Object Detection – Part 1

Danna Gurari

University of Colorado Boulder Fall 2023

https://home.cs.colorado.edu/~DrG/Courses/RecentAdvancesInComputerVision/AboutCourse.html

Review

- Last lecture:
 - Scene Classification Problem and Applications
 - Scene Classification: Datasets and Evaluation Metrics
 - Scene Classification Models: Deep Features and Fine-Tuning
 - Attribute Classification: Problem, Applications, and Datasets
 - Student-led Lecture Overview
- Assignments (Canvas)
 - Reading assignment was due earlier today
 - Next reading assignments due Wednesday and next Monday
- Questions?

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

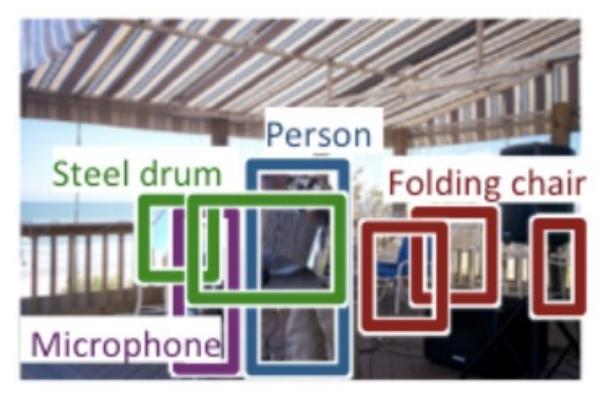
Problem Definition

• Localize with a bounding box object(s) of interest

Focus for today's lecture

Problem: Semantic Object Detection

 Localize with a bounding box every instance of an object from prespecified categories



[Russakovsky et al; IJCV 2015]

A reasonably solved problem

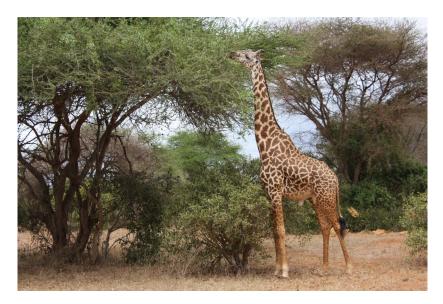
Problem: Salient Object Detection

• Localize with a bounding box the salient object(s)

[Liu et al; CVPR 2007]

Object Detection vs Object Recognition

"What is the difference between (semantic) object detection and object recognition?"

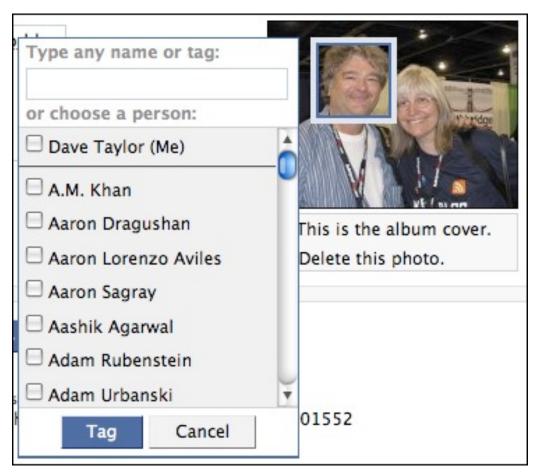


• Must learn appearance of object rather than only its image context; e.g., giraffe

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

Social Media



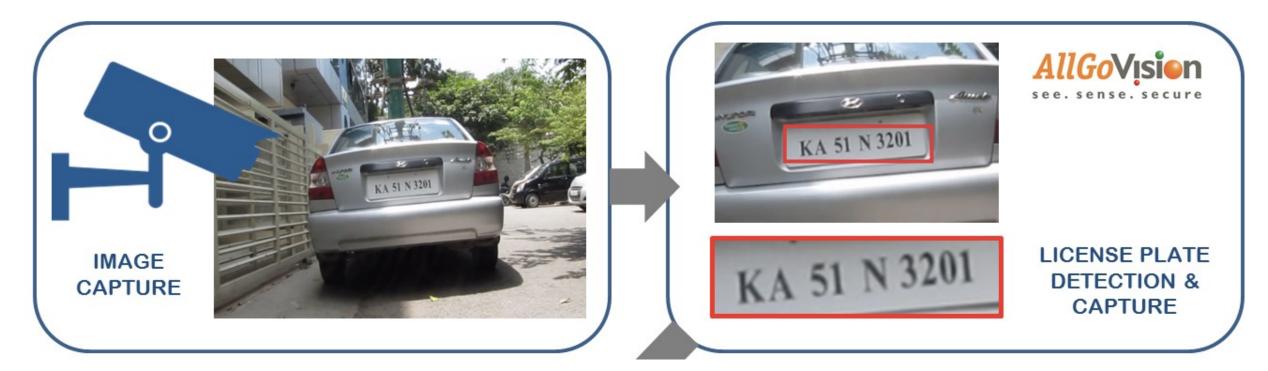
Face detection (e.g., Facebook)

Banking

CHRIS L MARTIN 123 YOUR STREET ANYWHERE, U.S.A. 12345	1/11/16	101
Two hundred and B	lee	\$ 2,11-00 40_totan @ ==-
Bank of America	•	
For	Chur L.	Martin -

Mobile check deposit (e.g., Bank of America)

Transportation



License Plate Detection (e.g., AllGoVision)

Construction Safety

Pedestrian Detection (e.g., Blaxtair) http://media.brintex.com/Occurrence/121/Brochure/3435/brochure.pdf

Counting

Counting Fish (e.g., SalmonSoft) http://www.wecountfish.com/?page_id=143

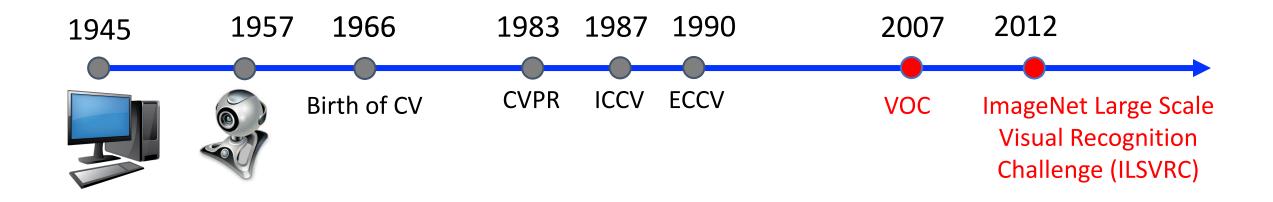
Business Traffic Analytics

Can you think of any other potential applications?

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

Object Detection Datasets



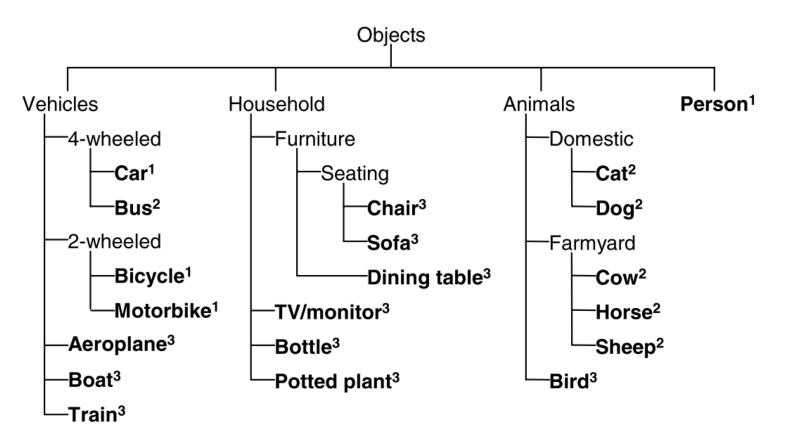
VOC

1. Category Selection

- 20 categories chosen:

 1) Initial 4 categories stem from existing dataset
 2) 2006: added 6 classes
 3) 2007: added 10 classes

- Additional categories provide a broader domain and finer-grained categories, including visually similar things



(superscript indicates year of inclusion in the challenge: 2005¹, 2006², 2007³)

