Semantic Segmentation

Danna Gurari

University of Colorado Boulder Fall 2023

https://home.cs.colorado.edu/~DrG/Courses/RecentAdvancesInComputerVision/AboutCourse.html

Review

- Last lecture:
 - Single Object Tracking lecture from Dr. Samreen Anjum
- Assignments (Canvas)
 - Reading assignment was due earlier today
 - Next reading assignments due next Monday and Wednesday
 - Project proposal due in one week
- Questions?

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

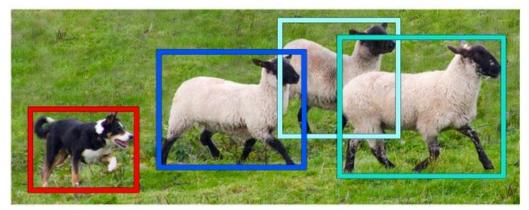
Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

Recall: Object Recognition and Detection Tasks

Image Recognition

Recognize categories of interest



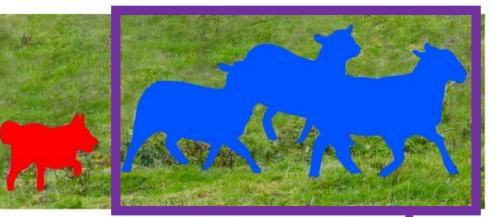
Object Detection

Localize categories of interest

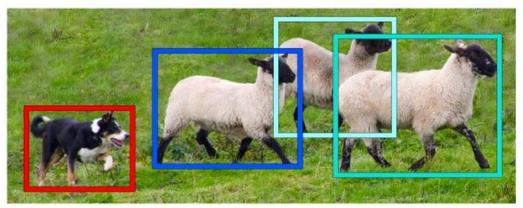
Today's Scope: Localize Pixels for Each Category



Image Recognition



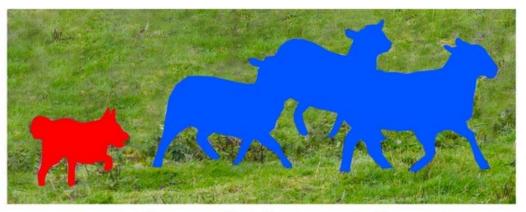
Semantic Segmentation



Object Detection

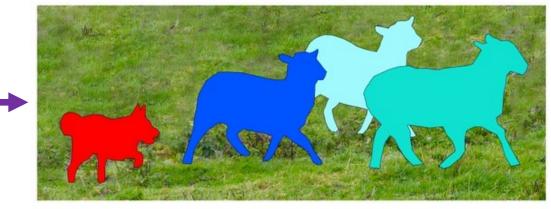
Note: instances of the same category are NOT separated

Today's Scope: Localize Pixels for Each Category



Semantic Segmentation

Separating instances of the same category will be covered in a future lecture



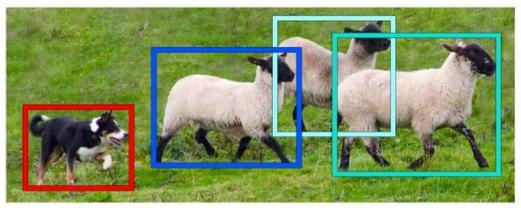
Instance Segmentation

Challenge: When to Choose Which Task?



Image Recognition

Semantic Segmentation



Object Detection

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

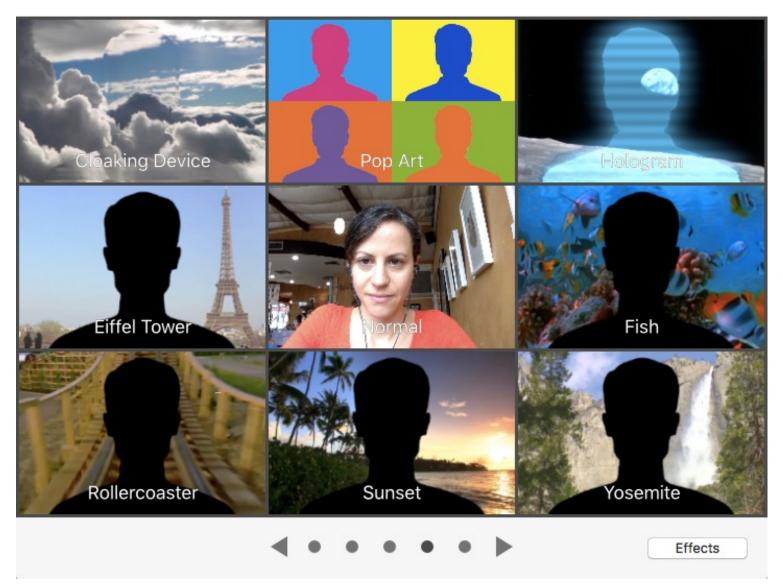
Remodeling Inspiration

(a) Target photo

(b) Retextured

Bell et al; SIGGRAPH; 2013

Rotoscoping (many examples on Wikipedia)



https://www.starnow.co.uk/ahmedmohamm ed1/photos/4650871/before-and-afterrotoscopinggreen-screening

Disease Diagnosis; e.g.,

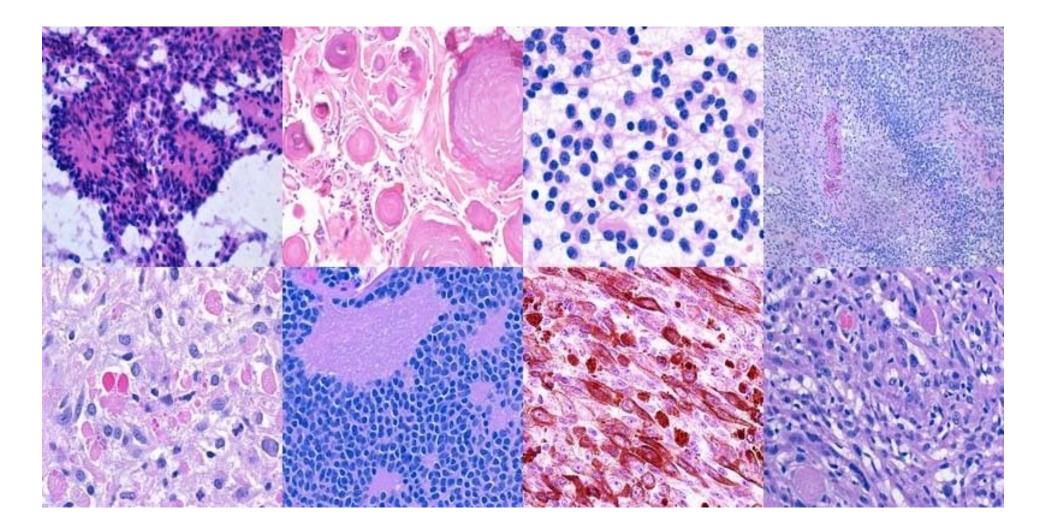


Figure Source: https://pathology.jhu.edu/brain-tumor/grading-classification

Face Makeover

MAYBELLINE	VIRTUAL BEAUTY STUDIO	SHOP ALL	FACE	EYES	LIPS	NAILS	TIPS & TRENDS	BRAVE TOGETHER
Home								
	TRY IT	ON						
								ALC TLX
	Time to makeup your mind! I	Experience yo	ur perfect	makeup	shades or	try a		
	bold new look with Maybellin	ne's virtual try	-on tool.					GET STARTED!
	To begin, turn on your came	ra or upload a	photo.					
							to the proce	✓ I Consent essing of my image by Maybelline NY
	SEE YOURSELF IN M	AYBELLI	ΝE					et out in the <u>privacy policy</u> .
	\rightarrow							
								S LIVE CAMERA
								L UPLOAD PHOTO

Demo: https://www.maybelline.com/virtual-try-on-makeup-tools

Self-Driving Vehicles

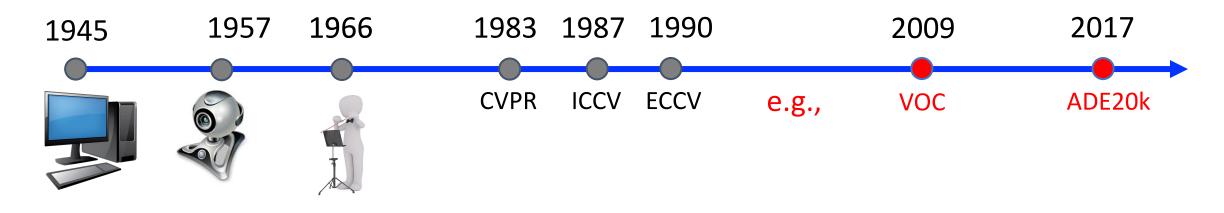
Figure Source: https://www.inc.com/kevin-j-ryan/self-driving-cars-powered-by-people-playing-games-mighty-ai.html

Can you think of any other potential applications?

