
Danna Gurari
University of Colorado Boulder

Fall 2023

Introduction to Neural
Networks in Computer Vision

https://home.cs.colorado.edu/~DrG/Courses/RecentAdvancesInComputerVision/AboutCourse.html

Review

• Last week:
• Computer vision: origins
• What makes computer vision hard?
• Research in computer vision
• Course logistics

• Assignments (Canvas)
• New reading assignments coming out today due the next two weeks

• Questions?

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Recall What a Machine Observes: Digital Image

Recall What a Machine Observes: Digital Video

Time 1

1 hour

Analogous to:

Many Ways to Create Digital Images and Videos

Ultrasound

Infrared

X-ray

Visible

Microscopy

Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy
(photons)

Value = 82

Energy
(photons)

Value = 210

e.g., seeing what is visible to the naked human eye

Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy
(photons)

Value = 82

Energy
(photons)

Value = 210

e.g., seeing what is invisible to the naked human eye with infrared

Many Ways to Create Digital Images and Videos

1. Sound wave generation

2. For each reflected sound wave, (a)
record and (b) digitize to pixel values

3. Convert digitization to image

e.g., seeing what is invisible to the naked human eye with sound

Many Ways to Create Digital Images and Videos

My Focus in My Career

2004-2005: Washington University - Ultrasound

2005-2007: Raytheon (NPOESS) - Satellite

2007-2010: Boulder Imaging - Visible & Infrared

2010-2015: Boston University - Microscopy

2015-Present: Many more types!

Many Ways to Record Digital Visual Data
e.g., Roughly, can think of file formats as headers followed by pixel values (e.g., jpg, png)

Header: Instructions to parse file

Table: Pixel values
(e.g., RGB, CMYK, Lab, grayscale)

Scale of Vision Acquisition

• 5.8B cameras owned by 4B people with 89% taking pictures
resulting in over 1 trillion pictures [2014 statistics] 1

• > 85% of internet data in the form of images and videos 2

1 https://communities-dominate.blogs.com/brands/2014/08/camera-stats-world-has-48b-
cameras-by-4b-unique-camera-owners-88-of-them-use-cameraphone-to-take-pic.html

2 https://sevenshinestudios.wordpress.com/computer-vision-and-deep-learning/

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Algorithm Dataset

Status Quo Until 2012

Algorithm
DatasetAlgorithm Dataset DatasetAlgorithm

Datasets tended to be relatively small (e.g., 10s or 100s of examples)

Status Quo Until 2012: Datasets

• Authors created datasets primarily with their cameras, purchasing
from companies, or downloading images from the Internet

• What’s wrong with this approach?

• Unable to perform “fair” comparison between algorithms

• Lacks a community around a shared goal

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What features would help predict yes/no?
e.g., corners, lines, and model of expected body parts as connected shapes

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What rules should be used to predict yes/no?

e.g., choose threshold for number of model parts detected or
develop machine learning model that predicts from handcrafted features

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction

Limitations of Handcrafted Methods

• Challenging for engineers to design effective features (and rules) for
ALL examples (for every computer vision problem)!

Limitations of Handcrafted Methods

e.g., are these lines parallel?

Limitations of Handcrafted Methods

e.g., are these lines parallel?

Limitations of Handcrafted Methods

1. It is hard to hand-craft a complete set of methods

2. We, as humans, may not devise the best rules for a machine since our brains
(unconsciously) pre-process the data we sense

Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

Datasets tend to be large (e.g., thousands to billions of examples)

Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

Datasets tend to be large (e.g., thousands to billions of examples)

What do you think
prompted this shift to
large-scale datasets?