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC

1. Category Selection		2. Image Collection			
- 20 categories chosen:				nor catogory)	
1) Initial 4 categories stem from existing dataset			500 000 imagas	 - aeroplane, airplane, plane, biplane, monoplane, aviator, bombi hydroplane, airliner, aircraft, fighter, airport, hangar, jet, boein fuselage, wing, propellor, flying 	er, g, – horse, gallop, jump, buck, equine, foal, cavalry, saddle, canter, buggy, mare, neigh, dressage, trial, racehorse, steeplechase, thor-
2) 2006: added 6 classes			ride, wheelie - bird, birdie, birdwatching, nest, sea, aviary, birdcage, bird feeder,	 oughbred, cart, equestrian, paddock, stable, farrier motorbike, motorcycle, minibike, moped, dirt, pillion, biker, trials, motorcycling, motorcyclist, engine, motocross, scramble, sidecar, 	
 3) 2007: added 10 classes Additional categories provide a broader domain and finer-grained categories, including visually similar things 	→		Flickr by querying with a number of keywords Guerying with a number of car, automobile, cruiser, motorcar, vehicle vertible, limousine, motor, race, traffic, tri lane, village, town, centre, shopping, down - cat, feline, pussy, mew, kitten, tabby, torto - cow, beef, heifer, moo, dairy, milk, milkin	 boat ship, barge, ferry, canoe, boating, craft, liner, cruise, sailing, rowing, watercraft, regatta, racing, marina, beach, water, canal, river, stream, lake, yacht bottle, cork, wine, beer, champagne, ketchup, squash, soda, coke, lemonade, dinner, lunch, breakfast bus, omnibus, coach, shuttle, jitney, double-decker, motorbus, school bus, depot, terminal, station, terminus, passenger, route car, automobile, cruiser, motorcar, vehicle, hatchback, saloon, convertible, limousine, motor, race, traffic, trip, rally, city, street, road, lane, village, town, centre, shopping, downtown, suburban cat, feline, pussy, mew, kitten, tabby, tortoiseshell, ginger, stray chair, seat, rocker, rocking, deck, swivel, camp, chaise, office, studio, armchair, recliner, sitting, lounge, living room, sitting room cow, beef, heifer, moo, dairy, milk, milking, farm dog, hound, bark, kennel, heel, bitch, canine, puppy, hunter, collar, 	 scooter, trail person, people, family, father, mother, brother, sister, aunt, cle, grandmother, grandma, grandfather, grandpa, grandson, gradaughter, niece, nephew, cousin sheep, ram, fold, fleece, shear, baa, bleat, lamb, ewe, wool, flock sofa, chesterfield, settee, divan, couch, bolster table, dining, cafe, restaurant, kitchen, banquet, party, meal potted plant, pot plant, plant, patio, windowsill, window sill, ya greenhouse, glass house, basket, cutting, pot, cooking, grow train, express, locomotive, freight, commuter, platform, subway, derground, steam, railway, railroad, rail, tube, underground, traccarriage, coach, metro, sleeper, railcar, buffet, cabin, level crossigame

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC

1. Category Selection		2. Image Collection	3. Image Verification + Image Annotation	
- 20 categories chosen:		- 500,000 images retrieved from Flickr by	- University of Leeds annotation party to	
1) Initial 4 categories stem from existing dataset				recruit annotators
2) 2006: added 6 classes	retrieved from		- Annotation guidelines & real-time	
3) 2007: added 10 classes			 assistance	
- Additional categories provide a broader domain		number of	- Review of every annotation	
and finer-grained categories, including visually similar things		keywords	 Annotate only "minority" classes at end of party to increase the count of them 	

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC Guidelines:

What are potential limitations of this task design for resulting datasets (and so algorithms developed with such datasets)?

What to label	All objects of the defined categories, unless:
	 you are unsure what the object is.
	 the object is very small (at your discretion).
	 less than 10-20% of the object is visible, such that you cannot
	be sure what class it is. e.g. if only a tyre is visible it may
	belong to car or truck so cannot be labelled car, but feet/faces
	can only belong to a person.
	If this is not possible because too many objects, mark image as bad.
Viewpoint	Record the viewpoint of the 'bulk' of the object e.g. the body rather
	than the head. Allow viewpoints within 10-20 degrees.
	If ambiguous, leave as 'Unspecified'. Unusually rotated objects e.g.
	upside-down people should be left as 'Unspecified'.
Bounding box	Mark the bounding box of the visible area of the object (not the
	estimated total extent of the object).
	Bounding box should contain all visible pixels, except where the
	bounding box would have to be made excessively large to include a
	few additional pixels (<5%) e.g. a car aerial.
Truncation	If more than 15-20% of the object lies outside the bounding box
	mark as Truncated. The flag indicates that the bounding box does
	not cover the total extent of the object.
Occlusion	If more than 5% of the object is occluded within the bounding box,
	mark as Occluded. The flag indicates that the object is not totally
	visible within the bounding box.
Image quality/	
illumination	be marked bad. However, poor illumination (e.g. objects in
	silhouette) should not count as poor quality unless objects cannot be
	recognised.
	Images made up of multiple images (e.g. collages) should be
	marked bad.
	If an object is 'occluded' by a close-fitting occluder e.g. clothing,
snow etc.	mud, snow etc., then the occluder should be treated as part of the
	object.
Transparency	Do label objects visible through glass, but treat reflections on the
	glass as occlusion.
Mirrors	Do label objects in mirrors.
Pictures	Label objects in pictures/posters/signs only if they are photorealistic
	but not if cartoons, symbols etc.

VOC Annual Workshop

The PASCAL Visual Object Clas × +

- → C () Not Secure | host.robots.ox.ac.uk/pascal/VOC/

The **PASCAL** Visual Object Classes Homepage

☆

The PASCAL VOC project:

- · Provides standardised image data sets for object class recognition
- · Provides a common set of tools for accessing the data sets and annotations
- Enables evaluation and comparison of different methods
- Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

Pascal VOC data sets

Data sets from the VOC challenges are available through the challenge links below, and evalution of new methods on these data sets can be achieved through the <u>PASCAL VOC Evaluation Server</u>. The evaluation server will remain active even though the challenges have now finished.

http://host.robots.ox.ac.uk/pascal/VOC/

VOC: Datasets Evolved

The table below gives a brief summary of the main stages of the VOC development.

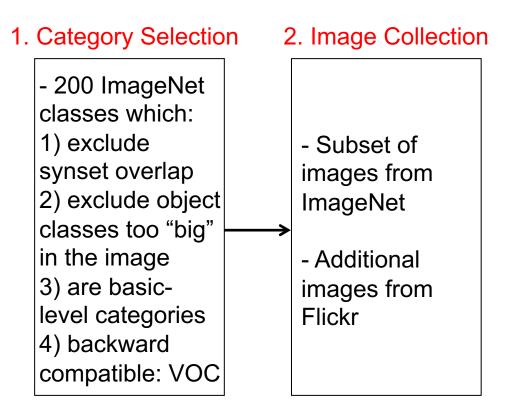
Year	Statistics	New developments	Notes
2005	Only 4 classes: bicycles, cars, motorbikes, people. Train/validation/test: 1578 images containing 2209 annotated objects.	Two competitions: classification and detection	Images were largely taken from exising public datasets, and were not as challenging as the flickr images subsequently used. This dataset is obsolete.
2006	10 classes: bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep. Train/validation/test: 2618 images containing 4754 annotated objects.	Images from flickr and from Microsoft Research Cambridge (MSRC) dataset	The MSRC images were easier than flickr as the photos often concentrated on the object of interest. This dataset is obsolete.

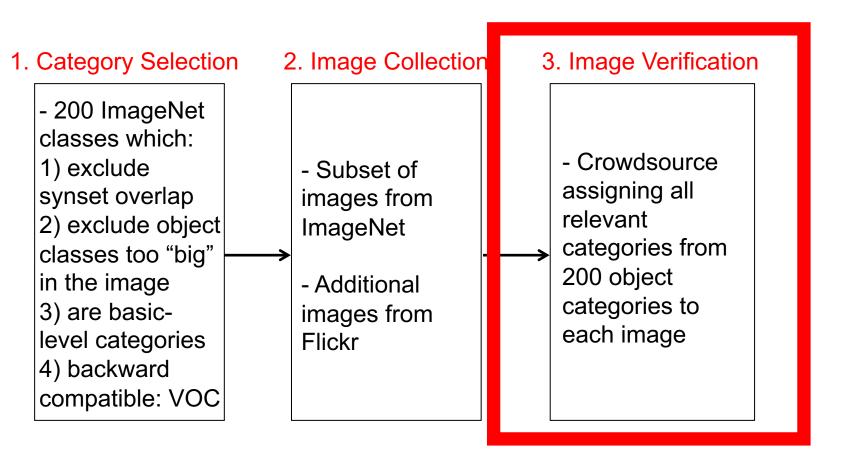
"ILSVRC follows in the footsteps of the PASCAL VOC challenge... which set the precedent for standardized evaluation of recognition algorithms in the form of yearly competitions."

1. Category Selection

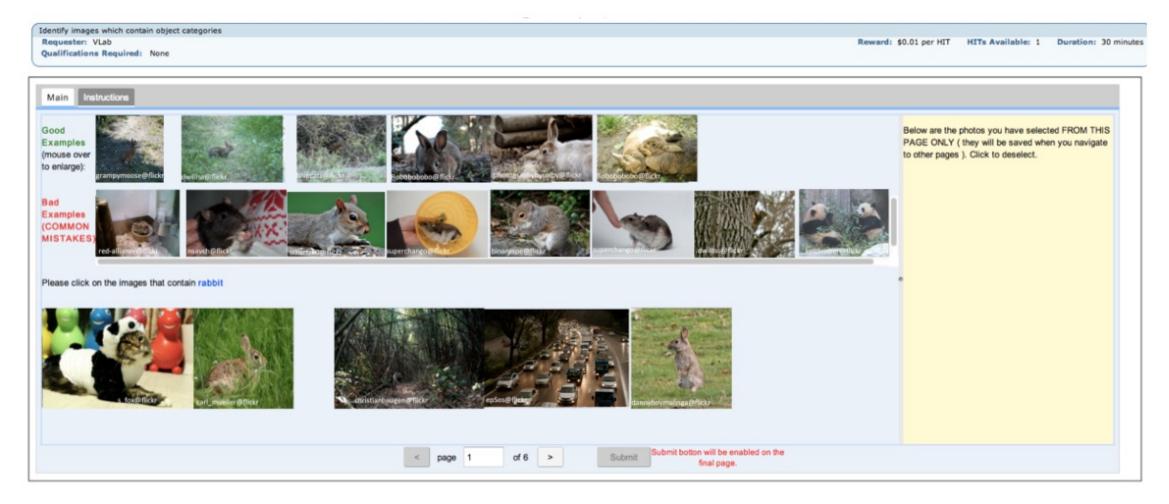
200 ImageNet
classes which:
1) exclude
synset overlap
2) exclude object
classes too "big"
in the image
3) are basiclevel categories
4) backward
compatible: VOC

