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ABSTRACT
Visual question answering systems empower users to ask any
question about any image and receive a valid answer. However,
existing systems do not yet account for the fact that a visual
question can lead to a single answer or multiple different an-
swers. While a crowd often agrees, disagreements do arise for
many reasons including that visual questions are ambiguous,
subjective, or difficult. We propose a model, CrowdVerge,
for automatically predicting from a visual question whether a
crowd would agree on one answer. We then propose how to
exploit these predictions in a novel application to efficiently
collect all valid answers to visual questions. Specifically, we
solicit fewer human responses when answer agreement is ex-
pected and more human responses otherwise. Experiments
on 121,811 visual questions asked by sighted and blind peo-
ple show that, compared to existing crowdsourcing systems,
our system captures the same answer diversity with typically
14-23% less crowd involvement.

Author Keywords
Visual Question Answering; Machine Learning;
Crowdsourcing

ACM Classification Keywords
H.5.m. Info. Interfaces and Presentation (e.g. HCI): Misc

INTRODUCTION
What would be possible if a person had access to a system that
could answer any question about the visual world? Blind users
could quickly figure out the denomination of their currency
and so whether they spent the appropriate amount for a product.
Hikers could learn about their bug bites to help decide whether
to seek out professional medical care. Factory managers could
identify how many defective products are on an assembly line
and so monitor a factory’s efficiency. These examples reflect
the tip of the iceberg for the vast range of benefits blind and
sighted users could derive from a visual question answering
(VQA) system (e.g., Figure 1).
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Figure 1. Examples of visual questions and corresponding answers from
10 different people. The examples include visual questions asked by both
blind users (top row) and sighted users (bottom row). As observed, the
crowd sometimes all agree on a single answer (first column) and at other
times offer different answers (last column). We propose a CrowdVerge
system to automatically predict whether multiple people will give the
same answer when given an image and question about it.

While progress has been made in building VQA systems to
accurately answer visual questions [4, 5, 6, 7, 24], existing sys-
tems do not yet account for the fact that some visual questions
lead multiple people to provide the same answer while other
visual questions lead multiple people to provide different an-
swers. Yet, our analysis of over 450,000 visual questions asked
by blind and sighted users reveals that these two outcomes
arise in approximately equal proportions. We find humans
disagree for a variety of reasons including because visual ques-
tions are ambiguous, subjective, or difficult (e.g., as observed
in Figure 1, counting how many donuts or recognizing a for-
eign currency from a poor quality image).

Our goal is to account for whether different people would
agree on a single answer to a visual question to improve
upon today’s VQA systems. We propose multiple CrowdVerge
prediction systems to automatically decide if a visual question
will lead to human agreement and demonstrate the value of
their predictions for a new task of capturing the diversity of
all plausible answers with less human effort.

Our work is partially inspired to improve how to employ
crowds as the computing power at run-time. Towards sat-
isfying existing users, gaining new users, and supporting a
wide range of applications, a crowd-powered VQA system
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should be low cost, have fast response times, and yield high
quality answers. Yet, today’s status quo is to assume a fixed
number of human responses per visual question [6, 10]. In
other words, users currently often either incur extra costs and
delays by collecting extra answers when they are redundant or
compromise on quality by not collecting all valid answers.

Our work is also inspired to improve how to employ crowds
at design-time to produce the information needed to design
automated VQA methods. Specifically, researchers in fields as
diverse as computer vision [5], computational linguistics [4],
and machine learning [24] rely on large datasets, which in-
clude visual questions and human-supplied answers, to train
and evaluate VQA algorithms. In general, “bigger" data is
better. Current methods to create these datasets assume a
fixed number of human answers per visual question [5, 35],
thereby either compromising on quality by not collecting all
plausible answers or compromising on efficiency by collecting
additional answers when they are redundant.

To our knowledge, this work is the first to propose a crowd-
sourcing system which dynamically solicits the number of
human responses based on each visual question. Our goal is to
actively solicit extra answers only for visual questions likely
to have multiple answers. We show in our experiments that
employing predictions from our proposed system to answer
more than 100,000 visual questions can eliminate over 11 40-
hour work weeks and save $1800 with no loss to captured
answer diversity, compared to today’s status quo [5, 6].

While the application of our prediction system can offer cost
and time savings when answering visual questions, it is also
useful to understand what aspects of a visual question are
informative for predicting answer (dis)agreement. To address
this, we examine the influence of the question alone, image
alone, and combination of both sources for predicting answer
(dis)agreement for a visual question.

The key contributions of our work are as follows:

• Analysis demonstrating the prevalence and reasons for hu-
man answer disagreements in three VQA datasets.

• A new problem and system for predicting whether a crowd
will (dis)agree when answering a visual question.

• A novel application for efficient answer collection which
solicits additional answers from additional members of a
crowd only when disagreement is anticipated.

RELATED WORK
Visual Question Answering Services
A commonality across communities as diverse as human com-
puter interaction, machine learning, computational linguistics,
and computer vision is they adopt a one-size-fits-all approach
when deciding the number of answers their systems should
return per visual question [4, 5, 6, 24] . For example, crowd-
powered systems aim to supply a fixed number of answers [6]
and automated systems return a single answer [4, 5, 24]. By
analyzing 10 answers per visual question for nearly half a
million visual questions from sighted and blind people, we
were inspired to rethink generally held assumptions about

how to design VQA systems. We instead propose to predict
whether a crowd will agree when answering a visual question.
Our experiments demonstrate that knowing whether a crowd
will agree is an important factor to consider to design faster,
cheaper, and more accurate systems that spend just enough to
collect all valid answers for each visual question.