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

Datasets



Categories: 21 3,169

Images: 1112 train/val 25,210

Trend: build bigger datasets

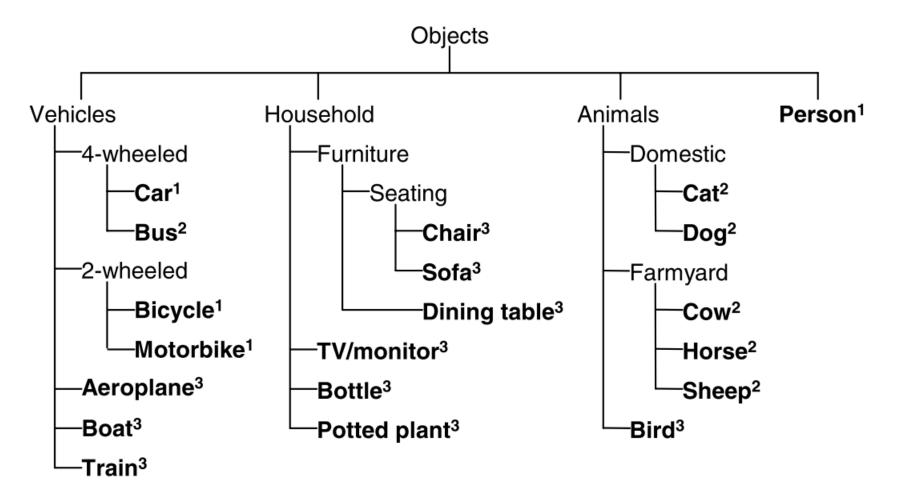
VOC

1. Image Collection

2. Image Annotation

	- Annotation party annually
- A subset of	 Annotation guidelines & real-time assistance – refine detections into segmentations
images from the VOC detection dataset were	 Post-hoc correction/feedback about the number and kind of errors made
used	- Annotations for each of the 20 object classes were merged into class-specific segmentation regions and 1 more class was added for background

VOC: Recall Categories Included (Leaf Nodes)



VOC: Boundary Accuracy Heuristic

"To give high accuracy but to keep the annotation time short enough to provide a large image set, a border area of 5 pixels width was allowed around each object where the pixels were labelled neither object nor background."

VOC: "Difficult" Objects Excluded

Objects that are challenging to recognize are discarded (i.e., dashed regions): flagged for reasons of "small size, illumination, image quality or the need to use significant contextual information... no penalty is incurred for detecting them. The aim of this annotation is to maintain a reasonable level of difficulty..."

VOC Annual Workshop

The PASCAL Visual Object Clas × +

- → C () Not Secure | host.robots.ox.ac.uk/pascal/VOC/

The **PASCAL** Visual Object Classes Homepage

☆

The PASCAL VOC project:

- · Provides standardised image data sets for object class recognition
- · Provides a common set of tools for accessing the data sets and annotations
- Enables evaluation and comparison of different methods
- Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

Pascal VOC data sets

Data sets from the VOC challenges are available through the challenge links below, and evalution of new methods on these data sets can be achieved through the <u>PASCAL VOC Evaluation Server</u>. The evaluation server will remain active even though the challenges have now finished.

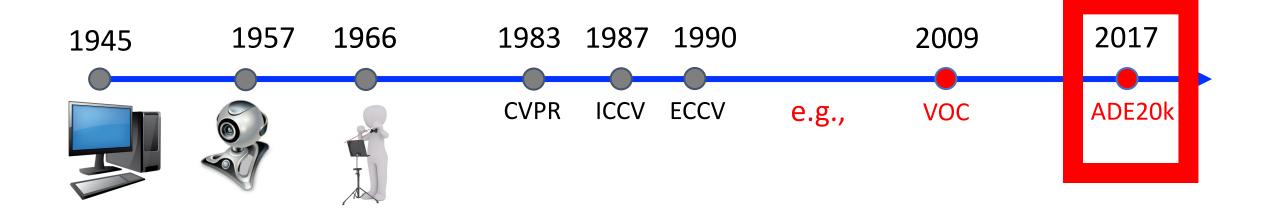
http://host.robots.ox.ac.uk/pascal/VOC/

What is a Limitation of Datasets Built Around Specific Categories (e.g., Objects)?

No knowledge that anything else is in the scene, such as a house, trees or flowers! Most pixels are labeled as `background'!

Mark Everingham et al. The PASCAL Visual Object Classes Challenge: A Retrospective. IJCV 2015.

Datasets



ADE20K

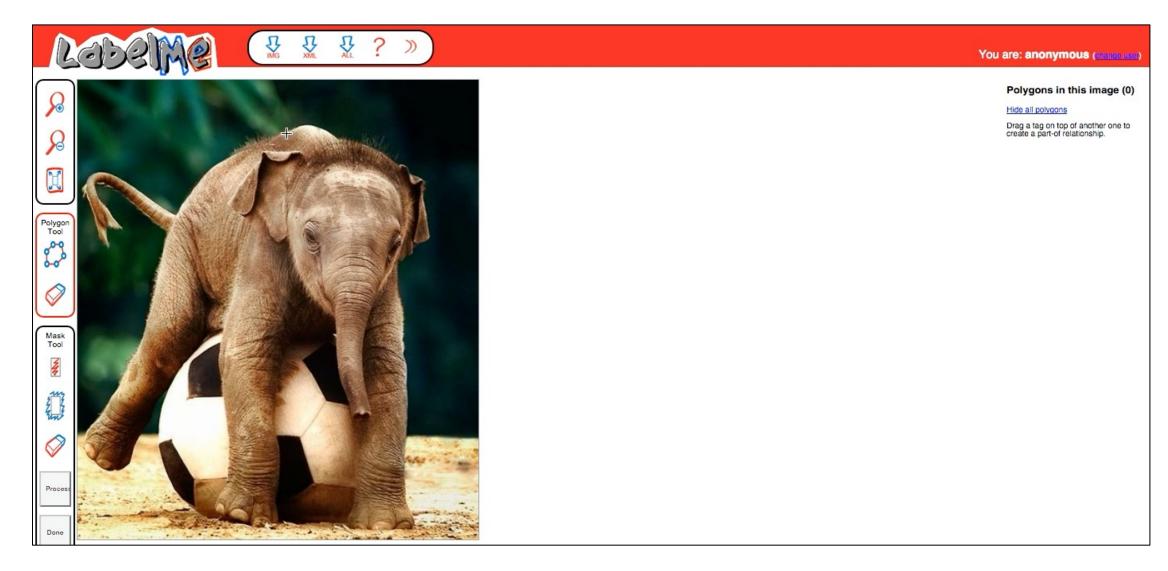
1. Image Collection

- 25,210 images collected from existing datasets (SUN, Places, and LabelMe)

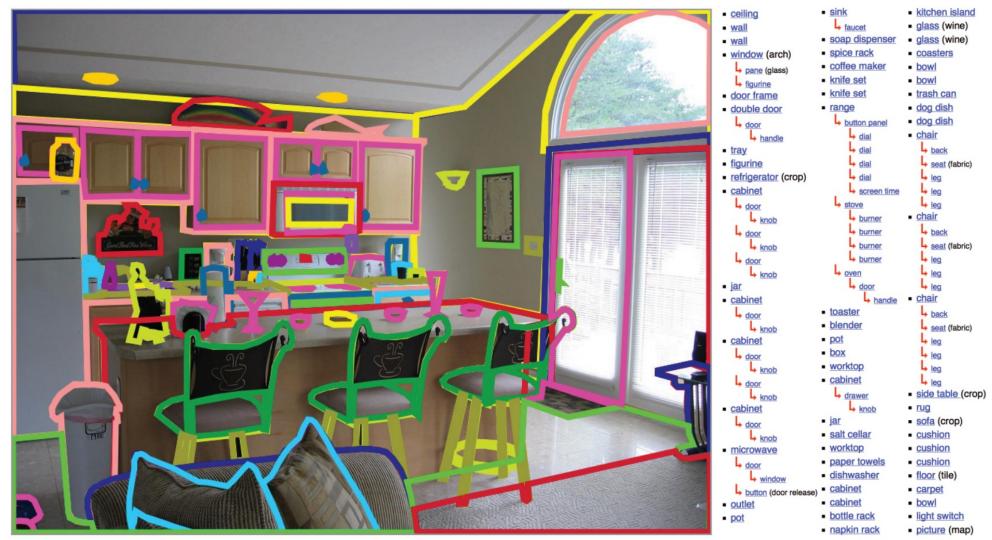
- Selected to capture all scene categories defined in SUN 2. Region Localization and Category Assignment

- A single person annotated all images into three types and kept adding new categories as they were observed: (1) objects, (2) object parts, and (3) attributes (e.g., occluded)

ADE20K: User Annotation Tool



ADE20K: User Annotation Tool



Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017.

ADE20K

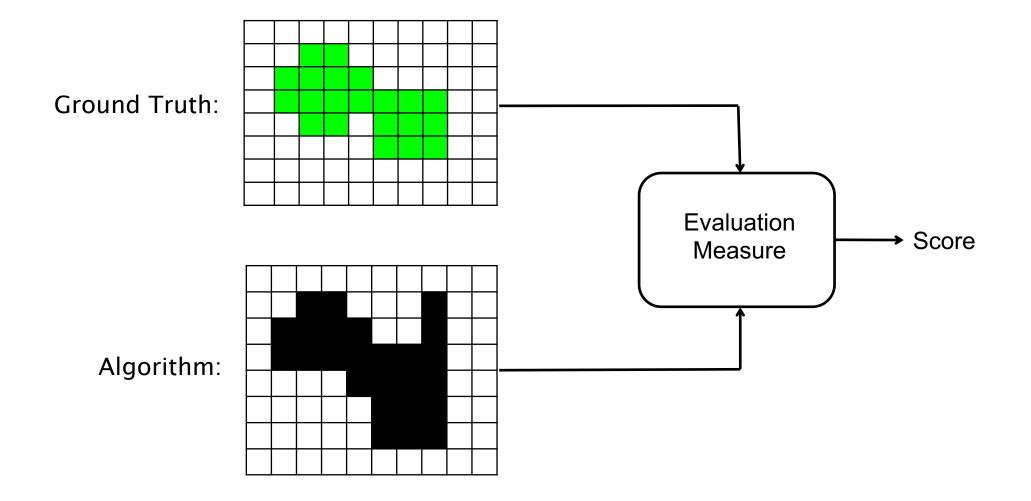
- Includes:
- "things": objects that can easily be labeled; e.g., person, chair
- "stuff": objects with no clear boundaries; e.g., sky, grass

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017.