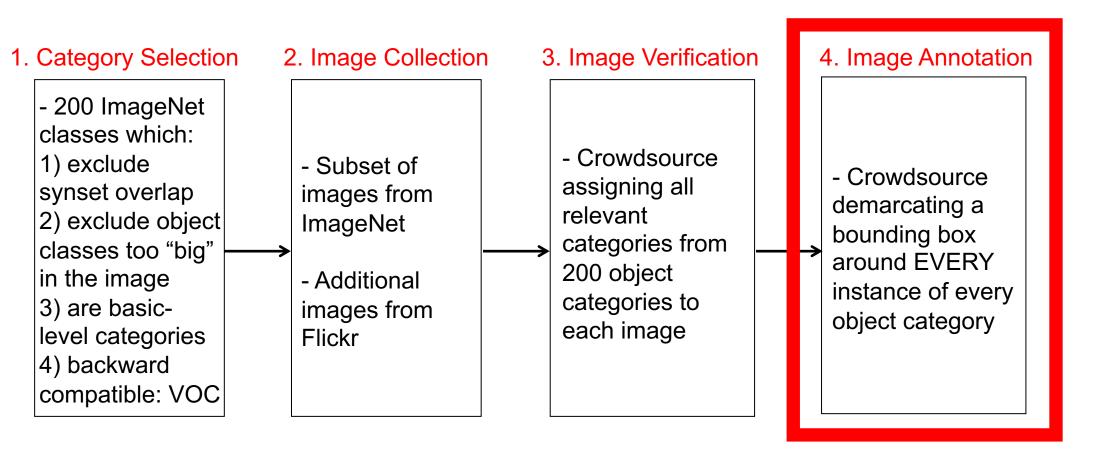
Class name in	Closest class in
PASCAL VOC	ILSVRC-DET
(20 classes)	(200 classes)
aeroplane	airplane
bicycle	bicycle
bird	bird
boat	watercraft
bottle	wine bottle
bus	bus
car	car
cat	domestic cat
chair	chair
cow	cattle
dining table	table
dog	dog
horse	horse
motorbike	motorcyle
person	person
potted plant	flower pot
sheep	sheep
sofa	sofa
train	train
tv/monitor	tv or monitor





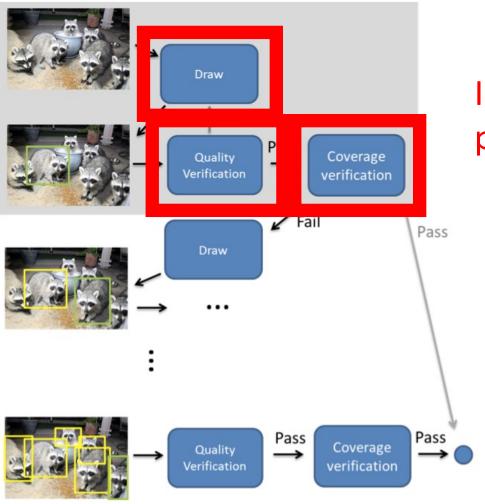
Recall from ImageNet: Object Presence Labeling





ILSVRC: Efficient Object Localization

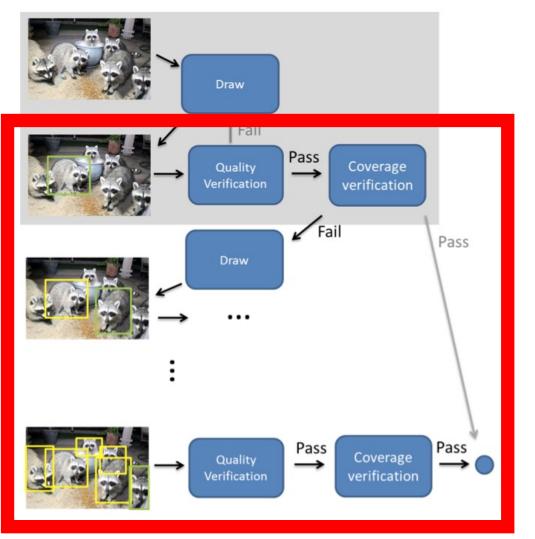
• 3 Tasks:



Idea: each task has fixed and predictable amount of work

ILSVRC: Efficient Object Localization

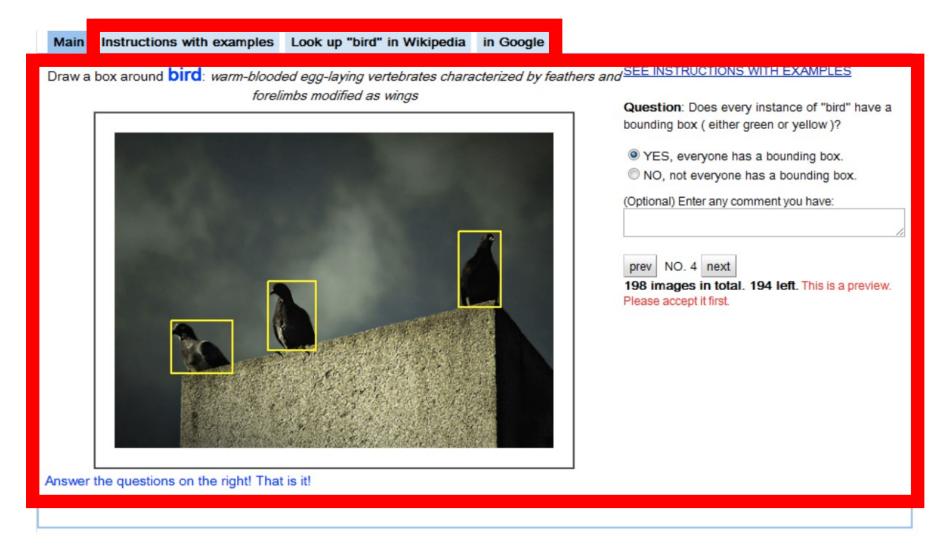
• 3 Tasks:

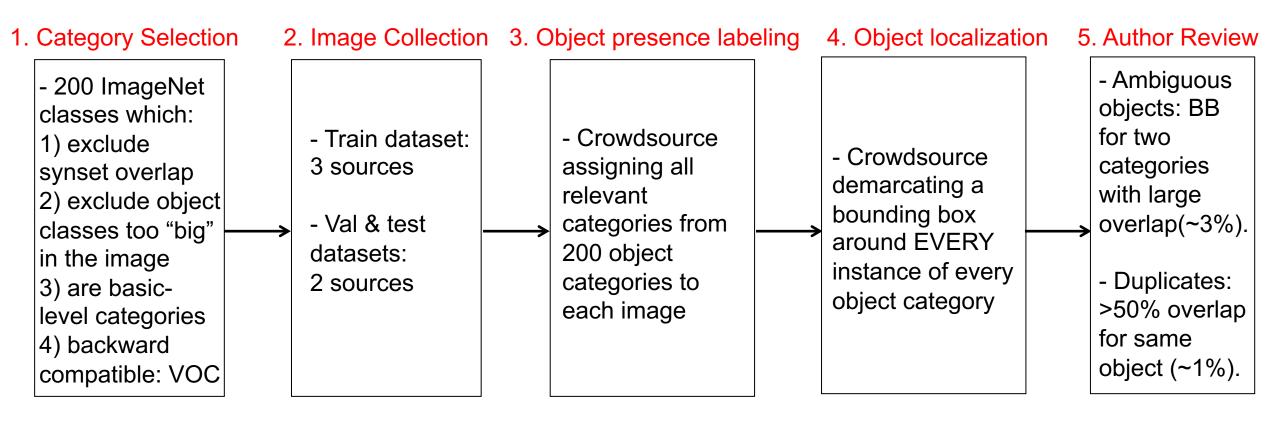


ILSVRC: Drawing Task

ILSVRC: Quality Verification Task

ILSVRC: Coverage Verification Task





Object Detection: ILSVRC Annual Workshop

ImageNet Large Scale Visual R × +
← → C ① Not Secure image-net.org/challenges/LSVRC/2012/index#introduction
IM GENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Introduction Took Timotoble Citation ^{New} Organizare Contact Workshap Download Evaluation Server
Introduction Task Timetable Citation ^{new} Organizers Contact Workshop Download Evaluation Server
News
• September 2, 2014: <u>A new paper</u> which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset,
analyzes the results of the past five years of the challenge, and even compares current computer accuracy with human accuracy is now available. Please cite it when reporting ILSVRC2012 results or using the dataset.
 March 19, 2013: Check out ILSVRC 2013!
January 26, 2012: Evaluation server is up. Now you can evaluate you own results against the competition entries.
 December 21, 2012: Additional analysis of the ILSVRC dataset and competition results is
 released. October 21, 2012: Slides from the workshop are being added to the workshop schedule.
 October 13, 2012: <u>Full results</u> are released.