27

Research Since 2012: Dataset Challenges

28

Research Since 2012: Dataset Challenges

Key components:

1. Publicly-shared test examples without ground
truth answers for evaluation

2. Metrics for evaluating algorithm predictions,
implemented in an evaluation server

3. Publicly-shared examples with “ground truth”
answers to support training and validation

29

Research Since 2012: Dataset Challenges

Many public dataset challenges and datasets:
• Google Dataset Search
• Kaggle
• Amazon’s AWS datasets
• UC Irvine Machine Learning Repository
• Quora.com
• Reddit
• Dataportals.org
• Opendatamonitor.eu
• Quandl.com

Research Since 2012: Algorithms

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

HANDCRAFTED APPROACH

Yes

Feature Extraction

COMPUTER-LEARNED APPROACH

Prediction

Neural
Networks

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Inspiration: Animal’s Computing Machinery

Neuron
- basic unit in the nervous system for receiving, processing, and

transmitting information; e.g., messages such as…

“hot”

https://www.clipart.email/clipart/don
t-touch-hot-stove-clipart-73647.html

“loud”

https://kisselpaso.com/if-the-sun-city-
music-fest-gets-too-loud-there-is-a-
phone-number-you-can-call-to-complain/

“spicy”

https://www.babycenter.com/404_when-
can-my-baby-eat-spicy-foods_1368539.bc

Inspiration: Animal’s Computing Machinery

Human: ~100,000,000,000 neurons

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

Inspiration: Animal’s Computing Machinery

Demo (0-1:14): https://www.youtube.com/watch?v=oa6rvUJlg7o

Inspiration: Basic Understanding of Neurons

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

• When the input signals exceed a certain threshold within a short period of time, a neuron “fires”
• Neuron “firing” is an “all-or-none” process, where either a signal is sent or nothing happens

Sidenote: It Remains An Open Research Problem
to Understand How Individual Neurons Work

Origins of Neural Networks: Artificial Neurons

Computer
Vision

CVPR ICCV ECCVCVPR ICCV ECCV

1966 1983 1987 19901945 1957

Perceptron

Perceptron (Artificial Neuron)
“Input signals”

“Output signal”

Artificial Neuron:

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

- weights (W) are learned (discussed in next section)
- fires when combined input exceeds threshold

Rise of Perceptron (Artificial Neuron)

Frank Rosenblatt
(Psychologist)

“[The perceptron is] the embryo of an
electronic computer that [the Navy] expects
will be able to walk, talk, see, write,
reproduce itself and be conscious of its
existence…. [It] is expected to be finished in
about a year at a cost of $100,000.”
1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-
navy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2
- Output:

- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

A Perceptron cannot solve XOR problem and so separate 1s from 0s (it’s a linear function):

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

How can a machine “walk, talk, see, write, reproduce itself and be
conscious of its existence” when it can’t solve the XOR problem?

Idea: Use Connected Neurons (i.e., Neural Networks)
to Transform Input into Features Useful for Prediction

Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Neural Network

http://cs231n.github.io/neural-networks-1/

“hidden layer” uses outputs of units (i.e., neurons) and
provides them as inputs to other units (i.e., neurons)

input
prediction

• Also called “multilayer perceptron”

• This is a 2-layer “feed-forward” neural
network (i.e., count number of hidden
layers plus output layer and exclude
input layer)

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a function to the input

Neural Network

• Training goal: learn model parameters

• Layers are called “hidden” because
algorithm decides how to use each
layer to produce its output

http://cs231n.github.io/neural-networks-1/

How many weights are in this model?
• Input to Hidden Layer:
• 3x4 = 12

• Hidden Layer to Output Layer
• 4x2 = 8

• Total:
• 12 + 8 = 20

http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:
• 20

• Number of biases:
• 4 + 2 = 6

• Total:
• 26

http://cs231n.github.io/neural-networks-1/

Neural Network

http://cs231n.github.io/neural-networks-1/

Neural Network

How many layers are in this network?
• 3 (number of hidden layers plus

output layer; input layer
excluded when counting)

http://cs231n.github.io/neural-networks-1/

Neural Network

How many weights are in this model?
• Input to Hidden Layer 1:
• 3x4 = 12

• Hidden Layer 1 to Hidden Layer 2:
• 4x4 = 16

• Hidden Layer 2 to Output Layer
• 4x1 = 4

• Total:
• 12 + 16 + 4 = 32

http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:
• 32

• Number of biases:
• 4 + 4 + 1 = 9

• Total
• 41

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together
e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3
• y = (w1x1 + w3x2 + b1)w5 + (w2x1 + w4x2 + b2)w6 + b3
• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together
e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Constant x linear function = linear function

Need to Use Non-Linear Activation Functions

Python Machine Learning; Raschka & Mirjalili

Activation
Function

?