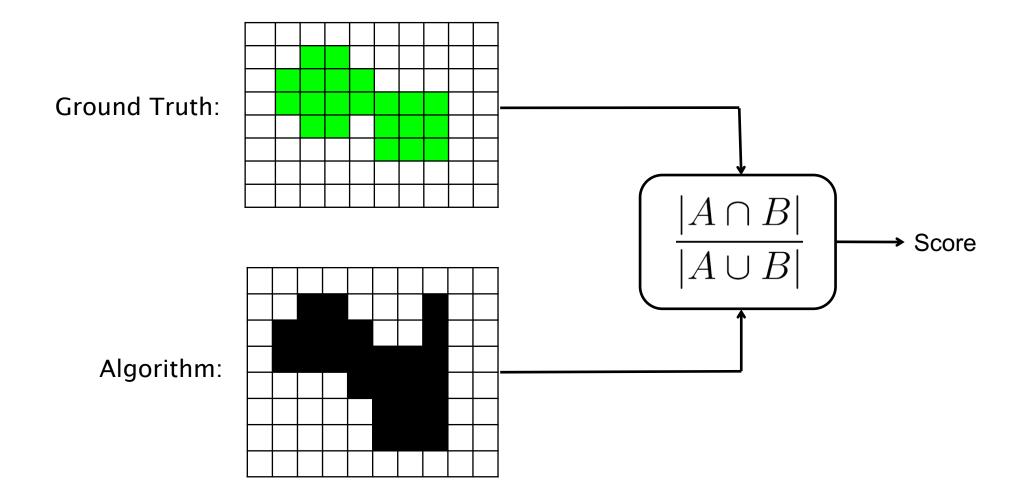
Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

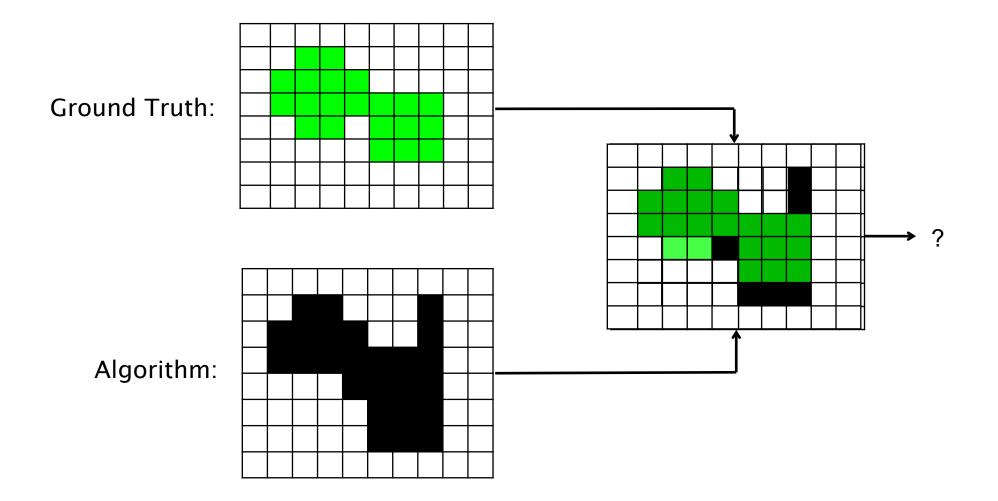
Evaluation Metric



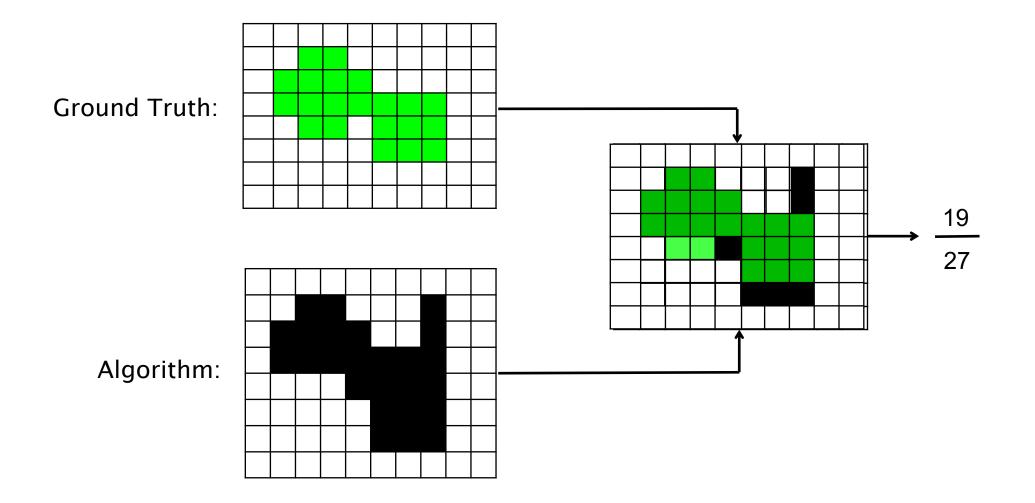
Recall: IoU Metric



Recall: IoU Metric



Recall: IoU Metric



Mean IoU (mIoU)

• Mean IoU score over all categories

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

Why Fully Convolutional Network?

Named after the proposed technique that excludes fully connected layers:

Jonathon Long, Evan Shelhamer, and Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation." CVPR 2015.

Key Novelties of Fully Convolutional Networks

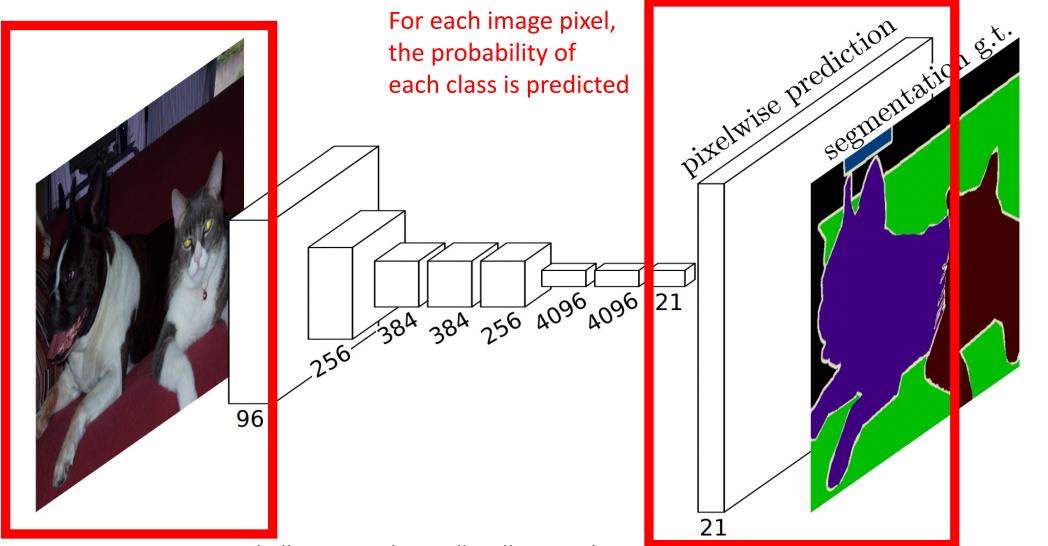
First work for pixelwise prediction to:

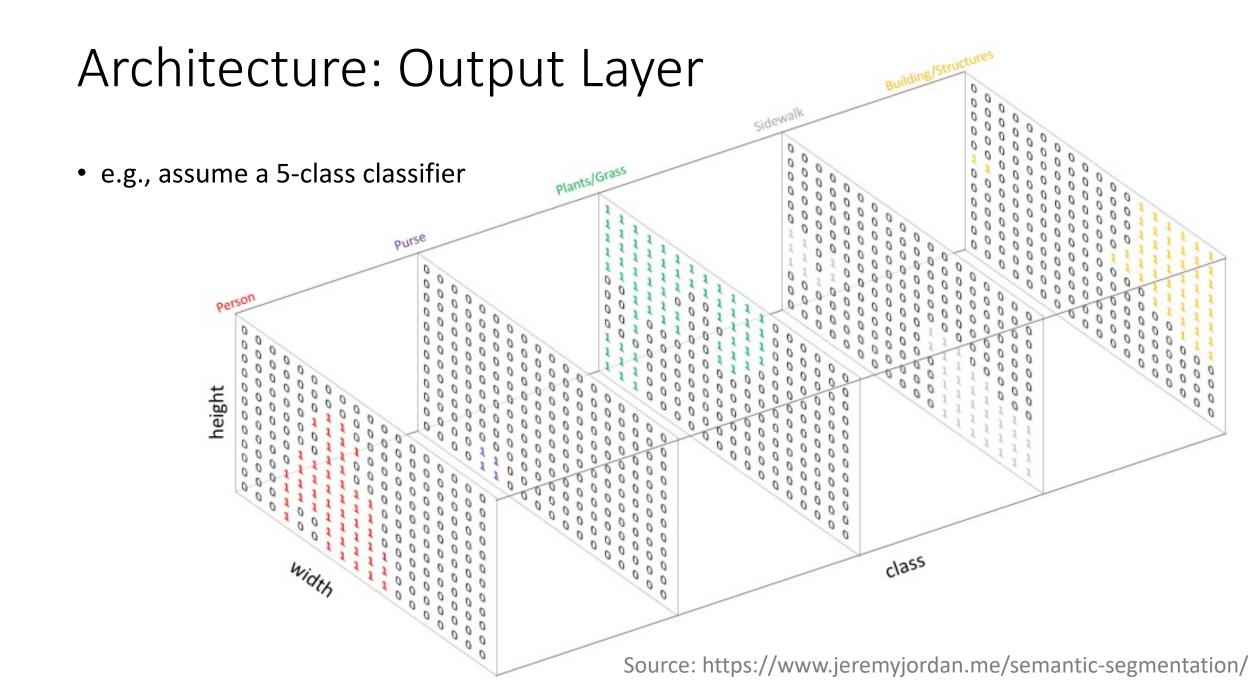
- 1. Train fully convolutional networks end-to-end
- 2. Use supervised pre-training (recall, R-CNN paper showed this can be a great idea when there is a scarce amount of annotated data)