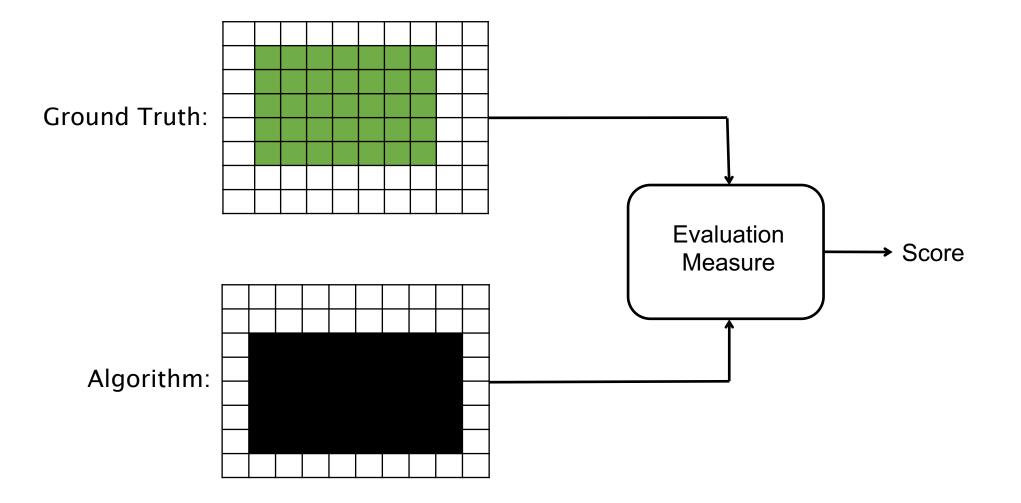
http://image-net.org/challenges/LSVRC/2012/index#introduction

Object Detection: Today's Topics

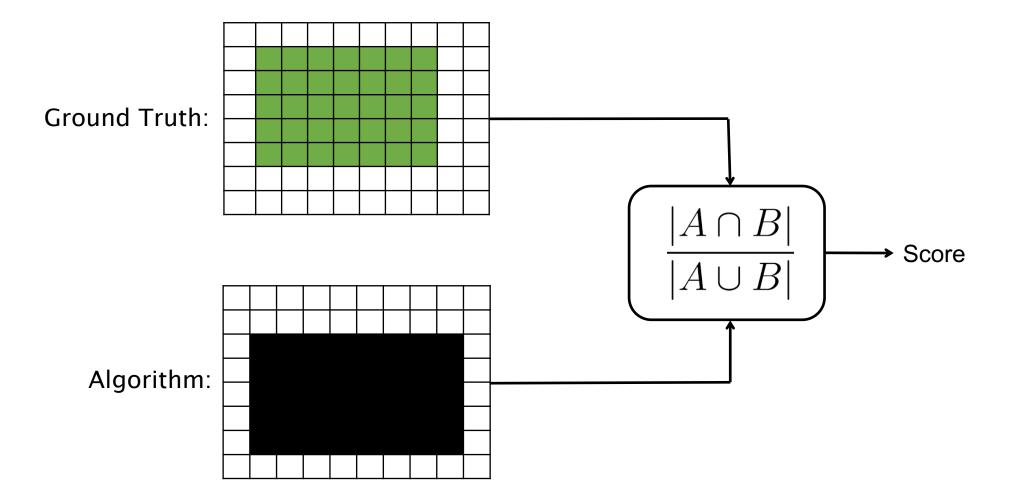
- Problem
- Applications
- Datasets
- Evaluation metric

• Overview of object detection algorithms and baseline (R-CNN)

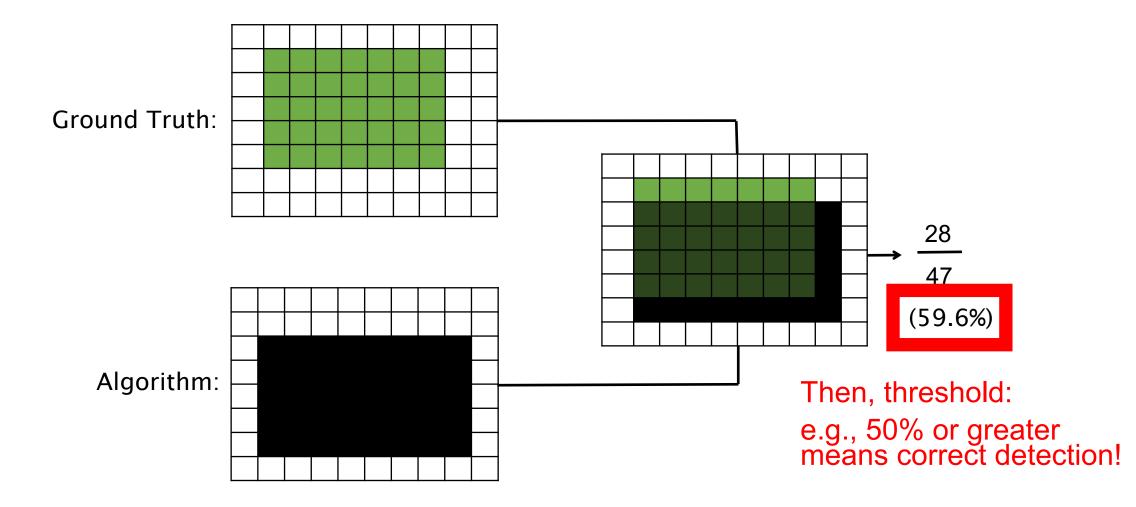
Single Object



Single Object: IoU (Intersection Over Union)

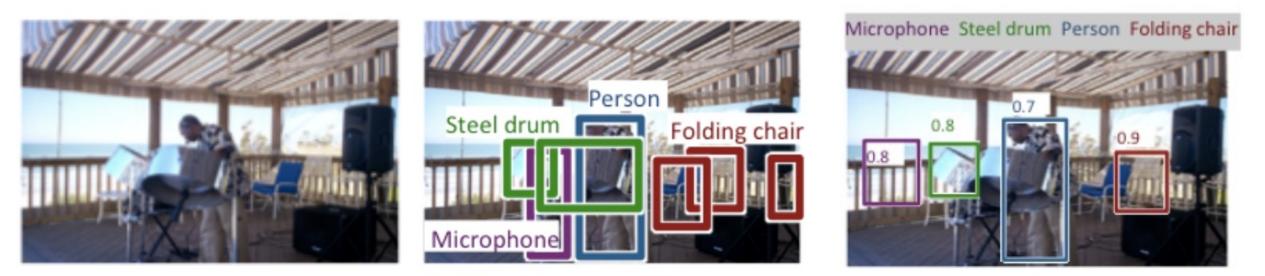


Single Object: IoU (Intersection Over Union)



Evaluation Metric Basics: Precision

• For each object class (e.g., cat, dog, ...), compute precision: fraction of correct detections from all detections using 0.5 IoU threshold



Ground truth

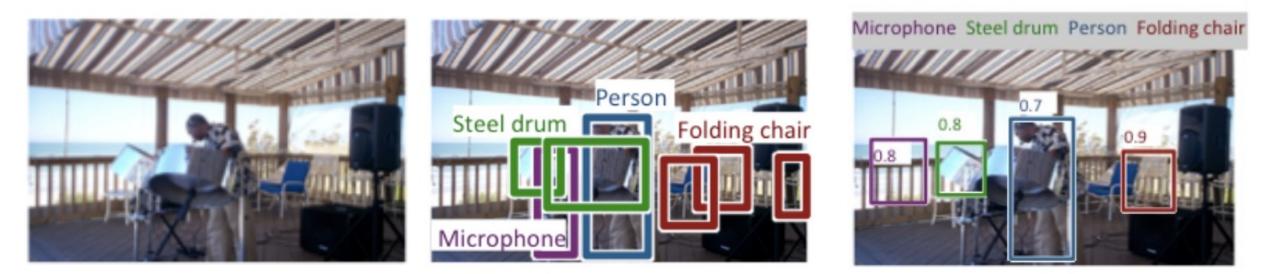
AP: ? ? ? ?