Analyses of Crowd Disagreement
More broadly, our work relates to methods that account for
crowd disagreement [3, 17, 28, 31, 34]. For example, re-
searchers have suggested ways to resolve disagreement due
to task difficulty [34] and ambiguity/specificity [3, 17]. Some
methods decide which workers to trust most when aggregat-
ing multiple responses into a final, single response [31, 34].
Other methods leverage context to automatically disambiguate
which of multiple outcomes is the desired outcome [3]. Unlike
prior work, we focus on the task of visual question answer-
ing. Moreover, rather than try to resolve specific sources of
disagreement (e.g., task difficulty, ambiguity), we instead aim
to automatically predict whether disagreement will arise for
any reason. Such information empowers system designers to
create systems that only collect multiple answers and decide
how to resolve disagreement when a disagreement is expected.
We demonstrate the advantage of our system to predict dis-
agreement over relying on the uncertainty of a VQA algorithm
in its predicted answer [5].

Answer Collection from a Crowd
Our work relates to methods that propose how to employ
crowd workers to answer questions about images. Such ap-
proaches aim to collect a pre-specified, fixed number of an-
swers per visual question [5, 6, 10, 35]. For those systems
that treat response time as a first priority, a variable number
of answers may arise but this is due to varying crowdsourcing
conditions such as the available supply of workers [6, 10].
Unlike prior work, our goal is to collect answers in a way that
is both economical and complete in capturing the diversity of
plausible answers for all visual questions. To our knowledge,
our work is the first to predict the number of answers to col-
lect for a visual question. Experiments demonstrate that our
(dis)agreement predictions are useful to significantly reduce
human effort for capturing the diversity of valid answers.

Continuous Dialogue with the Crowd
Be My Eyes [1] and Chorus:View [20] empower users to en-
gage in a continuous communication channel with a crowd
worker when asking a visual question. The aim is to expe-
dite arriving at desired answers by, for example, permitting
the crowd worker to clarify ambiguous questions. Our work
offers an alternative by demonstrating how a crowdsourcing
service might instead solicit multiple answers for a one time
back-and-forth rather than enacting a more costly, continuous
communication channel with a single voice, whether from a
single person [1] or the consensus of a crowd [20].

High Quality Work with Fixed Human Budget
Our work relates to methods that actively allocate a limited
human budget to where it will best contribute to improve the
quality of results. For example, one method distributes a
budget between three different levels of human effort when de-
ciding how to segment images [16]. Another method predicts



when to employ algorithms versus crowd workers to segment
images [14]. Another method spends a budget between less
costly crowd workers and more costly experts for biomedical
citation screening [26]. To our knowledge, our work is the first
towards deciding how to spend a budget for the task of visual
question answering, which is distinct from prior work that
focused on spending a budget for image analysis or language
analysis alone. Furthermore, our aim is to spend a budget to
capture the diversity of all valid results for every task rather
than to collect a single result for every task.

Minimizing Human Labeling
Our aim to actively decide how to allocate human effort to im-
prove results is also somewhat related to active learning [29].
Specifically, active learners try to use as little human effort as
possible to train accurate prediction models. Some methods
iteratively supplement a training dataset with the most infor-
mative images for training a classifier [27, 33]. Other methods
solicit redundant labels to prevent incorrect/noisy labels [21,
30]. While active learners aim to minimize human input to
improve the accuracy of a prediction model, our method aims
to minimize human input while still exhaustively capturing all
plausible answers to all visual questions.

Scalable Annotation Collection
Our work relates to crowdsourcing systems designed to pro-
duce “big data". The aim is to collect human annotations
both to teach machine learning algorithms to behave like a
human (e.g., recognize a cat) and evaluate how similarly algo-
rithms behave to humans (e.g., did the algorithm accurately
indicate the image shows a cat?) [2, 5, 12, 18, 22]. Towards
scaling up, one system reduces the number of tasks by intel-
ligently deciding what questions to ask each crowd worker
in what order [12]. Another system instructs crowd work-
ers that annotation errors are okay in order to speed up their
productivity [18]. However, a common inefficiency for such
approaches is they collect a fixed number of redundant re-
sponses per task to establish trusted high quality annotations.
While prior work modifies the crowdsourcing task itself (i.e.,
asked questions [12], instructions [18]), we instead propose to
only modify how many redundant annotations to collect per
task to more efficiently create human-annotated datasets.

Crowdsourcing and Computer Vision
Finally, our work relates to systems which mix crowdsourc-
ing with computer vision. While our hybrid system design
reinforces existing work by also demonstrating advantages in
combining crowd and algorithm efforts, it differs by address-
ing the VQA task rather than the object detection [15], event
detection [19], and image description [13, 37] tasks.

PAPER OVERVIEW
The remainder of the paper is organized into four sections.
We first examine how often visual questions lead to answer
agreement, why disagreement arises, and how many different
answers typically arise. Next, we explore: 1) For a novel
visual question, can a machine correctly predict whether mul-
tiple independent members of a crowd would supply the same
answer? and 2) If so, what insights does our machine-learned
system reveal regarding what humans are most likely to agree

about? Then, we propose a novel resource allocation system
for efficiently capturing the diversity of all answers for a set
of visual questions. Finally, we end with concluding remarks.