Input: RGB image of ANY size

Output: Image of same size as input

Architecture





Architecture: Output Layer

• e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

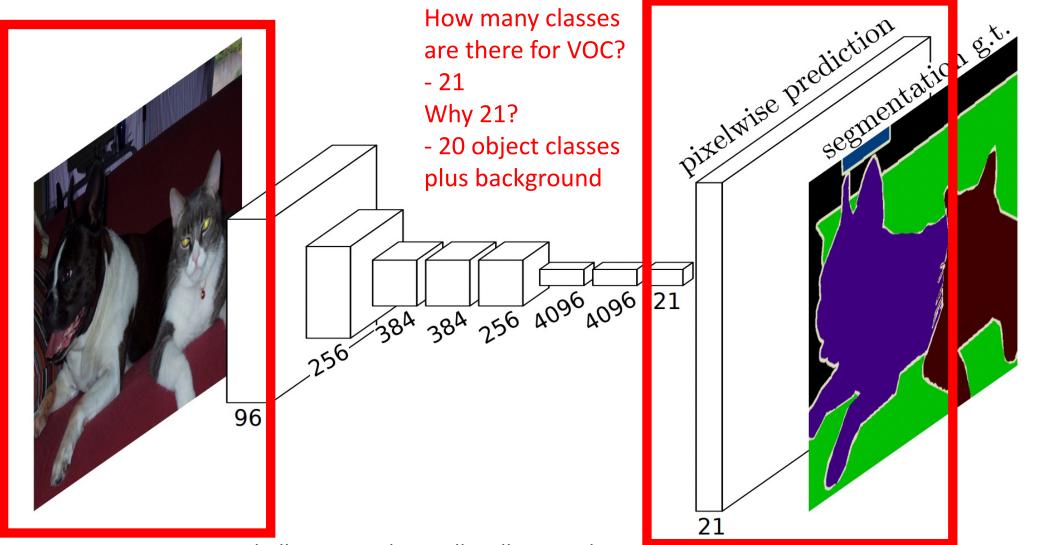
0: Background/Unknown 1: Person 2: Purse 3: Plants/Grass 4: Sidewalk 5: Building/Structures

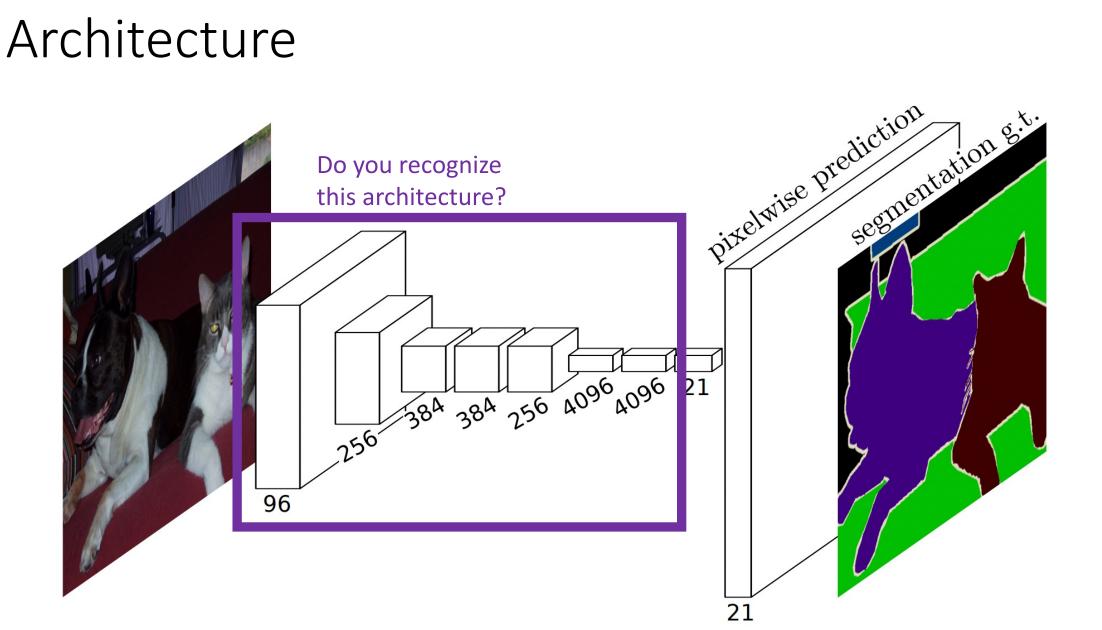
Source: https://www.jeremyjordan.me/semantic-segmentation/