[Russakovsky et al; IJCV 2015]

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Evaluation Metric Basics: Precision

• For each object class (e.g., cat, dog, ...), compute precision: fraction of correct detections from all detections using IoU threshold (e.g., 0.5)



Ground truth

P: 0.0 0.5 1.0 0.3

[Russakovsky et al; IJCV 2015]

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Evaluation Metric: mAP

- For each object class (e.g., cat, dog, ...), compute Average Precision (AP)
 - Vary IoU threshold in order to create a precision-recall curve, and then computer compute area under the curve
- Then, compute mean AP across all classes

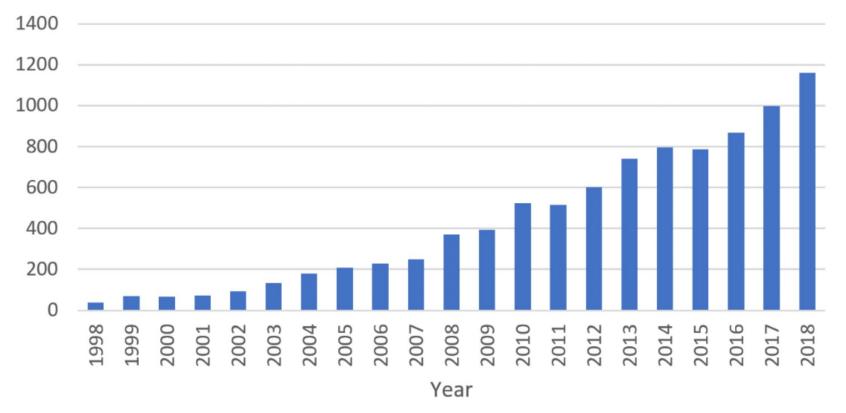
[Russakovsky et al; IJCV 2015] https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

Community Research Engagement

Number of Publications in Object Detection



"Data from Google scholar advanced search: allintitle: 'object detection' AND 'detecting objects'"

Zhou et al. Object Detection in 20 Years: A Survey. arXiv 2019.

Naïve Solution: Sliding Window Approach

Person? Person? Person? Person? Person? Person? Person? Person?

Image Source: https://yourboulder.com/boulder-neighborhood-downtown/

Naïve Solution: Sliding Window Approach

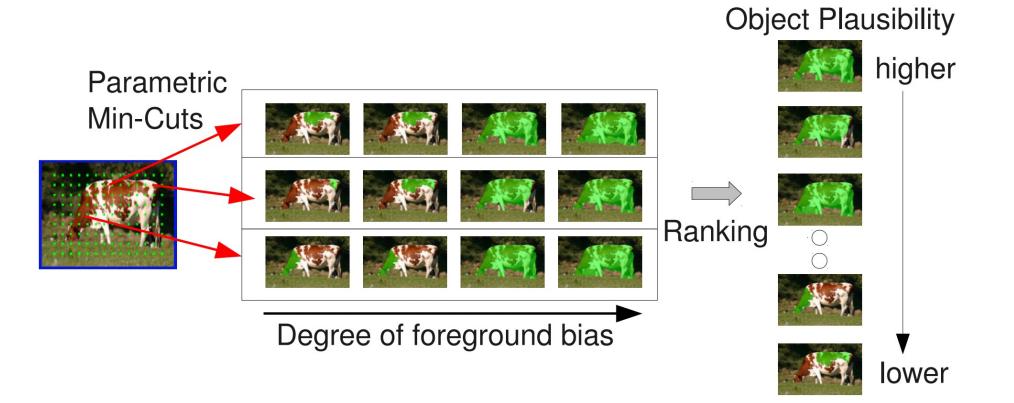
Image Source: https://yourboulder.com/boulder-neighborhood-downtown/

Naïve Solution: Sliding Window Approach

- Sliding window approach: must test different locations at...
 - Different scales
 - Different aspect ratios (e.g., for person vs car or car viewed at different angles)
- Number of regions to test? (e.g., 1920 x 1080 image)
 - Easily can explode to hundreds of thousands or millions of windows
- Key limitation
 - Very slow!

A Less Naïve Solution: Region Proposals

• Replace sliding window approach with *region proposals* (bounding boxes around "object"like regions) found by grouping similar pixels based on low-/mid-level features; e.g., CPMC

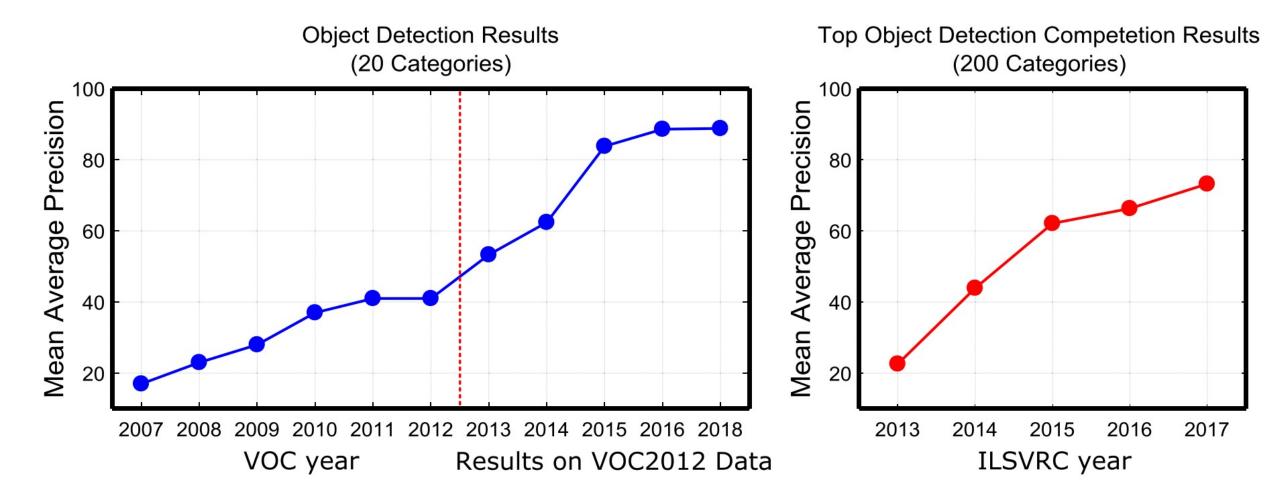


Carreira and Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation. CVPR 2010.

A Less Naïve Solution: Region Proposals

- Replace sliding window approach with *region proposals* (bounding boxes around "object"like regions); e.g., CPMC
- Advantage: considerably fewer regions than needed in a naïve sliding window approach, with belief they will include the objects of interest (i.e., high recall)
- Many options: CPMC, Category Independent Object Proposals, Randomized Prim, Selective Search, and more
- A good start...

Turning Point (2012): Deep Learning Solutions



Li Liu et al. "Deep Learning for Generic Object Detection: A Survey." IJCV 2019

Object Detection Milestones + Multi-resolution Detection + Hard-negative Mining Retina-Net SSD (W. Liu (T. Y. Lin et al-17) et al-16) YOLO (J. Redmon + Bounding Box Regression DPM et al-16,17) HOG Det. (P. Felzenszwalb et al-08, 10) One-stage (N. Dalal et al-05) detector VJ Det. (P. Viola et al-01) + AlexNet 2014 2015 2016 2017 2018 2019 2001 2004 2006 2008 2012 2014 2015 2016 2017 2018 2019 Traditional Detection RCNN Two-stage (R. Girshick et al-14) SPPNet Methods detector (K. He et al-14) Wisdom of the cold weapon Deep Learning based Fast RCNN **Detection Methods** (R. Girshick-15) **Technical aesthetics of GPU** Faster RCNN Pyramid Networks (S. Ren et al-15) (T. Y. Lin et al-17) + Multi-reference Detection + Feature Fusion (Anchors Boxes)

Zhou et al. Object Detection in 20 Years: A Survey. arXiv 2019.

Why R-CNN?

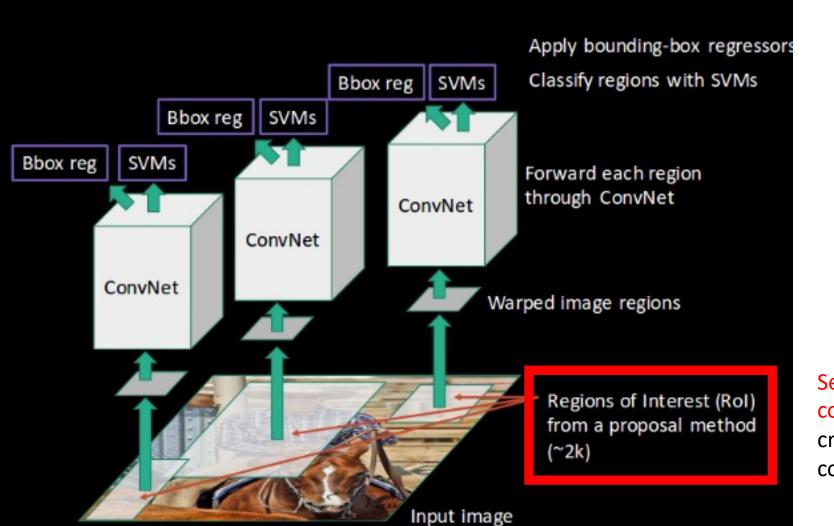
Named after the proposed technique: use **R**egion proposals with **CNN** features

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation." CVPR 2014.