DATASETS AND ANSWER (DIS)AGREEMENTS
Our first aim is to better understand the information gained for
the visual question answering task by collecting multiple an-
swers from different people. Towards this aim, we investigate
(1) how often do multiple answers lead to answer agreement
(redundant information)?, (2) what does answer disagreement
tell us about a visual question?, and (3) given that multiple
people can disagree on the answer, how many different an-
swers typically capture all the perspectives from the crowd?
Our findings validate that, in practice, visual questions regu-
larly lead to both a single answer and multiple valid answers.
Our findings also enrich our understanding for why different
answers arise and the typical amount of answer diversity.

Visual Questions
We compiled 461,360 visual questions that come from three
publicly-available datasets. We chose to analyze visual ques-
tions coming from datasets that are widely studied [5, 6] in
order to offer practical guidance to the many system design-
ers already working on the VQA problem. We also chose to
analyze visual questions asked by blind and sighted people
in order to address the interests of a diversity of users. Al-
together, the three datasets represent three different types of
images asked about by two different types of users.

VizWiz [6]: We include 1,499 visual questions asked by blind
users. Each visual question was created by a person using a
mobile phone who took a picture and recorded his/her spoken
question. These visual questions often address accessibility
issues for daily tasks, with a focus on asking for objective
information; e.g., “what type of beverage is in this bottle?" or
“what color is this shirt?" [8]. Accordingly, images often show
familiar, everyday objects such as food, beverages, computer
screens, clothing, and household items. Yet, because blind
people cannot see and verify the quality of the pictures they
take, many images are poorly framed, poorly lit, or blurry.

VQA Real Images [5]: We also examine 369,861 visual ques-
tions asked by sighted users about images collected from the
photo-sharing website Flickr. In particular, three open-ended
questions were collected about each of 153,287 images by
instructing three Amazon Mechanical Turk (AMT) crowd
workers to look at the given image and generate a text-based
question about it that would “stump a smart robot" [5]. The
images show complex scenes that include at least one from
91 categories of objects that would be easily recognizable by
a four year old; e.g., dog, chair, person [22]. Consequently,
questions are often grounded in images and task-independent
while images are often high quality.

VQA Abstract Scenes [5]: The remaining 90,000 visual ques-
tions are asked by sighted users about 30,000 abstract scenes.
The abstract scenes were created by crowd workers who were
instructed to add objects from 100 clipart options to create
scenes in artificial indoor and outdoor environments [5]. As
with the previous dataset, three crowd workers were recruited
to provide three questions per image that would “stump a



VizWiz VQA - Real Images VQA - Abstract Scenes
Answer Type: All Yes/No Number Other Yes/No Number Other
# VQAs (%): 1,499 140,777 (38%) 45,822 (12%) 183,262 (50%) 36,717 (41%) 12,956 (14%) 40,327 (45%)

At Most One Disagreement 20% 74% 49% 35% 74% 79% 36%
- Unanimous Agreement 9% 54% 35% 22% 57% 65% 22%
- Exactly One Disagreement 11% 20% 14% 13% 17% 14% 14%

Table 1. Frequency of answer agreement for visual questions asked by blind (VizWiz) and sighted (VQA) people. Shown for each dataset (or answer
type in a dataset) is the percentage of visual questions that lead to at most one disagreement (row 1), unanimous agreement (row 2), and exactly one
disagreement (row 3) from 10 crowdsourced answers. Both crowd agreement and disagreement regularly arise for a variety of visual questions that
elicit a range of answer types. On average, across all three datasets, the crowd agrees on the answer for nearly half (i.e., 53%) of all visual questions.

smart robot". While questions are often grounded in images
and task-independent, the images are semi-realistic.

Answers
We compiled 4,613,600 answers to analyze answer
(dis)agreement trends. In particular, every visual question
is paired with 10 answers collected from 10 AMT crowd
workers. Answers were collected following the excellent
crowdsourcing protocol discussed in [5], which shows a
worker an image with associated question and asks the
worker to respond with “a brief phrase and not a com-
plete sentence" [5]1. We leveraged the answers already in-
cluded with the datasets for the VQA Real Images and Ab-
stract Scenes. For the VizWiz visual questions, we crowd-
sourced the collection of 14,990 answers2 and share them
at http://vision.cs.utexas.edu/CrowdVerge/. To do
so, we slightly modified the aforementioned crowdsourcing
system by adding instructions telling crowd workers to state
a visual question is unanswerable if a question cannot be an-
swered from the image. We added this instruction because,
unlike the other two datasets, there was reasonable doubt that
questions would be grounded in images since blind people
cannot validate an image captures the content of their question.

Each answer was subsequently post-processed. Following
prior work [5], we converted all letters to lower case, converted
numbers to digits, and removed punctuation and articles (i.e.,
“a", “an", “the"). We further processed our collected answers
for the VizWiz visual questions by fixing spelling mistakes,
removing filler phrases (e.g., “it is"), and resolving differences
among answers where one description is subsumed in another
description (e.g., “dr pepper" = “dr pepper soda").

Answer (Dis)Agreements
We next quantify the tendency for real-world visual questions
to lead multiple people to offer the same answer. We tally the
number of different answers observed among 10 crowdsourced
answers using exact string matching in order to establish a
lower bound of expected answer agreement (i.e., more so-
phisticated natural language processing would reveal greater
agreement by, for example, resolving synonyms).