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

Need to Use Non-Linear Activation Functions

Source: https://www.linkedin.com/pulse/activation-functions-neural-networks-leonardo-calderon-j-/

Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

INPUT OUTPUT

Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Neural networks can solve XOR problem...
and so model non-linear functions!

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Modern Neural Networks Are Huge, Matching
or Exceeding Number of Neurons in a Human

Human: ~100,000,000,000 neurons

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

Training for Neural Networks

http://cs231n.github.io/neural-networks-1/

• Learn model parameters that minimize an objective function using gradient descent;
e.g., weights and biases:

• Gradient descent was introduced in an 1847 publication and is a scalable way to
train nonlinear models on “big data”

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1

Objective Functions: A Specified (Measurable)
Goal for Trained Models

e.g., make as small as possible the
squared error between predictions and
ground truth (aka, L2 loss, quadratic loss)

What is the range of possible values?
• Minimum: 0

• i.e., all correct predictions

• Maximum: Infinity
• i.e., incorrect predictions

Predicted valueTrue value

Mean taken over n instances

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1

Objective Functions: A Specified (Measurable)
Goal for Trained Models

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1

MANY objective
functions exist!

Training for Neural Networks

http://cs231n.github.io/neural-networks-1/

• Learn model parameters that minimize an objective function using gradient descent;
e.g., weights and biases:

• Gradient descent was introduced in an 1847 publication and is a scalable way to
train nonlinear models on “big data”

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1

• Repeat:
1. Guess
2. Calculate error

• e.g., learn linear model for converting kilometers to miles when only
observing the input “miles” and output “kilometers”

Miles Kilometers = miles x constant Kilometers

Gradient Descent: Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

$10 Shekels = dollars x constant

Gradient Descent: Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Error = Guess - Correct

Gradient Descent: Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

Error = Guess - Correct$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

$10 Shekels = dollars x constant

Gradient Descent: Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

• Idea: iteratively adjust constant (i.e., model parameter) to try to
reduce the error

Error = Guess - Correct$10 Shekels = dollars x constant

Gradient Descent: Intuition

• Iteratively search for model parameters (e.g., weights and biases) that solve
optimization problem (i.e., minimize or maximize an objective function)

Analogy: hiking to
the bottom of a
mountain range…
blind or blindfolded!

Start

End Point (Minimum)

Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Key challenge: calculating gradients

Solution: backpropagation

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

Backpropagation Basics: Employs Calculus
• Idea: use derivatives!

• Derivatives tells us how to change the input x to make a small change to the output f(x)
• Gradient is a vector that indicates how f(x) changes as each function variable changes (i.e., partial derivatives)

• Gradient descent:
• Iteratively take steps in the opposite direction of the gradient to minimize the function

Which letter(s) are the global minima?

Which letter(s) are local minima?

• Idea: compute gradient on objective function to decide how to adjust each model parameter to get
closer to solving the optimization problem

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Can use chain rule of calculus (and so
compute from top to bottom where
derivatives on the top are used to
compute derivatives at the bottom);

e.g.,

Backpropagation Basics: Chain Rule

Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

• Step size = learning rate
• (a) When learning rate is too small, convergence to good solution will be slow
• (b) When learning rate is too large, convergence to a good solution is not possible

• Many ways to use the gradients

Gradient Descent: How Much to Update?

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

(a) (b)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

For excellent step-by-step tutorial, watch this video:

https://www.youtube.com/watch?v=VMj-3S1tku0

Gradient Descent: Implementation

Critical Foundation for Training: Hardware

Idea: Train Algorithms Using
GPUs (think Porsche) Instead of CPUs (think Golf Cart)

Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf

Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf

Hardware: CPU versus GPU

• Graphical Processing Units: accelerates computational workloads due
to MANY more processing cores

https://www.researchgate.net/figure/The-main-difference-between-CPUs-
and-GPUs-is-related-to-the-number-of-available-cores-A_fig7_273383346

GPU Machines: Rent Versus Buy?

Rent from Cloud
(e.g., Microsoft Azure):

Buy:

Rise of “Deep Learning” Open Source Platforms

2011 2012 2014 2015

(Paszke et al.)

2013

(Jia et al.)(Bastien et al.) (Abadi et al.)

2016 2017

(Collobert et al.)

Popular Options Today

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