Key Contributions of R-CNN

- 1. Demonstrate how to accurately localize objects with a neural network (NN)
 - First time a CNN outperformed hand-crafted features on VOC, achieving mAP of 54% compared to 33% for previous HOG based model (VOC 2010)
- 2. Demonstrate how train an accurate (high-capacity) NN with a scarce amount of annotated detection data

Architecture



Selective Search used to enable comparison with prior work; creates ~2000 regions based on color, texture, size and shape

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Architecture

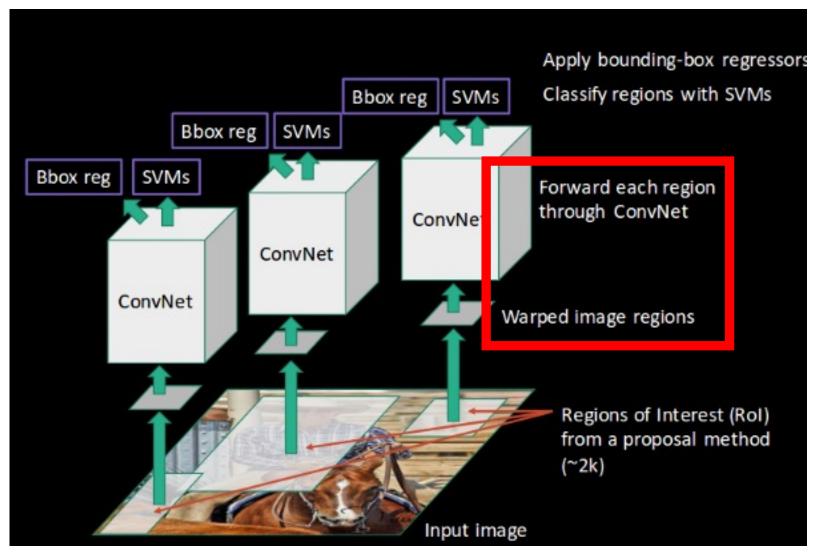
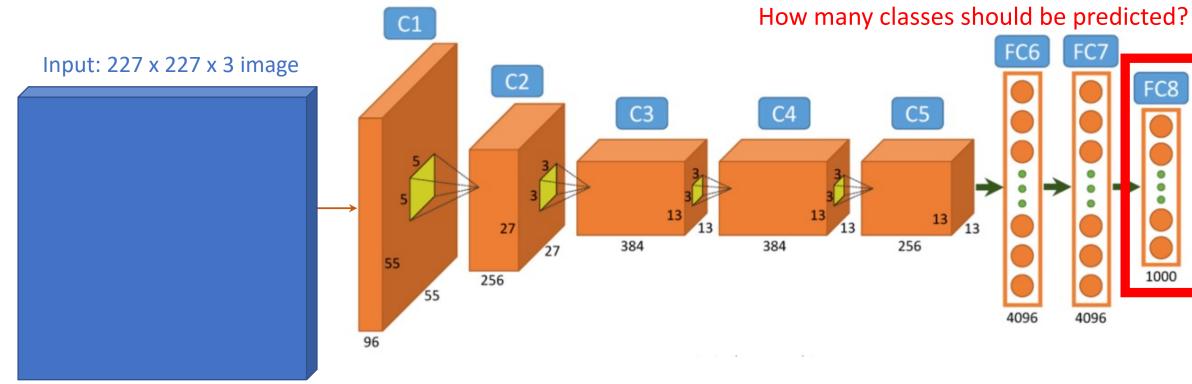


Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

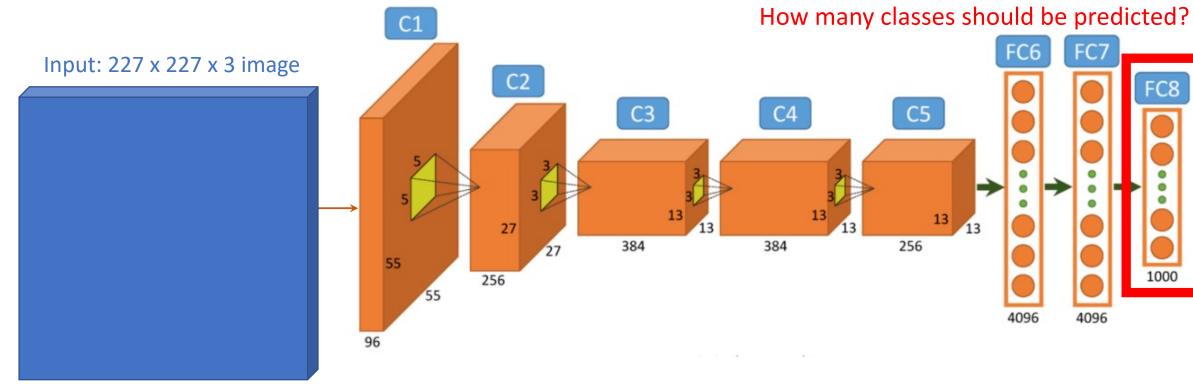
Key idea: Given scarce amount of training data in detection datasets, devise good feature by fine-tuning model that is pre-trained on a large dataset

- Replace final layer of AlexNet (trained on ImageNet) with # of categories in (VOC) detection dataset



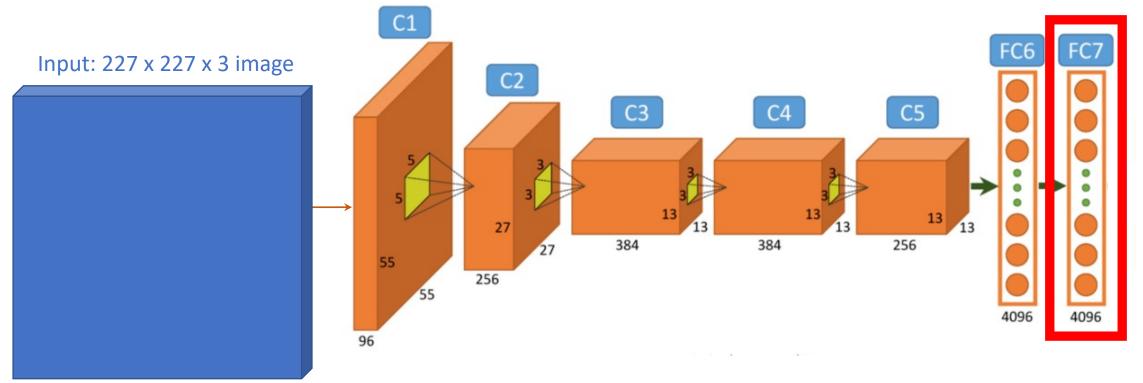
Key idea: Given scarce amount of training data in detection datasets, devise good feature by fine-tuning model that is pre-trained on a large dataset

- Replace final layer of AlexNet (trained on ImageNet) with # of categories in (ILSVRC) detection dataset

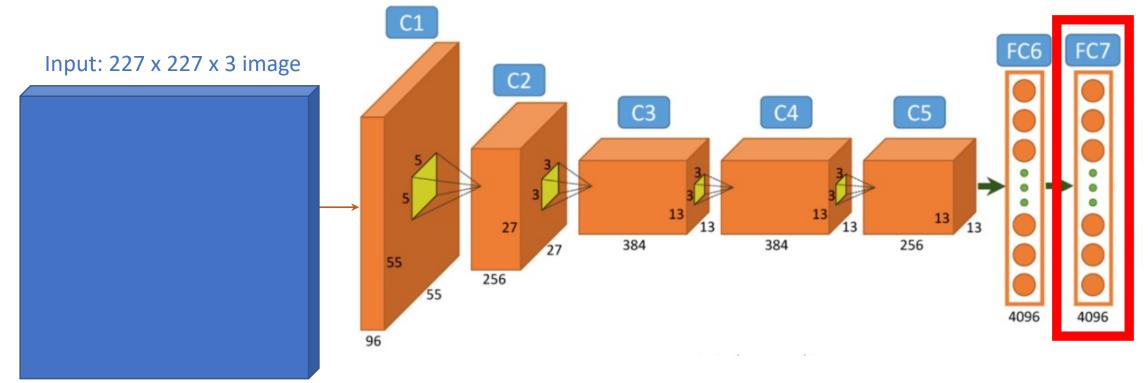


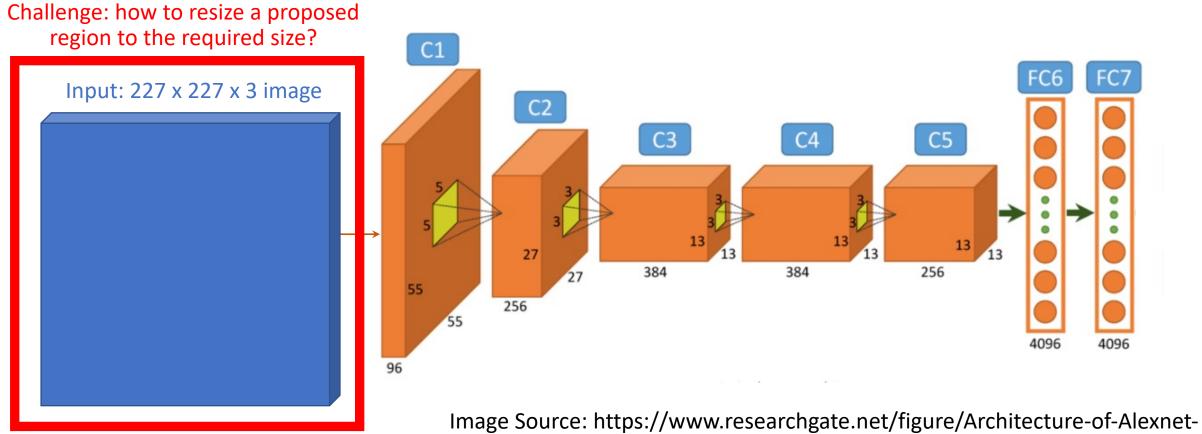
Key idea: Given scarce amount of training data in detection datasets, devise good feature by fine-tuning model that is pre-trained on a large dataset