To enrich our analysis, we employ labels included with the
VQA datasets that indicate for each visual question which of
1See [5] for a screen shot of the user interface.
2We collected our own answers because the existing dataset includes
a variable number of answers per visual question that was insufficient
for our analysis; i.e. typically zero to five answers.

the following answer types is elicited: “yes/no", “number", or
“other". Each label represents the most popular option from
the 10 labels assigned to the 10 answers per visual question.

We report results for both when crowds unanimously agree as
well as when nine of the 10 people agree on an answer for all
three datasets (Table 1). These results capture when at most
one untrusted result is permitted from the crowd when infer-
ring whether a crowd agrees. Overall, we observe at most one
disagreement for 53% of all visual questions across the three
datasets. In absolute terms, this means that approximately
$11,719 and 230 40-hour work weeks were spent to collect
the redundant answers for the 244,159 visual questions that
led to agreement3. This finding supports our hypothesis that
great savings can be achieved with no loss to captured answer
diversity if a crowdsourcing system could know whether a
given visual question would lead to answer agreement from
a crowd. Moreover, savings are possible whether collecting
visual questions from blind or sighted users.

Our findings also highlight that both outcomes, crowd agree-
ment and disagreement, regularly arise for a variety of answer
types (Table 1). For example, we observe high agreement for
“yes/no" visual questions for both VQA datasets. Still, such
visual questions do evoke disagreements, such as when they
are seeking subjective information (e.g., “Does this picture
look scary?", Figure 2g). In addition, we observe moderate to
high levels of agreement for “number" visual questions. We
hypothesize the greater likelihood for disagreement for the real
images than for the abstract scenes arises because larger count-
ing problems (i.e., many objects), which are more difficult to
get correct, occur more often in real scenes. Finally, we ob-
serve moderate agreement levels for “other" visual questions.
Yet, disagreements do arise for these visual questions, often
because of a greater diversity of opinions regarding the true
answer (e.g., Figure 2b) as well as ways to express the same
concept (e.g., Figure 2h). Given that the tendency for agree-
ment differs for yes/no, counting, and other visual questions,
we hypothesize that the question wordings that lead to these
different types of answers (e.g., “How many... ?" versus “Is
the... ?" versus “Why is... ?") will be informative of whether a

3 Our cost and time estimates are based on the crowdsourcing method-
ology established by Antol et al. [5]. They paid $0.006 per answer. In
addition, when we used their system to collect 15,000 crowdsourced
answers for the VizWiz visual questions, crowd workers took on
average 17 seconds to submit an answer. Our estimation is also based
on assuming eight redundant answers, one correct answer, and one
untrusted (e.g., spam) answer.



Figure 2. Examples of visual questions asked by blind and sighted users with corresponding answers collected from 10 crowd workers. As observed, (a)
unanimous answer agreement arises when questions are visually grounded and capture commonsense knowledge. (b-i) Answer disagreement arises for
a variety of reasons: (b) expert skill needed, (c) human mistakes, (d) ambiguous question, (e) ambiguous visual content, (f) insufficient visual evidence,
(g) subjective question, (h) answer synonyms, and (i) varying answer granularity. (Best viewed on pdf.)

crowd will agree. We capitalize on this observation in the next
section to design prediction systems that automatically decide
whether a visual question will lead to agreement.

From visual inspection of hundreds of visual questions that
lead to different amounts of answer disagreement, we iden-
tified eight reasons why people disagree. Each reason is ex-
emplified in Figure 2. Disagreements can arise due to crowd
worker skill, both because a difficult task necessitates domain
expertise and because a crowd worker may inadequately an-
swer a seemingly simple question (Figure 2b,c). Crowds
disagree also because of ambiguity in the question and vi-
sual content (Figure 2d,e). Further reasons for disagreement
include insufficient visual evidence to answer the question,
subjective questions, synonymous answers, and varying levels
of answer granularity (Figure 2f–i). We observed each of
these reasons for answer disagreement in each of the three
studied datasets. Our findings highlight that answer disagree-
ment can reflect numerous possible aspects of a visual question
including its quality, specificity, and difficulty.

Answer Diversity
We next examine how many unique answers are observed in
practice for visual questions. We measure answer agreement
by counting how many different answers are observed in 10
crowdsourced answers per visual question using exact string
matching. Although this approach does not fully resolve all
conceptually equivalent responses, it does reveal an upper
bound of expected disagreement. Specifically, more lenient
agreement schemes that employ more sophisticated natural
language processing methods (e.g., inferring agreement for a
synonymous answer) would lead to greater answer agreement.

Across all 461,360 visual questions, we tally how many visual
questions yield k unique answers where k = {1,2, ...,10}. We
examine the influence of different levels of trust in the crowd
as well as the influence of different datasets. Specifically, we
tally the number of valid answers observed when requiring a
minimum of m = 1, m = 2, or m = 3 members of the crowd to
offer the same answer for the answer to be valid. As a point of
reference, prior work deems answers as valid using blind trust
(i.e., m = 1 person) [25] as well as more conservative schemes
(i.e., m = 3 people) [5]. We conduct our analysis on each of
the three datasets independently.

Our findings were surprising in that only 1% of visual ques-
tions from sighted and blind people led to no answer agree-
ment from a crowd for both real image datasets (i.e., VizWiz
and VQA). In other words, at least two people agree upon an
answer for 99% of the visual questions. This highlights that
multiple, independent people asked to answer the same visual
question typically converge on at least one answer, despite the
open-ended nature of how answers are collected.

