. By applying WCT to each style feature F% ~.s and
the content feature F ., we can derive a transformed feature Fk Nowet- The final
feature F et to be decoded is an affine combination:

q q
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As such, each style is weakened due to wy < 1 in the stylized image and could
even not be observed.

6 Double-style transfer results from AdalIN and
Avatar-net

Fig. 5: Double-style transfer results from AdaIN and Avatar-net. Unlike our method
that preserves the integrity of each style, styles in doubly stylized images from AdaIN
and Avatar-net might be weakened due to the linear interpolation of feature maps.
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