- Replace final layer of AlexNet and use FC7 feature from fine-tuned model

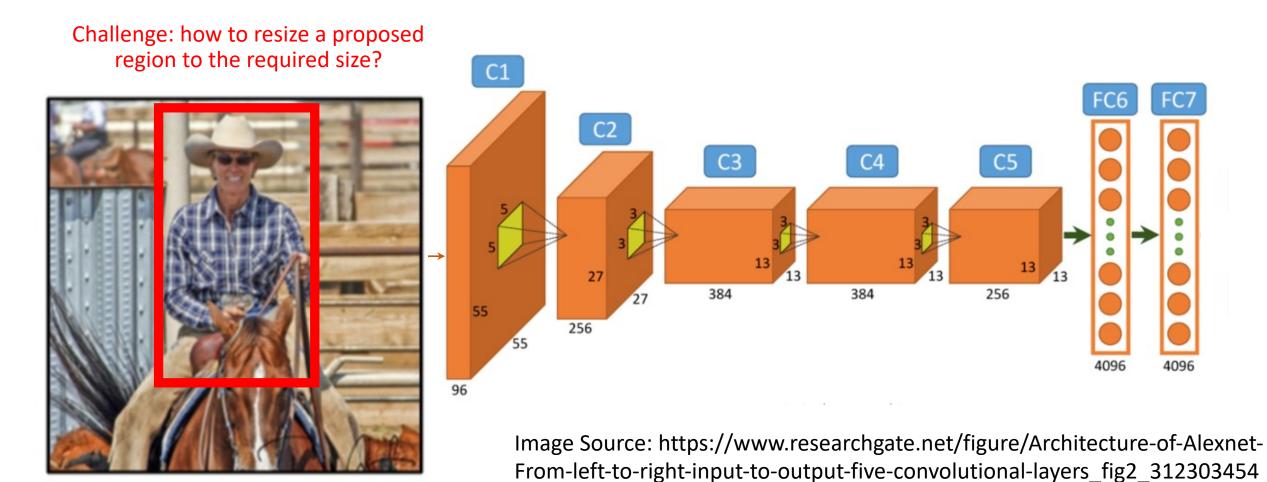


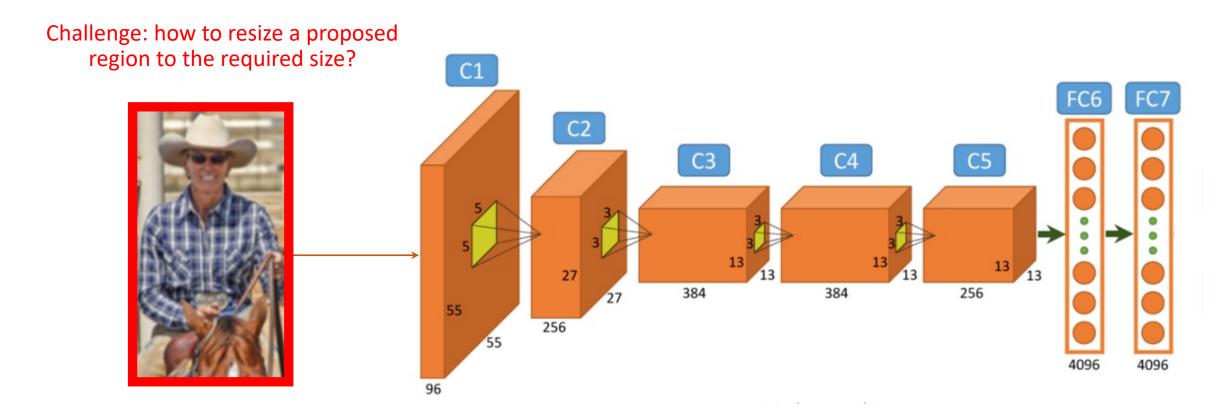
- Benefits of these features:
 - can be learned for a dataset instead of handcrafted (e.g., HOG, SIFT)
 - ~2 orders of magnitude smaller than traditional features (e.g., HOG, SIFT)