We found that a visual question typically leads to at most
three different answers for all datasets (Figure 3). This gives
an upper bound of expected answer diversity. As discussed
above, we anticipate that visual questions will lead to fewer
valid answers with less stringent answer agreement schemes.
While our findings suggest that the visual questions asked
by sighted and blind people are predominantly answerable,
accurately reflecting the wisdom of the crowd may require
responding with multiple answers.



Figure 3. Summary of answer diversity outcomes showing how frequently different numbers of unique answers arise when asking 10 crowd workers
to answer a visual question for (a) 1,499 visual questions asked by blind people, (b) 369,861 visual questions asked by sighted people about real images
and (c) 90,000 visual questions asked by sighted people about clipart abstract scenes. Results are shown based on different degrees of answer agreement
required to make an answer valid: only one person has to offer the answer, at least two people must agree on the answer, and at least three people must
agree on the answer. Our findings demonstrate that a large diversity of open-ended visual questions are answerable (i.e., lead to answer agreement from
a crowd), which motivates the question of how to efficiently collect all valid answers from a crowd (i.e., typically one answer to at most three answers).

We observe the same trend for the amount of answer diversity
for most agreement thresholds for all three datasets (Figure 3).
Most commonly there is one unique answer, followed by two
and three answers respectively. As expected, moving from re-
quiring no answer agreement to a more conservative agreement
between three people shifts the distribution to more sharply
peak at less overall diversity (i.e., 1 unique answer).

CROWDVERGE: PREDICTING (DIS)AGREEMENT
As observed in the previous section, a variety of visual ques-
tions regularly lead to both a single answer and multiple dif-
ferent answers from a crowd. Yet, currently, a person who
asks a visual question cannot know which outcome will arise
unless (s)he actually collects answers from a crowd. In this
section, we introduce a model which we call CrowdVerge to
address this problem. In particular, a user can learn from a
CrowdVerge system whether a given visual question will lead
the crowd to converge on a single answer or diverge and offer
multiple different answers. We evaluate two implementations
of CrowdVerge and investigate what these systems reveal are
predictive cues for answer (dis)agreement.

CrowdVerge Model and Implementations
We pose the prediction task as a binary classification problem.
Specifically, a CrowdVerge model takes as input an image
and associated question and outputs a binary label indicating
whether a crowd will agree on the same answer. The goal
is to detect which visual questions to assign a disagreement
label, regardless of the disagreement cause (e.g., subjectivity,
ambiguity, difficulty). We consider random forest and deep
learning implementations of CrowdVerge.

Answer (Dis)Agreement Labels
Each visual question is assigned either an answer agreement
or disagreement label. We employ the 10 crowdsourced an-
swers per visual question to assign labels. A visual question
is assigned an answer agreement label when there is an ex-
act string match for at least 9 of the answers (after answer
pre-preprocessing, as discussed in the previous section) and
an answer disagreement label otherwise. Our rationale is to
permit up to one careless/spam answer per visual question.

Random Forest System
For our first system, we use domain knowledge to guide the
learning process. We compile a set of features that we hy-
pothesize inform whether a crowd will arrive at an undisputed,
single answer. Then we apply a machine learning tool to reveal
the significance of each feature. We propose features based
on the observation that answer agreement often arises when
1) a lay person’s attention can be easily concentrated to a few
salient regions in an image and 2) a lay person would find the
requested task easy to address.

As image-based features, we represent the estimated number
of prominent objects in the image, regardless of the object
category. To extract these features, we employ a state-of-the-
art salient object subitizing [36] (SOS) method. It produces
five probabilities that indicate whether an image contains 0, 1,
2, 3, or 4+ salient objects. Intuitively, the number of salient
objects shows how many regions in an image are competing
for an observer’s attention, and so may correlate with the ease
in identifying a region of interest. Moreover, we hypothesize
this feature will capture our observation that counting prob-
lems typically lead to disagreement for images showing many
objects, and agreement otherwise.

We also employ question-based features. One feature is the
number of words in the question. Intuitively, a longer ques-
tion offers more information and we hypothesize additional
information makes a question more precise. The remaining
features capture the first two words in the question. We encode
them as two one-hot vectors. Each one-hot vector is created
using the learned vocabularies that define all possible words
at the first and second word location of a question respectively
(using training data, as described in the next section). Intu-
itively, early words in a question inform the type of answers
that might be possible and, in turn, possible reasons/frequency
for answer disagreement. For example, we expect “why is"
to regularly elicit many opinions and so disagreement. This
intuition about the beginning words of a question is also sup-
ported by our analysis in the previous section which shows
that different answer types yield different biases of eliciting
answer agreement versus disagreement.



Figure 4. Precision-recall curves and average precision (AP) scores for all benchmarked systems on the (a) VQA and (c) VizWiz datasets. Our random
forest (RF) and deep learning (DL) CrowdVerge systems outperform a related automated VQA baseline, showing the importance in modeling human
disagreement as opposed to system uncertainty. Also shown are examples of prediction results from our top-performing RF classifier for the (b) VQA
and (d) VizWiz datasets. Included are the top three visual questions with crowdsourced answers for the most confidently predicted instances that lead
to answer disagreement and agreement. These examples illustrate a strong language prior for making predictions. (Best viewed on pdf.)