Input: RGB image of ANY size

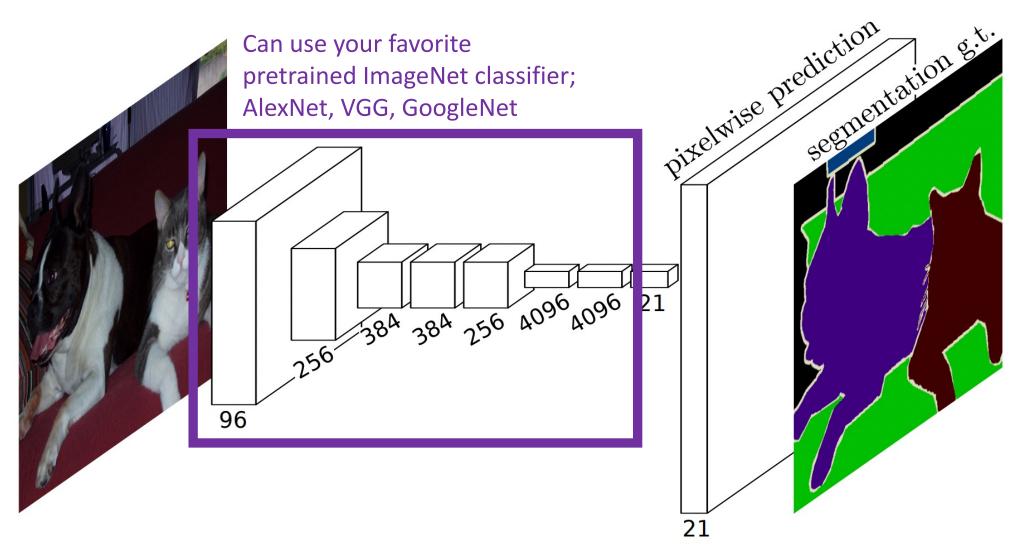
Output: Image of same size as input

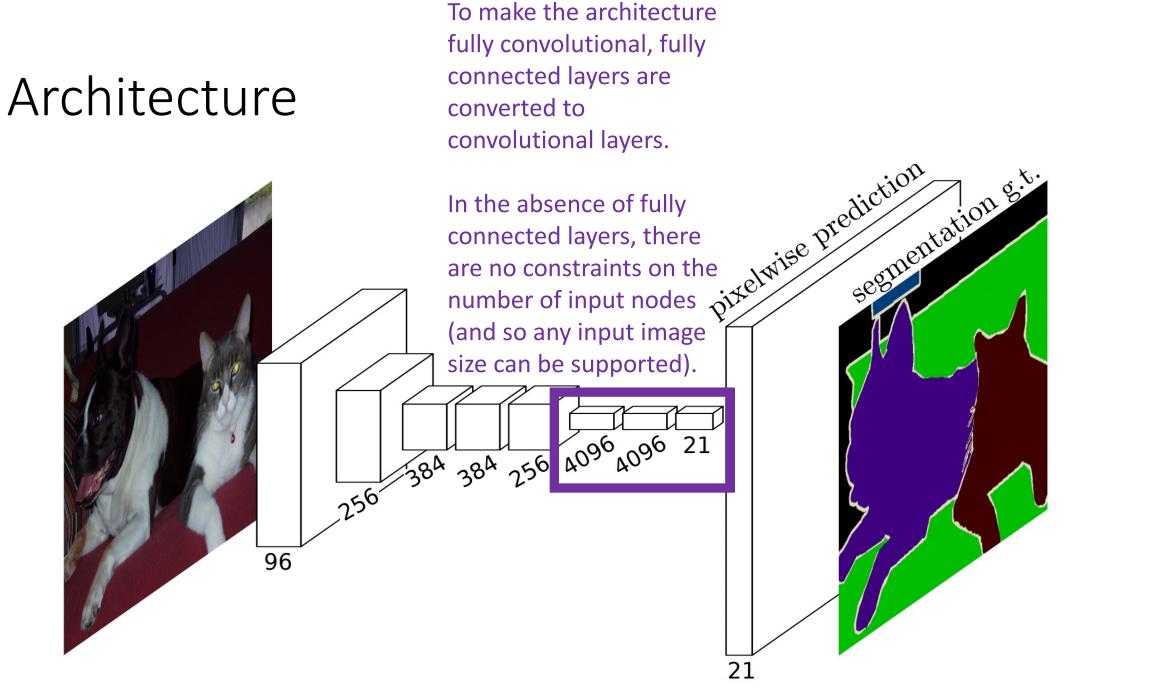
Architecture



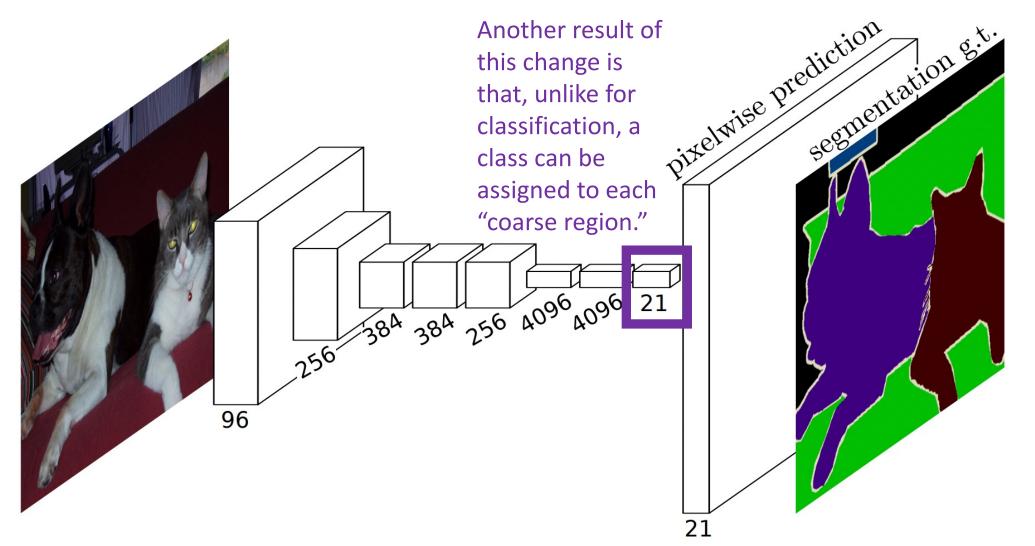


Architecture

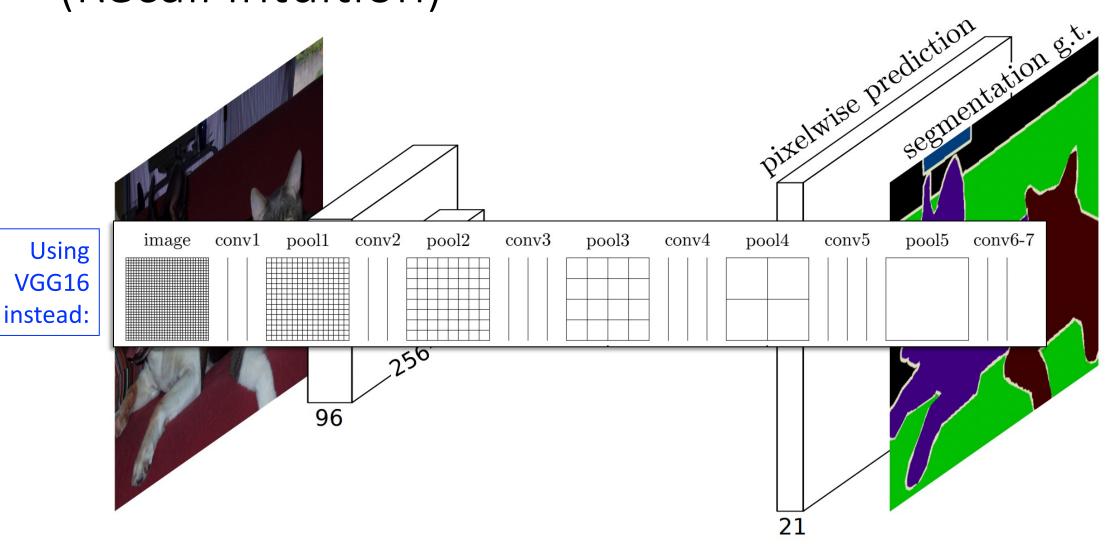




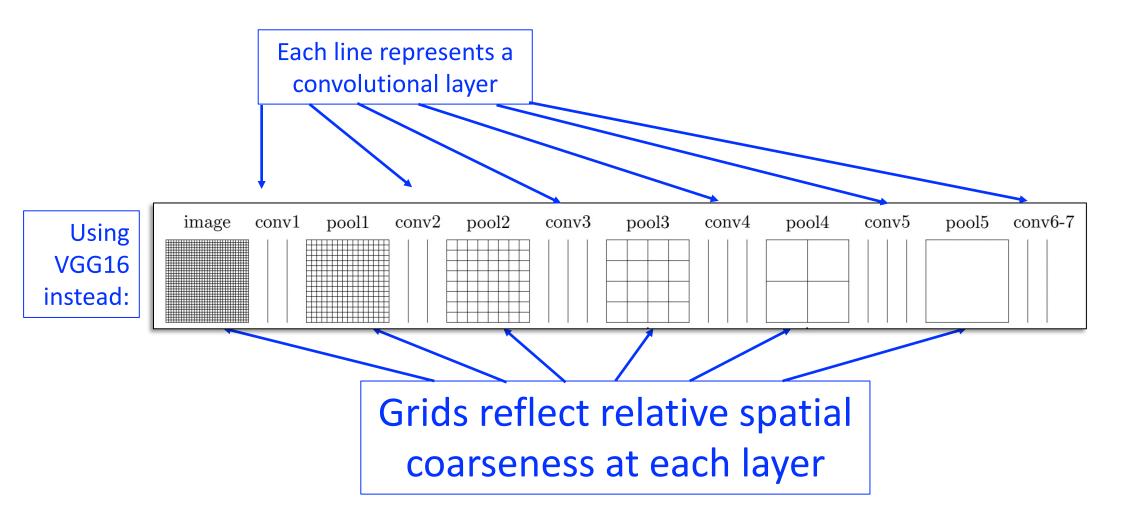
Architecture



Architecture: Coarse Region Classification (Recall Intuition)

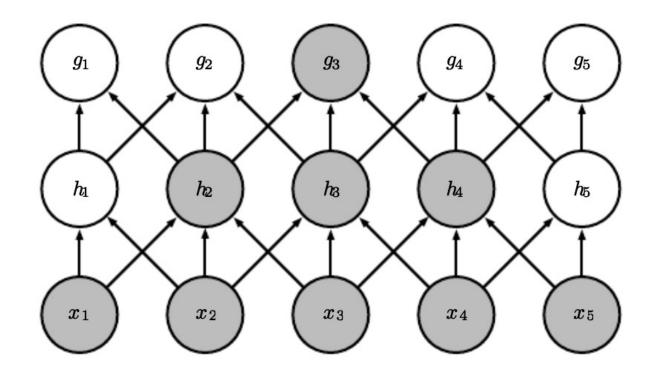


Architecture: Coarse Region Classification (Recall Intuition)



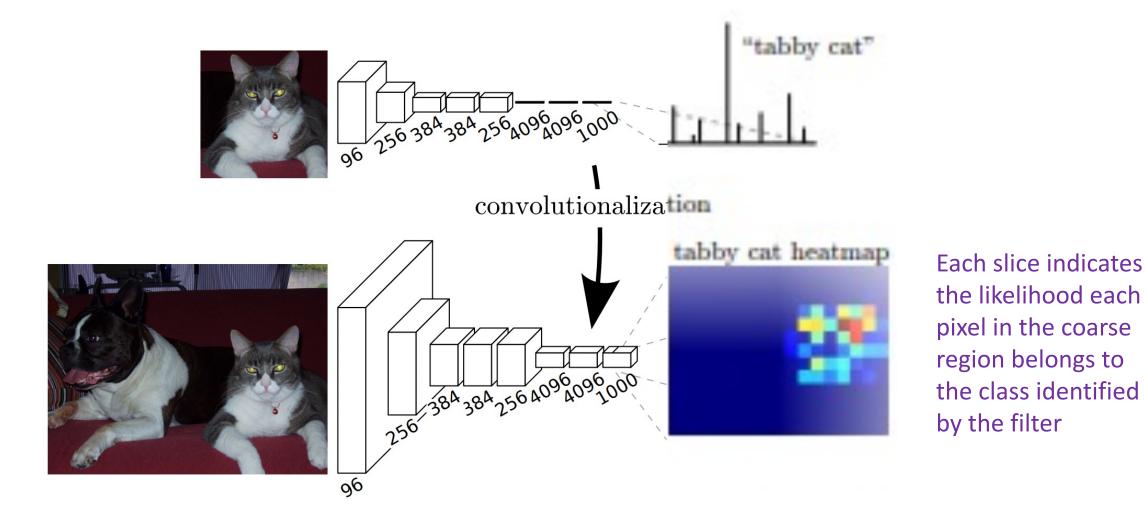
Architecture: Coarse Region Classification (Recall Intuition)

Stacking many convolutional layers leads to learning patterns in increasingly larger regions of the input (e.g., pixel) space.