From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

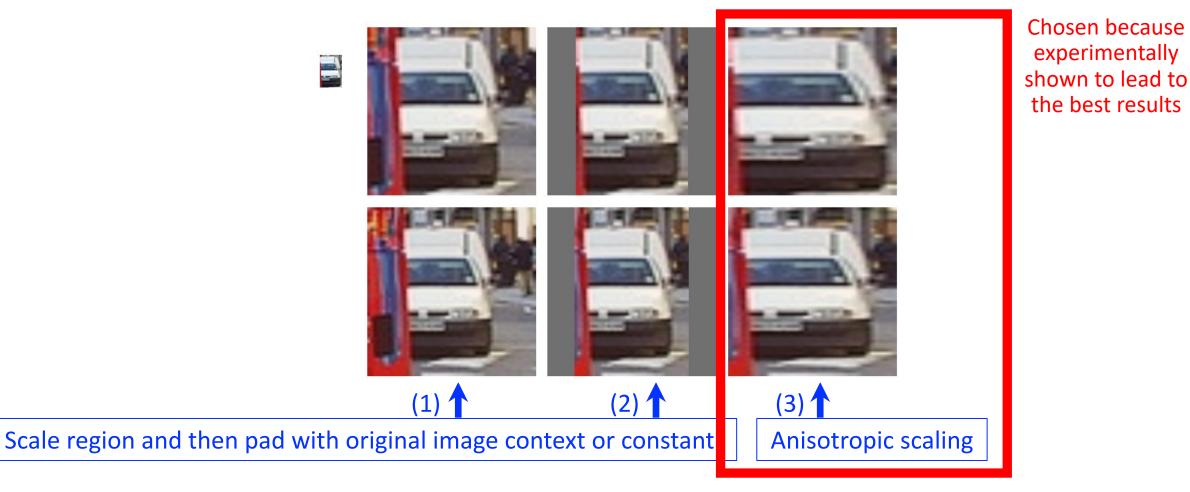




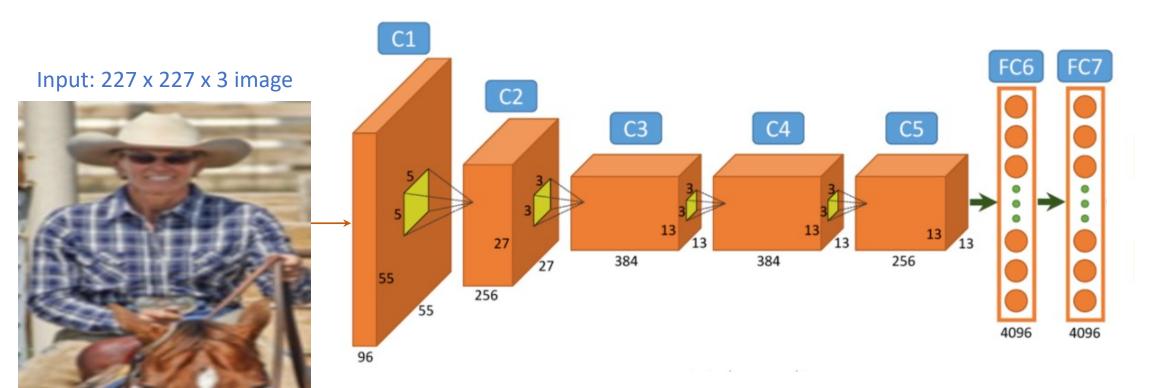
Region Resizing

As exemplified, region proposals come in different sizes and aspect ratios

Region Resizing



Many ways to convert a region into a fixed input size of 227 x 227 x 3



Architecture

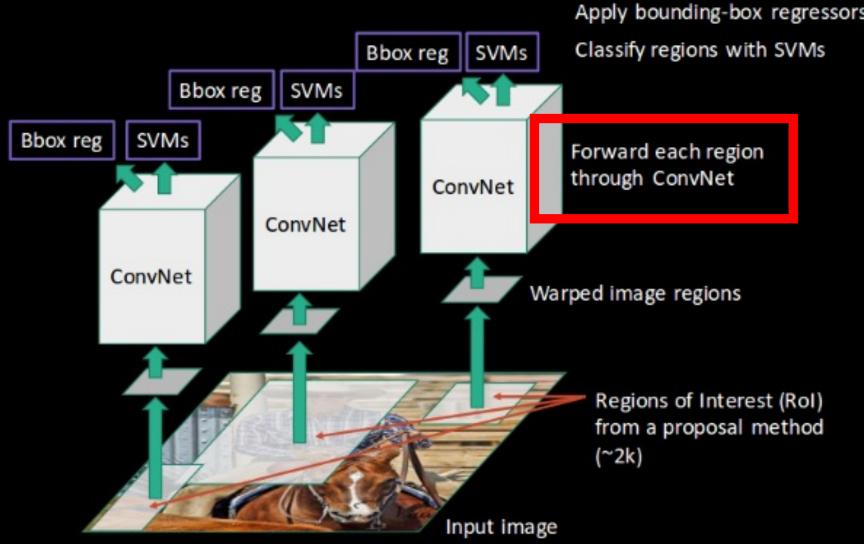


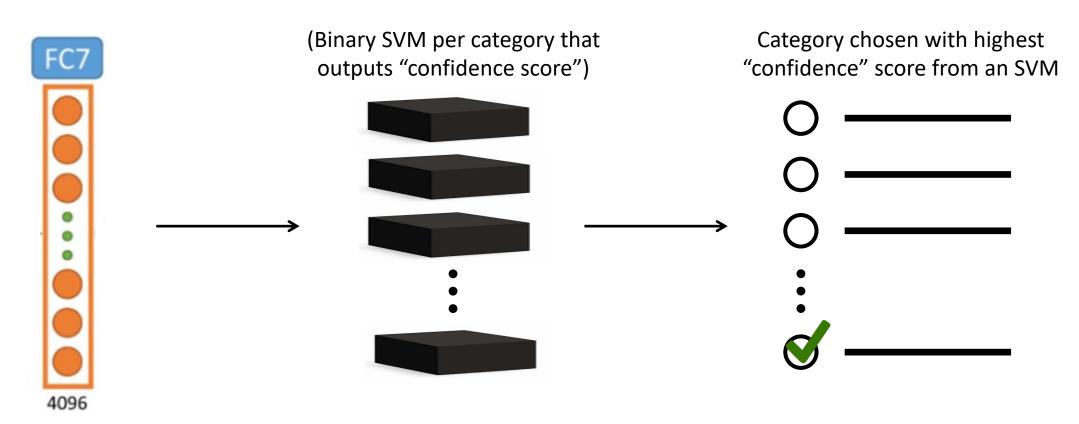
Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Architecture Apply bounding-box regressors Classify regions with SVMs Bbox reg SVMs Bbox reg SVMs Bbox reg SVMs Forward each region through ConvNet ConvNet ConvNet ConvNet Warped image regions Regions of Interest (RoI) from a proposal method (~2k) Input image

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Region Classification

• Assign each feature descriptor that characterizes a region a label from a pre-defined set of categories (i.e., multiple choice)



Architecture Apply bounding-box regressors Classify regions with SVMs Bbox reg SVMs Bbox reg SVMs Bbox reg SVMs Forward each region through ConvNet ConvNet ConvNet ConvNet Warped image regions Regions of Interest (RoI) from a proposal method (~2k) Input image

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Architecture Apply bounding-box regressors Bbox reg SVMs Classify regions with SVMs Bbox reg SVMs Bbox reg SVMs Forward each region through ConvNet ConvNet ConvNet ConvNet Warped image regions Regions of Interest (RoI) from a proposal method (~2k) Input image

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Region Selection and Refinement

- Problem: ~2000 regions per image
- Solution: remove redundant regions through non-maximum suppression; for each class:
 - 1. Pick region with maximum score obtained from the SVM.
 - Discard all regions belonging to that class nearby that chosen region (i.e., IoU score > 70%)
 - 3. Select next highest score region and then repeat steps 1 and 2
 - 4. Repeat step 3 until all regions are either discarded or kept

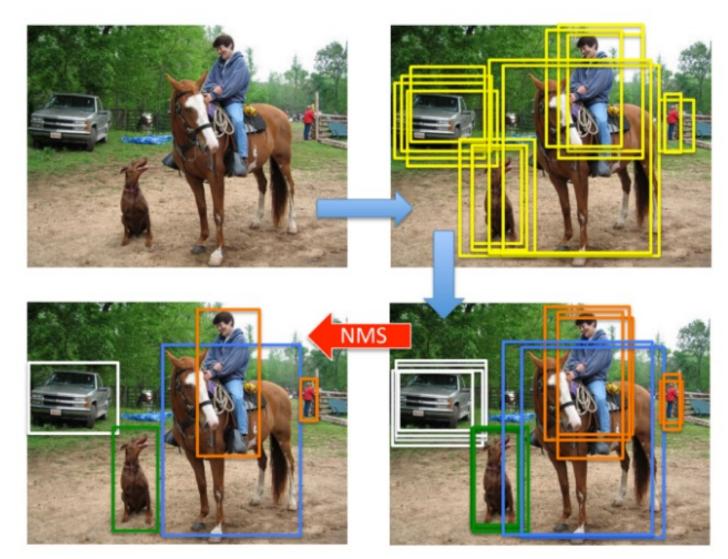


Image Source: https://towardsdatascience.com/deep-learning-method-for-object-detection-r-cnn-explained-ecdadd751d22

Region Selection and Refinement

Observing that a common issue was imperfect region proposals, transformations were learned to convert each region proposal to more closely match ground truth

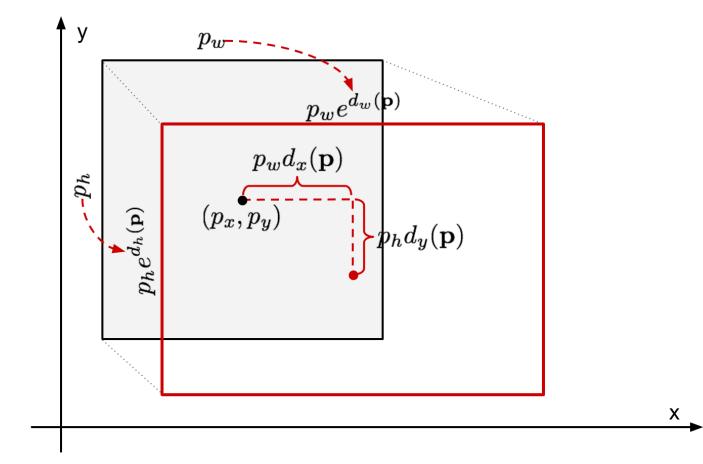
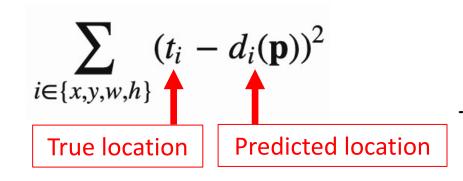


Image Source: https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html#bounding-box-regression

Region Selection and Refinement

- Input: original region location described by a center (p_x, p_y), width (p_w), and height (p_h)
- Output: four refinement functions: d_x, d_y, d_w, d_y
- Loss function for learning: SSE



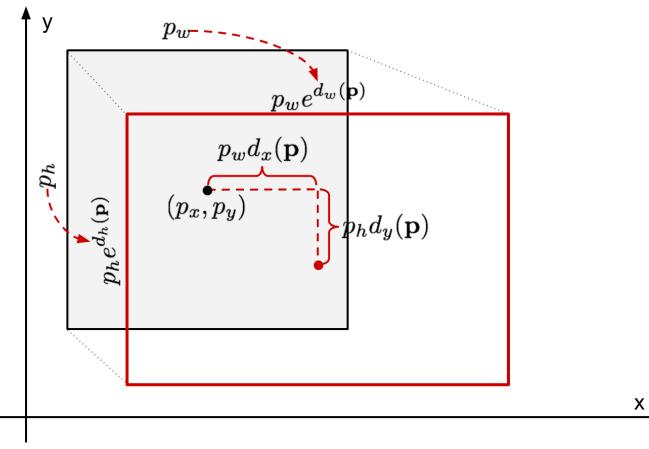
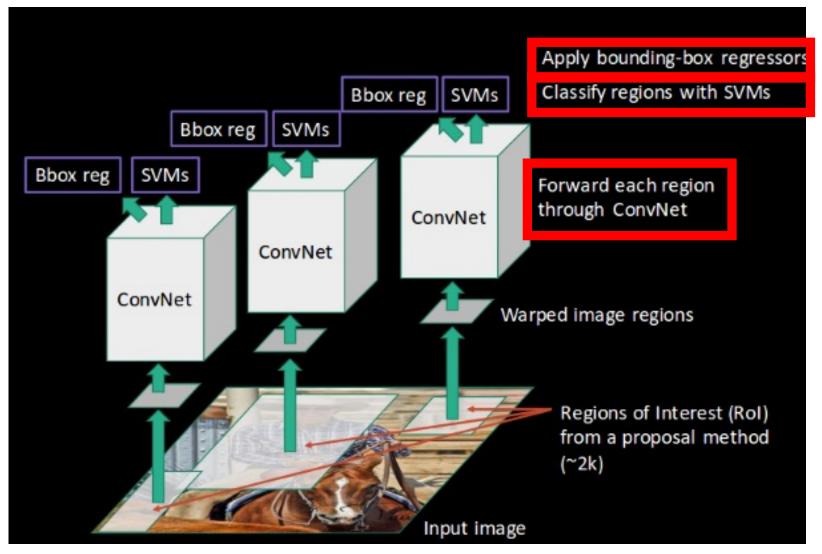


Image Source: https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html#bounding-box-regression

R-CNN Limitations



- Slow training procedure
 - Must train three models
- Slow at test time (~1 minute per image)
- Inefficient/complex architecture
 - Must store feature descriptor for each region proposal
 - Must refine initial region proposals

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Key Concluding Remarks

1. Deep CNN features for image subregions are valuable (recall, deep CNN features for entire images were also deemed important for scene classification)

2. "We conjecture that the `supervised pre-training/domainspecific finetuning' paradigm will be highly effective for a variety of data-scarce vision problems."

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv 2014

Object Detection: Today's Topics

- Problem
- Applications
- Datasets
- Evaluation metric
- Overview of object detection algorithms and baseline (R-CNN)