We employ a random forest classification model [9] to predict
an answer (dis)agreement label for a visual question. This
model consists of an ensemble of decision tree classifiers. We
train the system to learn the unique weighted combinations of
the aforementioned image-based and question-based features
that each decision tree applies to make a prediction. At test
time, given a novel visual question, the trained system converts
a feature descriptor of the visual question into a final prediction
that reflects the majority vote prediction from the ensemble
of decision trees. The system returns the final prediction
with a probability indicating the system’s confidence in that
prediction. We employ the Matlab implementation of random
forests, using 25 trees and the default parameters.

Deep Learning System
As an alternative to random forests, we next consider a deep
learning approach for our classifier. We adapt the deep learn-
ing architecture used in [5]. The question is encoded with a
1024-dimensional Long Short Term Memory (LSTM) model
that takes in a one-hot descriptor of each word in the question.
The image is described with the 4096-dimensional output from
the last fully connected layer of the Convolutional Neural Net-
work, VGG16 [32]. The system performs an element-wise
multiplication of the image and question features, after linearly
transforming the image descriptor to 1024 dimensions. The
final layer of the architecture is a softmax layer.

We train the system to predict (dis)agreement labels with train-
ing examples, where each example includes an image, ques-
tion, and label. At test time, given a novel visual question, the
system outputs an unnormalized log probability indicating its

confidence in the disagreement label, which we normalize to
produce probabilities in [0,1]. Larger values reflect greater
likelihood for crowd disagreement.

Analysis of Prediction System
We now describe our studies to assess the predictive power of
the CrowdVerge systems to decide whether visual questions
will lead to answer (dis)agreement from a crowd.

We evaluate our methods on two datasets that represent visual
questions asked by blind and sighted users. We chose to focus
only on visual questions about real images to align our analysis
with real practical challenges (fewer image-based challenges
arise with simple abstract scenes). One dataset is the VQA
Real Images [5]. From the 369,861 visual questions about real
images, 248,349 are kept for for training and the remaining
121,512 are employed for testing (i.e., Training and Validation
2015 v1.0 datasets). The other dataset is the VizWiz [6] dataset.
We apply a random 80/20 train/test split to the 1,499 visual
questions for which we collected answers, resulting in 1,200
training images and 299 test images.

To our knowledge, no prior work addresses predicting answer
(dis)agreement for visual questions. Thus, the best a user can
achieve today is to randomly decide if a visual question will
lead to disagreement. For this reason, we compare our systems
to a Status Quo predictor which returns a random value in
its confidence in disagreement. We also compare our systems
to a related VQA algorithm [23, 5] which produces for a given
visual question an answer with a confidence score. This system
parallels the deep learning architecture we adapt. However, it



Figure 5. Precision-recall curves and average precision (AP) scores for our random forest (RF) and deep learning (DL) classifiers with different features
(Question Only - Q; Image Only - I; Q +I) for visual questions that lead to (a-c) three answer types. (Best viewed on pdf.)

predicts the system’s uncertainty in its own answer, whereas
we are interested in the collective disagreement from a crowd
on the answer. Still, it is a useful baseline to see if an existing
algorithm could serve our purpose.

Classification Performance
We evaluate the predictive power of the CrowdVerge systems
on the two datasets separately. We first show performance of
the baseline and our two CrowdVerge systems using precision-
recall curves. We also report the average precision (AP),
which indicates the area under a precision-recall curve. Pre-
cision, recall, and AP values range from 0 to 1 with better-
performing prediction systems having larger values.

Figures 4a,c show precision-recall curves for all prediction
systems on both datasets4. Our proposed CrowdVerge systems
outperform the Status Quo and ICCV 2015 [5] baselines on
both datasets; e.g., for the VQA dataset, Ours: RF yields
a 27 percentage point improvement with respect to AP over
Status Quo and a 12 percentage point improvement with
respect to AP over ICCV 2015 [5]. Our findings demonstrate
there is value in learning the (dis)agreement task specifically,
rather than employing an algorithm’s confidence in its answers.
More generally, our results demonstrate it is possible to pre-
dict whether a crowd will agree on a single answer from a
given image and associated question, even for the poor quality
images and more free-form natural language questions often
observed from blind people (i.e., VizWiz dataset). Despite the
significant variety of questions and image content and despite
the variety of reasons for which the crowd can disagree, our
learned model is able to produce quite accurate results.

We observe our Random Forest classifier outperforms our
deep learning classifier; e.g., Ours: RF yields a three percent-
age point improvement with respect to AP while consistently
yielding improved precision-recall values over Ours: DL
(Figure 4a). In general, deep learning systems hold promise
to replace handcrafted features to pick out the discriminative
features. Interestingly, however, we find that handcrafted fea-
tures (the SOS [36] results, etc.) actually do have an advantage
over standard VQA deep learning architectures for our task.
We hypothesize this is due to having inadequate training data
for training the higher-capacity deep learning model.

We show examples of prediction results where our top-
performing RF classifiers make their most confident predic-
4We do not show results from the deep learning implementation on
the VizWiz dataset because we had an insufficient number of training
examples to successfully train such a system.

tions (Figures 4b,d). In these examples, for the VQA dataset,
the predictor expects human agreement for “what room... ?"
visual questions and disagreement for “why... ?" visual ques-
tions. For the VizWiz dataset, the predictor expects human
disagreement for “can you... ?" visual questions. These exam-
ples highlight that the CrowdVerge systems may have a strong
language prior towards making predictions, as we will discuss
in the next section.