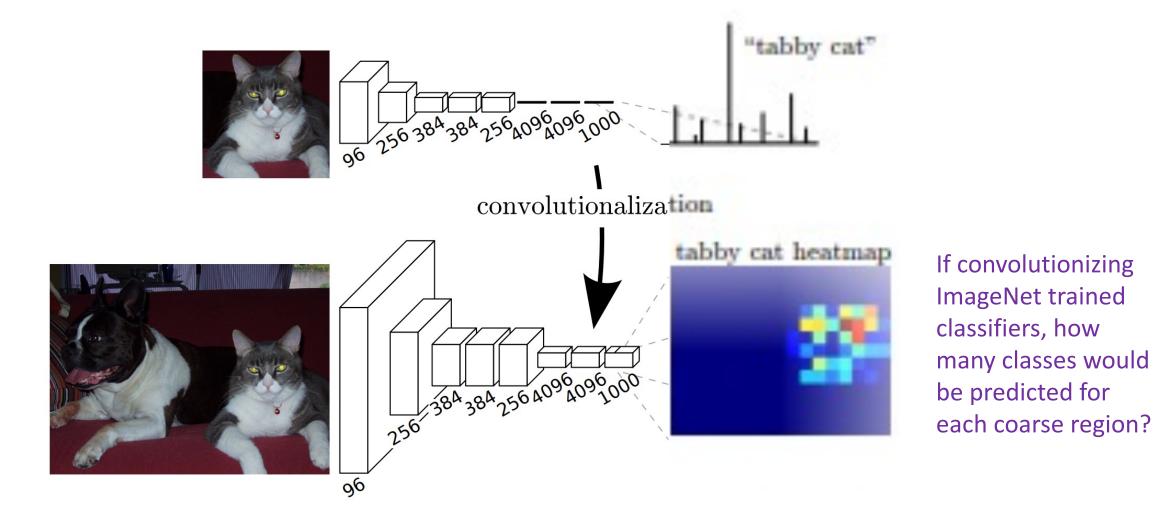


https://www.deeplearningbook.org/contents/convnets.html

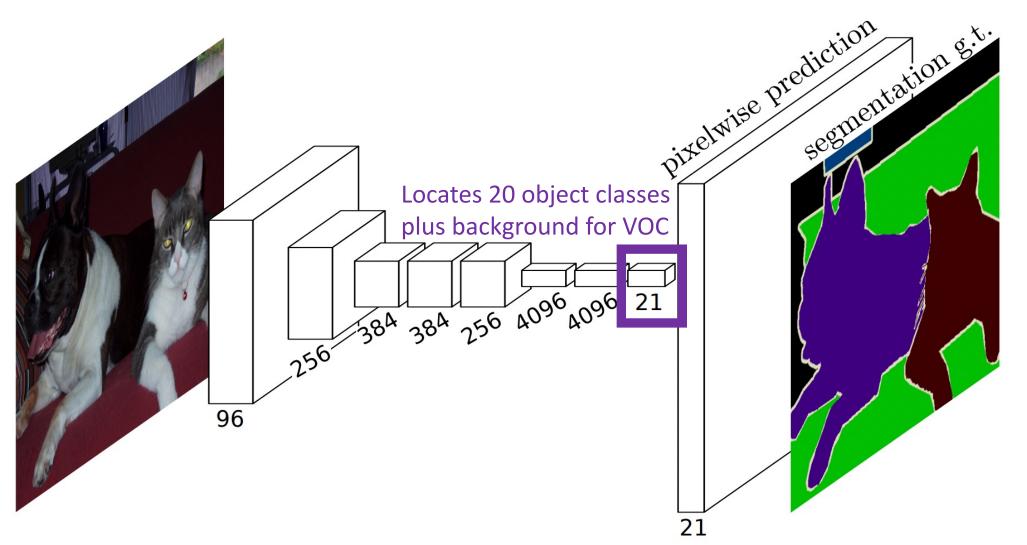
Architecture: Fully vs Convolution Layers



Architecture: Fully vs Convolution Layers

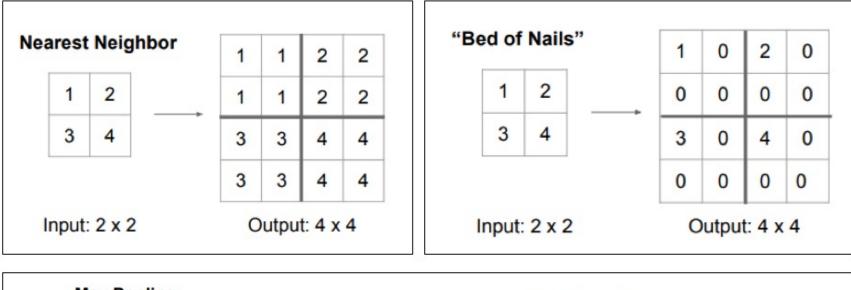


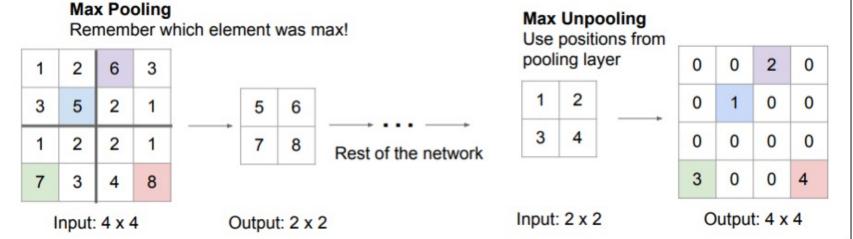
Architecture: Coarse Region Classification



Challenge: how to decode from coarse region classifications to Architecture per pixel classification? Pixelwise Prediction Segmentation S.t. 256 384 384 256 4096 4096 21 96 21

Architecture: Upsampling (Many Approaches)

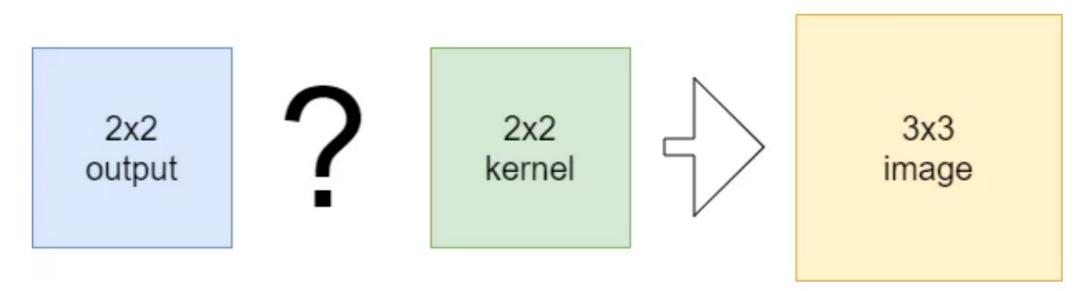




Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Architecture: Upsampling (Transposed Convolutional Layer)

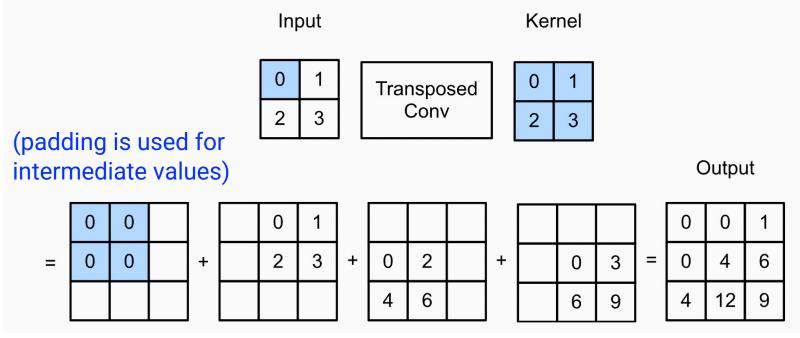
- Idea: learn convolutional filters with a fractional sized stride to upsample the coarse image while refining it; e.g., 1/2 stride
- Also called "fractional convolutional layer", "backward convolution", and, incorrectly, "deconvolution layer"



https://www.machinecurve.com/index.php/2019/09/29/understandingtransposed-convolutions/#the-goal-reconstructing-the-original-input

Architecture: Upsampling (Transposed Convolutional Layer)

- Idea: learn convolutional filters with a fractional sized stride to upsample the coarse image while refining it; e.g., 1/2 stride
- Also called "fractional convolutional layer", "backward convolution", and, incorrectly, "deconvolution layer"

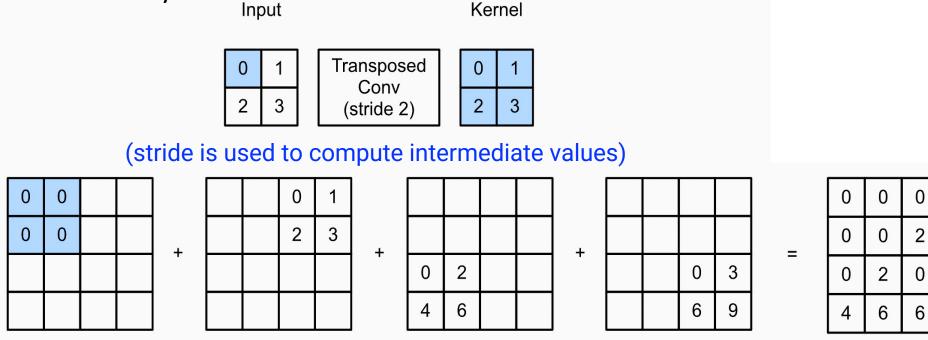


https://d2l.ai/chapter_computer-vision/transposed-conv.html

Architecture: Upsampling (Transposed Convolutional Layer)

=

- Idea: learn convolutional filters with a fractional sized stride to upsample the coarse image while refining it; e.g., 1/2 stride
- Also called "fractional convolutional layer", "backward convolution", and, incorrectly, "deconvolution layer"