Predictive Cues for Answer (Dis)Agreement
We now explore what makes a visual question lead to crowd
answer agreement versus disagreement. Here we focus on the
larger VQA Real Images dataset.

We analyze the predictive power of our random forest (RF) and
deep learning (DL) classification systems for visual questions
that lead to the three types of answers (“yes/no", “number",
“other") independently. Moreover, we enrich our analysis by
also examining the predictive performance of both Crowd-
Verge systems when they are trained and tested exclusively
with image and question features respectively. Figure 5 shows
precision-recall curves for both CrowdVerge systems with
question features alone (Q), image features alone (I), and both
question and image features together (Q+I).

When comparing AP scores (Figure 5), we observe our Q+I
predictors yield the greatest predictive performance for visual
questions that lead to “other" answers, followed by “num-
ber" answers, and finally “yes/no" answers. Interestingly, this
resembles the trend we saw in Table 1. Accordingly, we hy-
pothesize that the question wordings that lead to the different
types of answers yield different predictive strength.

We observe that question-based features offer greater predic-
tive power than image-based features for all answer types,
when comparing AP scores for Q and I classifiers (Figure 5).
Still, image features contribute to performance improvements
for our random forest classifier for visual questions that lead
to “number" answers, as illustrated by comparing AP scores
for Our RF: Q+I and Our RF: Q (Figure 5b). Our overall
finding that most of the predictive power stems from language-
based features parallels feature analysis findings in the auto-
mated VQA literature [5, 25]. Further work improving visual
content cues for VQA agreement is warranted.

Our findings suggest that the Random Forest classifier’s over-
all advantage over the deep learning system arises because of
“number" visual questions, as indicated by higher AP scores
(Figure 5). For example, the advantage of the initial higher



precision (Figure 4a; Ours: RF vs Ours: DL) is also ob-
served for “number" visual questions (Figure 5b; Ours: RF
- Q+I vs Ours: DL - Q+I). We hypothesize this advantage
arises due to the strength of the Random Forest classifier in
pairing the question prior (“How many?") with the image-
based SOS features that indicates the number of objects in
an image. Specifically, we expect “how many" to lead to
agreement only for small counting problems.

CAPTURING ANSWER DIVERSITY WITH LESS EFFORT
We next present a novel resource allocation system for effi-
ciently capturing the diversity of valid answers for a batch
of visual questions. Today’s status quo is to either uniformly
collect N answers [5] or let external crowdsourcing condi-
tions determine the number of answers [6] per visual question.
Our system instead spends a human budget by predicting how
many answers to collect per visual question based on whether
multiple answers are predicted to be redundant.

Answer Collection System
Suppose we have a budget B which we can allocate to collect
extra answers for a subset of visual questions. Our system
automatically decides to which visual questions to allocate the
“extra" answers in order to maximize captured answer diversity
for all visual questions.

The aim of our system is to accrue additional costs and delays
from collecting extra answers only when extra responses will
provide more information. Our system involves three steps to
collect answers for all N visual questions (Figure 6). First, the
system applies our CrowdVerge system to every visual ques-
tion in the batch. We employ the random forest classifier, our
top-performing option. Then, the system ranks the N visual
questions based on predicted scores from the classifier, from
visual questions most confidently predicted to lead to answer
“agreement" to those most confidently predicted to lead to an-
swer “disagreement" from a crowd. Finally, the system solicits
more (R) human answers for the B visual questions predicted
to reflect the greatest likelihood for crowd disagreement and
fewer (S) human answers for the remaining visual questions.
More details below.

Analysis of Answer Collection System
We now describe our studies to assess the benefit of our allo-
cation system to reduce human effort to capture the diversity
of all answers to visual questions.

Experimental Design
We evaluate the impact of actively allocating extra human
effort to answer visual questions as a function of the available
budget of human effort. Specifically, for a range of budget
levels, we compute the total measured answer diversity (as
defined below) resulting for the batch of visual questions. The
goal is to capture a large amount of answer diversity with little
human effort. This is beneficial both when using a system like
VizWiz to adequately answer a blind person’s visual question
as well as to economically create a dataset for the development
of automated VQA systems.

We conduct our studies on the 121,811 test visual questions
from the VQA Real Images and VizWiz datasets. For each

Figure 6. We propose a novel application of predicting the number of
redundant answers to collect from the crowd per visual question to effi-
ciently capture the diversity of all answers for all visual questions. For
a batch of visual questions, our system first produces a relative ordering
using the predicted confidence in whether a crowd would agree on an
answer (upper half). Then, the system allocates a minimum number of
annotations to all visual questions (bottom, left half). Finally, the extra
available human budget is allocated to visual questions most confidently
predicted to lead to crowd disagreement (bottom, right half).

visual question, we establish the set of true answers as all
unique answers which are observed at least twice in the 10
crowdsourced answers per visual question. We require agree-
ment by two workers to avoid the possibility that careless or
spam answers are treated as ground truth.

System Implementation
We collect either the minimum of S = 1 answer per visual
question or the maximum of R = 5 answers per visual ques-
tion. Our number of answers roughly aligns with existing
crowd-powered VQA systems, for example with the VizWiz
application, “On average, participants received 3.3 (SD=1.8)
answers for each question" [6]. Our maximum number of
answers also supports the possibility of capturing the max-
imum of three unique, valid answers typically observed in
practice (recall study above). While more elaborate schemes
for distributing responses may be possible, we will show this
approach already proves quite effective in our experiments.
We simulate answer collection by randomly selecting answers
from the 10 crowd answers per visual question.