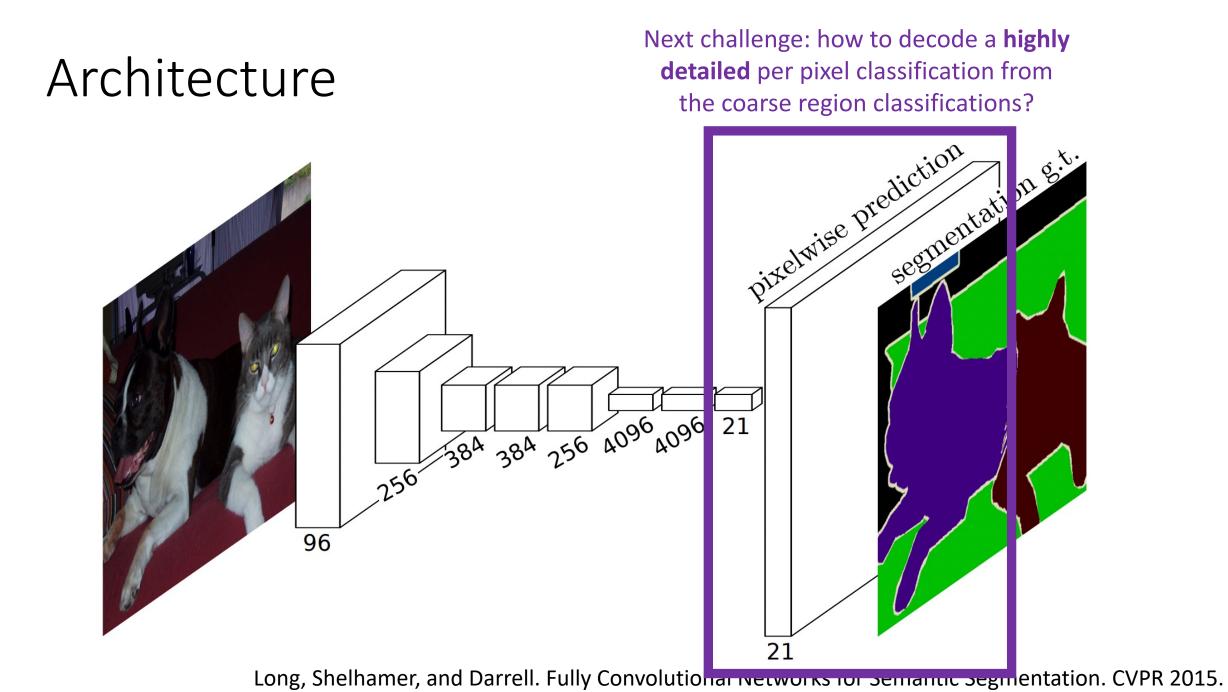
Output

3

3

9

https://d2l.ai/chapter_computer-vision/transposed-conv.html



Architecture: Results

Ground truth target



Next challenge: how to decode a **highly detailed** per pixel classification from the coarse region classifications?

Predicted segmentation

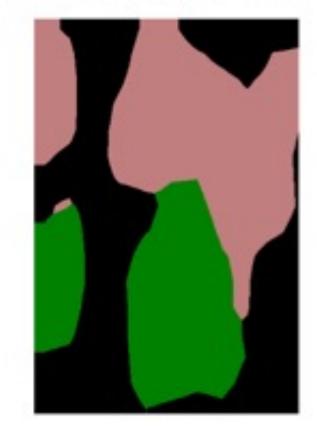
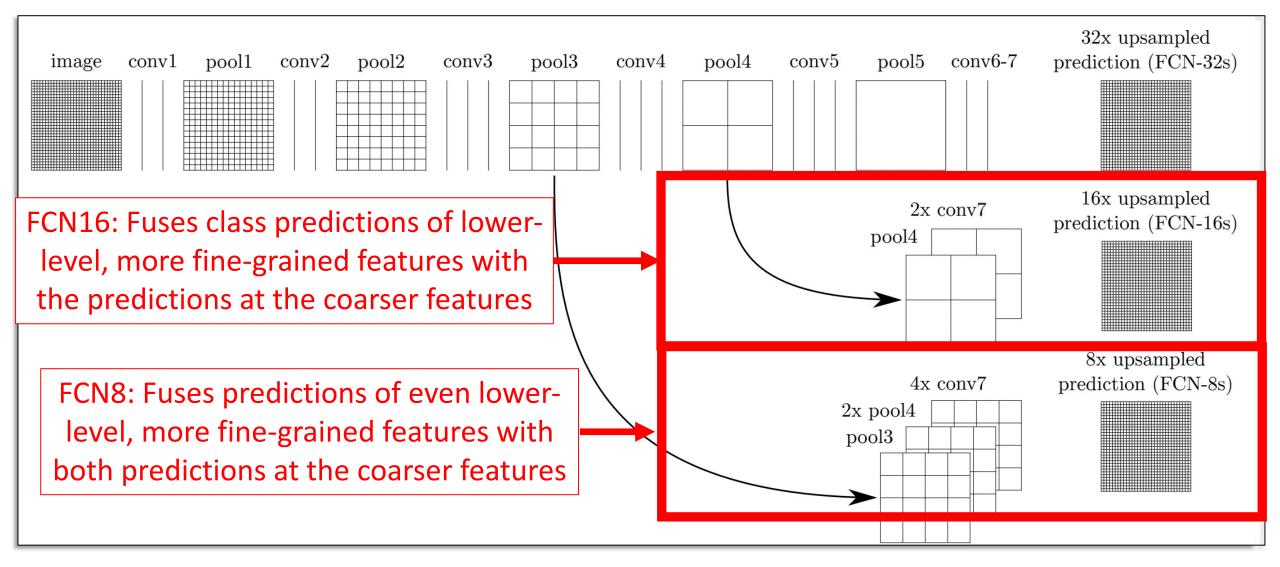


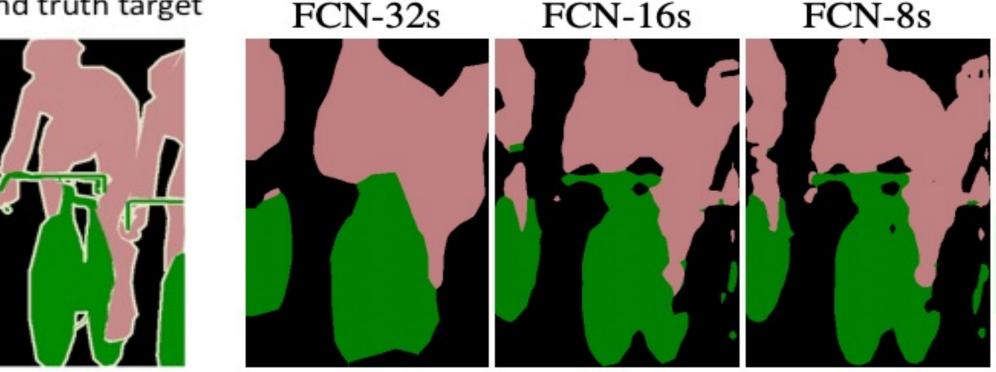
Figure source: https://www.jeremyjordan.me/semantic-segmentation/

Architecture: Update to Use Skip Connections



Architecture: Results

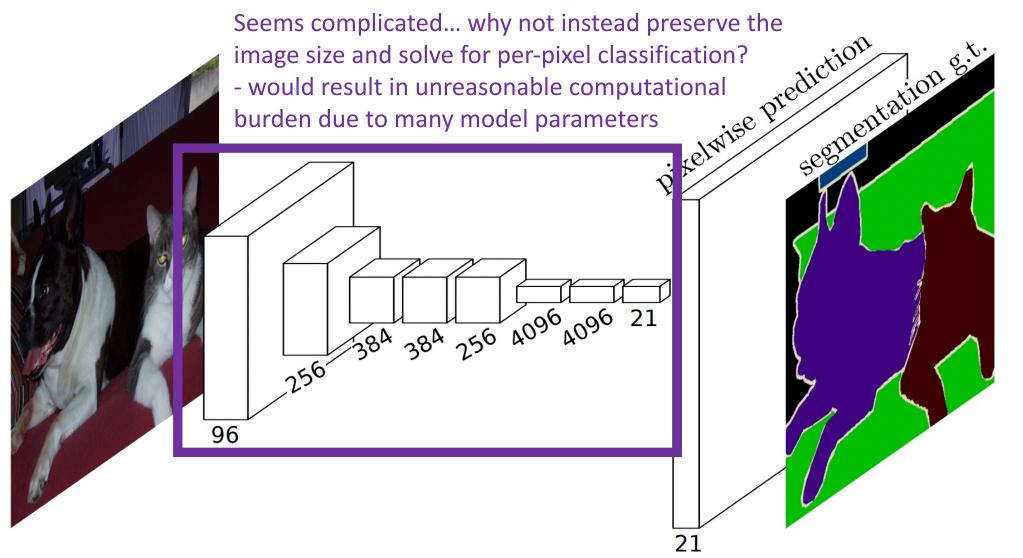
Ground truth target



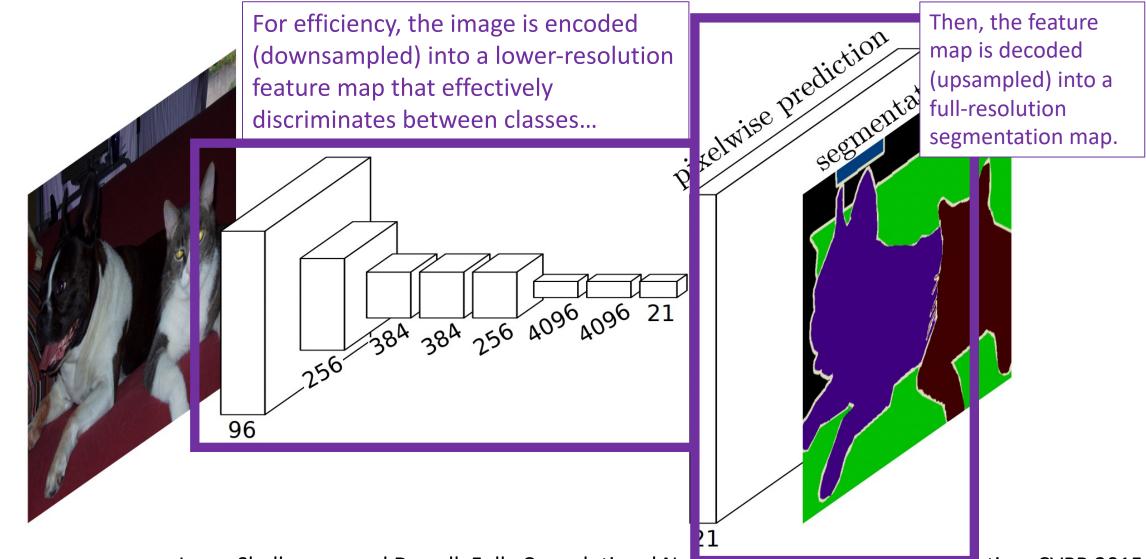
Skip connections support capturing finer-grained details while retaining correct semantic information!