Baselines
We compare our approach to two baselines. We leverage the
ICCV 2015 [5] predictor’s output confidence score from the
publicly-shared model [5, 23] to rank the order of priority for
visual questions to receive redundancy. We also leverage a
Status Quo system, which randomly prioritizes which im-
ages receive redundancy. This system illustrates the best a
user can achieve today with crowd-powered systems [6, 10] or
with current dataset collection methods [5, 35].

Evaluation Methodology
We measure total diversity of answers captured by a resource
allocation system for a batch of visual questions Q as follows:

D(Q) =
|B|

∑
i=1
|ri∩qi|+

|Q\B|

∑
j=1
|s j ∩q j| (1)



where qi represents the set of all true answers for the i-th visual
question, ri represents the set of unique answers captured in
the R answers collected for the i-th visual question, and s j
represents the set of unique answers captured in the S answers
collected for the j-th visual question. Total diversity comes
from the first term when the maximum extra human budget (B)
is available and total diversity comes from the second term
when no extra human budget is available. Given a partial extra
human budget (B), the aim is to have perfect predictions such
that the minimum number of answers (S) are allocated only for
visual questions with one true answer in order for all diverse
answers to be safely captured.

We measure diversity per visual question as the number of
all true answers collected per visual question (e.g., |ri∩qi|).
Larger values reflect greater captured diversity. The motivation
for this measure is to only give total credit to visual questions
when all valid, unique human answers are collected.

Results
Our system consistently offers significant gains over today’s
Status Quo approach for visual questions from sighted
(Figure 7a) and blind (Figure 7b) users. For example, for
the VQA dataset, our system accelerates the collection of
70% of the diversity by 21% over the Status Quo baseline.
Our system also accelerates the collection of the diversity one
would observe with the VizWiz system (i.e., average of 3.3
answers per visual question) by 23% for the VQA dataset and
14% for the VizWiz dataset. We hypothesize the greater per-
formance gains on the VQA dataset than the VizWiz dataset
arise due to the greater amount of training data; i.e., the dif-
ference in order of magnitude is over 100. In absolute terms
for the VQA dataset, our system eliminates the collection of
92,180 answers with no loss to captured answer diversity. This
translates to eliminating over 11 40-hour work weeks and sav-
ing $1800, assuming workers are paid $0.02 per answer and
take 18 seconds to answer a visual question5. Our approach
fills an important gap in the crowdsourcing answer collection
literature for targeting the allocation of extra answers only to
visual questions where a diversity of answers is expected.

Figure 7 also illustrates the advantage of our system over a
related VQA algorithm [5] for our novel application of cost-
sensitive answer collection from a crowd. As observed, relying
on an algorithm’s confidence in its answer offers a valuable in-
dicator over today’s status quo of passively budgeting. While
we acknowledge this method is not intended for our task specif-
ically, it serves as an important baseline to ensure VQA system
uncertainty is insufficient to gauge crowd convergence. We
attribute the further performance gains of our prediction sys-
tem to it directly predicting whether humans will disagree
rather than predicting a property of a specific algorithm (i.e.,
confidence of the VQA algorithm [5] in its answer prediction).

A valuable area for future work to achieve further cost-savings,
time-savings, and user satisfaction for answer collection is to
employ fine-grained predictions of the exact number of an-
swers to expect per visual question. This information would

5To make a fair comparison to the VizWiz system [6], we use the
timing and price information reported in that paper.

Figure 7. We show results for our system, a related VQA algorithm, and
the status quo (which lacks any active prioritization) for (a) 121,512 vi-
sual questions from the VQA dataset and (b) 299 visual questions from
the VizWiz dataset. Boundary conditions are one answer (leftmost) and
five answers (rightmost) for all visual questions. Our approach typically
accelerates capturing answer diversity compared to Status Quo selec-
tion by over 20% for the VQA dataset and 14% for the VizWiz dataset.

guide how many answers to collect. One possible challenge
would be successfully training a fine-grained prediction sys-
tem, since this depends on employing a sufficiently large
dataset that represents each possible number of valid answers
per visual question (e.g., 3 vs 5 answers) with a balanced, large
number of examples. Another possible direction is to develop
online approaches, such as has been done in prior work [11],
by dynamically deciding when enough answers are collected
from the crowd to capture all valid answers. Additionally, es-
tablishing how to pair such a system with low-latency response
mechanisms, such as quikTurkit [6], would be a valuable step
towards making such systems amenable for real-time use.

CONCLUSIONS
We proposed a new problem of predicting whether different
people would give the same answer to a visual question. To-
wards motivating the practical implications for this problem,
we analyzed nearly half a million visual questions and demon-
strated there is nearly a 50/50 split between visual questions
that lead to answer agreement versus disagreement. We ob-
served that crowd disagreement arose for various types of
answers (yes/no, counting, other) for many different reasons.
We next proposed a system that automatically predicts whether
a visual question will lead to a single versus multiple answers
from a crowd. Our method outperforms a strong existing VQA
system limited to estimating system uncertainty rather than
crowd disagreement. Finally, we demonstrated how to employ
the prediction system to accelerate the collection of diverse
answers from a crowd by typically at least 14%-23% over
today’s status quo of fixed redundancy allocation for visual
questions asked by blind and sighted users.
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