Figure source: https://www.jeremyjordan.me/semantic-segmentation/

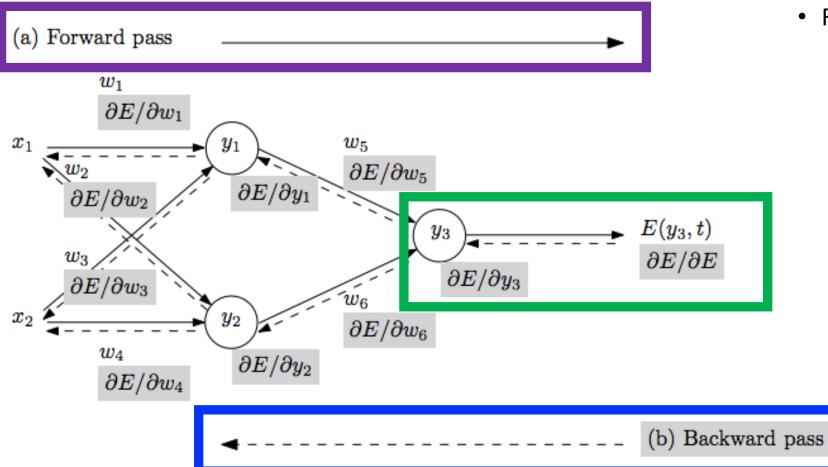
Architecture: Upsampling + Skip Connections



Architecture: Encoder Decoder Architecture



Training: Took 3 days on 1 GPU



- Repeat until stopping criterion met:
 - Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Training: How Neural Networks Learn

Sum across all pixels the distance between predicted and true distributions using cross entropy loss

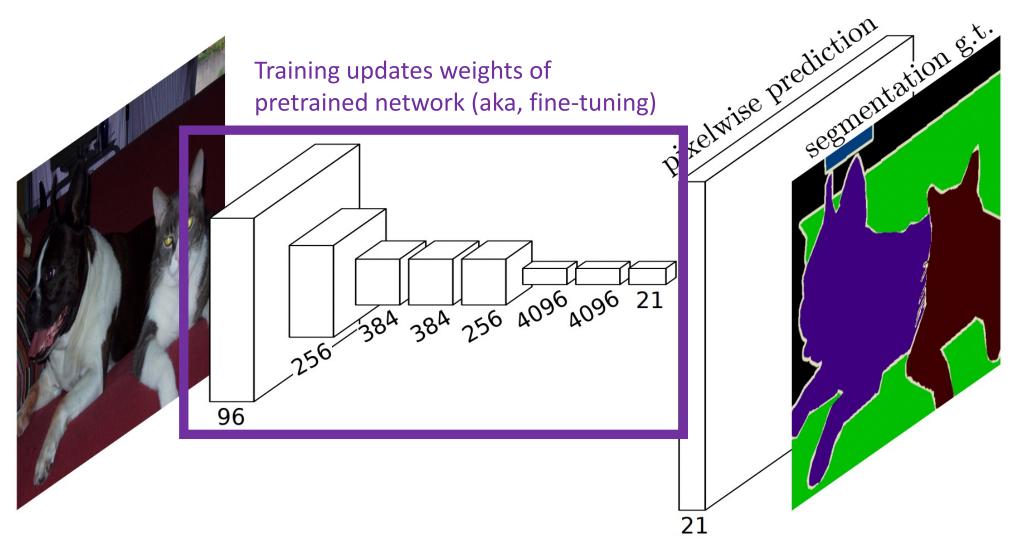
Sum of gradients for all pixels (acts like a minibatch)

- Repeat until stopping criterion met:
 - 1. Forward pass: propagate training data through model to make prediction
 - Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - 4. Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Training: Cross Entropy Loss (Multinomial Logistic Loss)	
 e.g., assume a 5-class classifier Distance between predicted and true distributions per pixel with cross entropy loss 	

Architecture: Algorithm Training



Results

·	mean IU	mean IU	inference
	VOC2011 test	VOC2012 test	time
R-CNN [12]	47.9	-	_
SDS [16]	52.6	51.6	$\sim 50~{ m s}$
FCN-8s	62.7	62.2	$\sim 175~\mathrm{ms}$

Compared to existing methods, produces better results at a faster speed!

Improved Architecture: U-Net

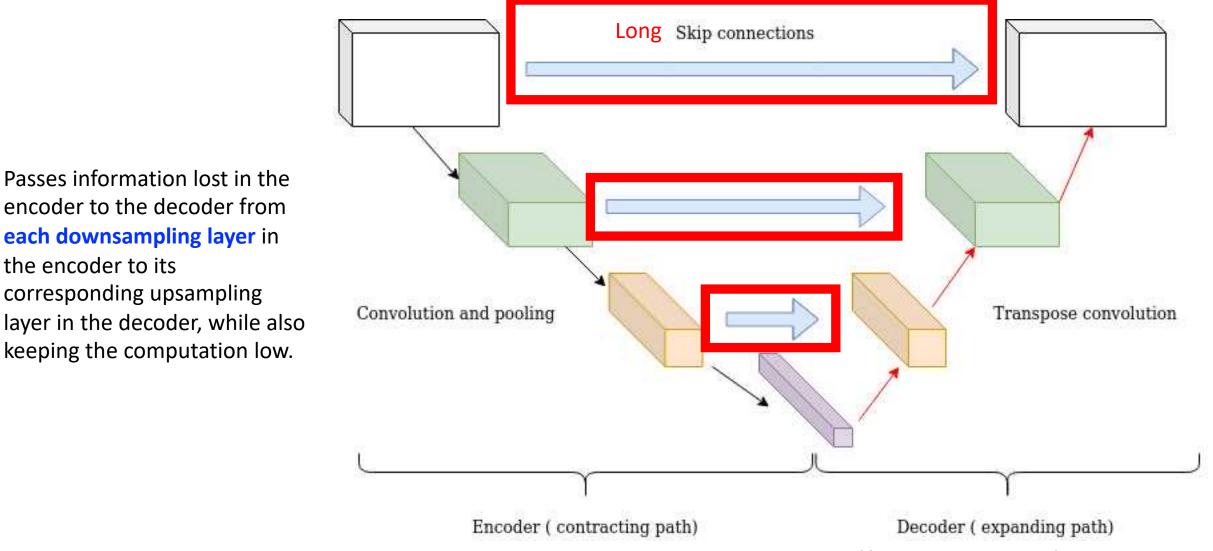
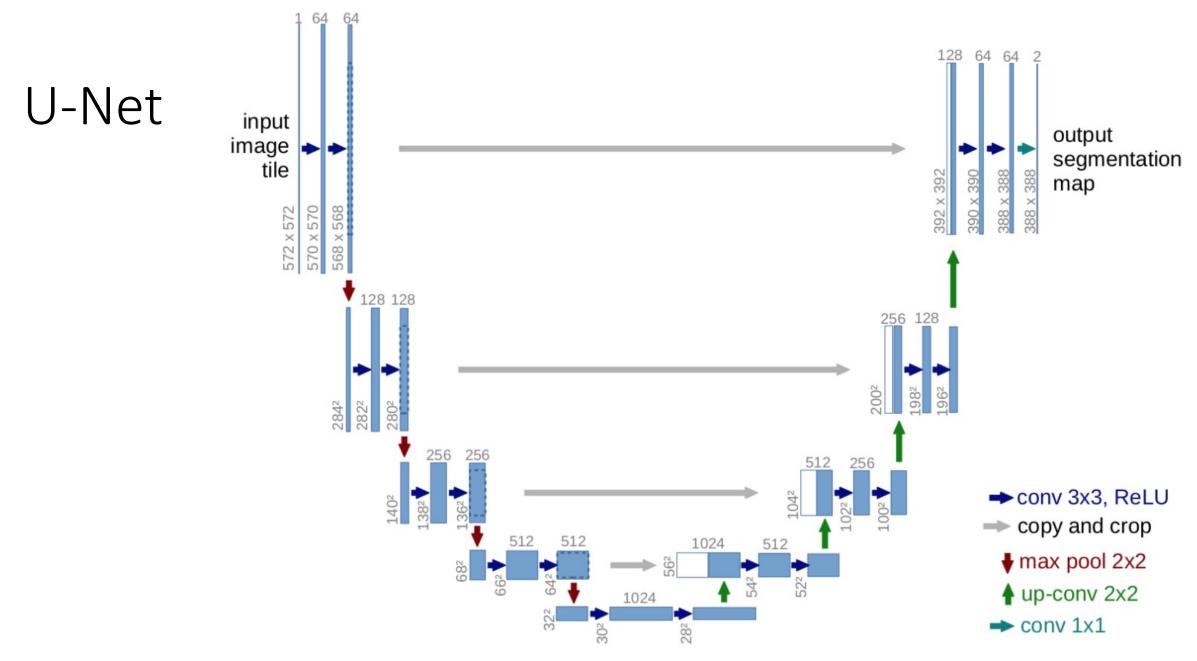


Image Source: https://theaisummer.com/skip-connections/



Ronneberger, Fischer, and Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015.

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

Semantic Segmentation: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Computer vision models: fully convolutional networks
- Discussion

