Instance Segmentation

Danna Gurari

University of Colorado Boulder Fall 2024

https://dannagurari.colorado.edu/course/recent-advances-in-computer-vision-fall-2024/

Review

- Last lecture: object detection
 - Motivation
 - Datasets
 - Evaluation metric
 - Faster R-CNN
 - DETR
 - Discussion
- Assignments (Canvas)
 - Project proposal was due earlier today
 - Reading assignments due next Monday and Wednesday
- Questions?

Instance Segmentation: Today's Topics

- Motivation
- Datasets
- Evaluation metric
- Mask R-CNN
- YOLACT

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

Task: Fuse Semantic Segmentation (and So Classification) with Object Detection

Image Recognition

Semantic Segmentation

Object Detection

Instances of the same category are separated

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Applications (recall those from prior lectures); e.g.,

Business Traffic Analytics

Rotoscoping

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

Historical Context

MSCOCO (Common Objects in Context)

Include "things": objects that can easily be labeled; e.g., person, chair

1. Category Selection

- 272 candidates from:
1) WordNet, SUN, VOC, ...
2) Popular words describing

visual objects: "Spelling

3) 4-8 yr olds listing objects
in indoors/outdoors
- 91 categories chosen by
author votes + coverage

Exclude "stuff": objects with no clear boundaries; e.g., sky, grass,

Rationale: primary interest is in precise localization of object instances

MSCOCO

Selected 91 from 272 categories in bold (without *)

person	bicycle	car	motorcycle	bird	cat	dog	horse	sheep	bottle
chair	couch	potted plant	tv	cow	airplane	hat*	license plate	bed	laptop
fridge	microwave		oven	toaster	ĥus	train	mirror*	dining table	elephant
banana	bread	toilet	book	boat	plate*	cell phone	mouse	remote	clock
face	hand	apple	keyboard	backpack	steering wheel	wine glass	chicken	zebra	shoe*
eye	mouth	scissors	truck	traffic light	eyeglasses*	cup	blender*	hair drier	wheel
street sign*	umbrella	door*	fire hydrant	bowl	teapot	fork	knife	spoon	bear
headlights	window*	desk*	computer	refrigerator	pizza	squirrel	duck	frisbee	guitar
nose	teddy bear	tie	stop sign	surfboard	sandwich	pen/pencil	kite	orange	toothbrush
printer	pans	head	sports ball	broccoli	suitcase	carrot	chandelier	parking meter	fish
handbag	hot dog	stapler	basketball hoop	donut	vase	baseball bat	baseball glove	giraffe	jacket
skis	snowboard	table lamp	egg	door handle	power outlet	hair	tiger	table	coffee table
skateboard	helicopter	tomato	tree	bunny	pillow	tennis racket	cake	feet	bench
chopping board	washer	lion	monkey	hair brush*	light switch	arms	legs	house	cheese
goat	magazine	key	picture frame	cupcake	fan (ceil/floor)	frogs	rabbit	owl	scarf
ears	home phone	pig	strawberries	pumpkin	van	kangaroo	rhinoceros	sailboat	deer
playing cards	towel	hyppo	can	dollar bill	doll	soup	meat	window	muffins
tire	necklace	tablet	corn	ladder	pineapple	candle	desktop	carpet	cookie
toy cars	bracelet	bat	balloon	gloves	milk	pants	wheelchair	building	bacon
box	platypus	pancake	cabinet	whale	dryer	torso	lizard	shirt	shorts
pasta	grapes	shark	swan	fingers	towel	side table	gate	beans	flip flops
moon	road/street	fountain	fax machine	bat	hot air balloon	cereal	seahorse	rocket	cabinets
basketball	telephone	movie (disc)	football	goose	long sleeve shirt	short sleeve shirt	raft	rooster	copier
radio	fences	goal net	toys	engine	soccer ball	field goal posts	socks	tennis net	seats
elbows	aardvark	dinosaur	unicycle	honey	legos	fly	roof	baseball	mat
ipad	iphone	hoop	hen	back	table cloth	soccer nets	turkey	pajamas	underpants
goldfish	robot	crusher	animal crackers	basketball court	horn	firefly	armpits	nectar	super hero costume
jetpack	robots					-	-		

MSCOCO

1. Category Selection

- 272 candidate categories chosen from:
1) WordNet, SUN, VOC, ...
2) Most frequent words describing visual objects
3) 4-8 yr olds listing objects in indoors/outdoors

- 91 categories chosen by author votes + coverage

2. Image Collection

- Images scraped from Flickr because it is believed to often have non-iconic images

- Query: object + object or scene + scene

- Query: unusual categories

 Crowd workers flagged images with multiple objects

Iconic images commonly retrieved with Google, Bing, etc:

(a) Iconic object images

(b) Iconic scene images

<u>Goal</u>: images with **contextual** information and taken from **noncanonical** viewpoints

(c) Non-iconic images

MSCOCO: 2 Tasks

Task: select images that contain a bear(s)

Instructions:

Task: select images that contain BOTH a person AND a bicycle

Instructions:

Please click and select images that contain BOTH a person(s) AND a bicycle(s) Do NOT select an image that contains ONLY a person(s) or ONLY a bicycle(s). It is right to not select any image if none of image contains both categories.)

ou can de-select the image by clicking on it again.

Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. ECCV 2014

Grids of 128 images:

MSCOCO Summary

1. Category Selection	2. Image Collection	3. Image Annotation
 - 272 candidates from: 1) WordNet, SUN, VOC, 2) Popular words describing visual objects 3) 4-8 yr olds listing objects in indoors/outdoors - 91 categories chosen by author votes + coverage 	 Images scraped from Flickr because it is believed to often have non-iconic images Query: object + object or scene + scene Query: unusual categories Crowd workers flagged images with multiple objects 	Crowdworkers demarcated specific object types

~1.2M instance segmentations across 188k training, 5k validation, and 41k test images

Task Decomposition

1. Category Assignment

- Crowdworkers identified categories in each image by locating one instance of each

Category Assignment Task

Task Decomposition

Instance Tagging Task

"magnifying glass" feature: doubles resolution to assist with small objects

Task Decomposition

Object Seg.

(Training task per object category required)

Object Seg.

Crowd annotations are done as semantic segmentations (no instances) for images with 10+ instances of an object category.

Draw all unlabeled person(s) in the image.

- Find and draw on all person(s) that haven't been labeled.
- It's okay to overlap to labeled region.
- You need to label two images that contain unlabeled person(s) to complete
- Work will be rejected if not carefully drawn or unlabeled person(s) remain.

Quality Control

Seeded gold standards: 4 of 64 segmentation known to be bad; a worker had to identify 3 of the 4 known bad segmentations to complete the task.

Verification step: 3-5 workers judged each segmentation's quality.

Blocked workers: regular poor segmentations led to workers being blocked and their work not used.

Task: select images that have WRONG object contour for toothbrush. Examples: **Right Object Contour**

Wrong Object Contour (not toothbrush, only contains parts of visible object contour, or multiple objects)

Tips: use n and b keys to move between rows of image.

64 examples

MSCOCO Summary

1. Category Selection	2. Image Collection	3. Image Annotation		
 - 272 candidates from: 1) WordNet, SUN, VOC, 2) Popular words describing visual objects 3) 4-8 yr olds listing objects in indoors/outdoors 	 Images scraped from Flickr because it is believed to often have non-iconic images Query: object + object or scene + scene Query: unusual categories 	Crowdworkers demarcated specific object types		
- 91 categories chosen by author votes + coverage	- Crowd workers flagged images with multiple objects			

LVIS (Large Vocabulary Instance Segmentation)

Key difference: uses images without pre-specifying categories to annotate

Resulted in ~2M instance segmentations spanning 1203 categories (some rare) for ~160k COCO images

Gupta, Dollar, and Girshick. LVIS: A Dataset for Large Vocabulary Instance Segmentation. CVPR 2019

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

Recall: Mean Average Precision (mAP)

Mean per-category average precision: area under precision-recall curve for a category created by
varying confidence level determining a positive prediction (using maximum precision value to the right)

We plot precision-recall points using all confidence values predicted by a model for a category.

We then interpolate between the points and compute the area under the curve.

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Great tutorial: Padilla et al. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. 2021

AP@[0.5:0.05:0.95]

- Average mAP when using multiple IoU thresholds to determine if a prediction matches a ground truth detection
 - 10 IoU thresholds, from 0.5 to 0.95 with a step size of 0.05

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

Historical Context

Why Mask R-CNN?

Named after the approach of adapting Faster R-CNN to also predict **masks**:

Kaiming He, Georgia Gkioxari, Piotr Dollar, & Ross Girshick. "Mask R-CNN." ICCV 2017.

Key Contributions of Mask R-CNN

- 1. A pooling method that preserves the pixel-to-pixel alignment between the model's input and output when downsampling
- 2. State-of-the-art performance on COCO

Architecture: Extends Faster R-CNN by Also Predicting in Parallel a Mask Per Region

He et al. Mask R-CNN. ICCV 2017

Architecture: Key Idea

He et al. Mask R-CNN. ICCV 2017

Ren Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." Neurips 2015

What are the values for the region in the original image in the downsampled feature map?

What are the values for the region in the original image in the downsampled feature map?

(1/32 of original size)

16

Original region on feature map

Quantized variant: values rounded down to only include a discrete set of integers to match the grid

- Original information preserved
- Information added
- Information lost

Quantization changes the information utilized from the original image, losing information about the object and adding extra image context (recall, the original image is orders of magnitude larger than the feature map!)

Problem 2: Quantization when pooling region proposals of various sizes to the fixed size required by the fully connected layer

Ren Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." Neurips 2015

16

e.g., convert quantized 4x6 region into a 3x3 feature

4x6 Rol

3x3 Rol Pooling

Quantized approach: identify discrete integers for pooling to result in the target size e.g., $4/3 = 1.3 \rightarrow 1$ and 6/3 = 2

16

e.g., convert quantized 4x6 region into a 3x3 feature

4x6 Rol

0.1	0.2	0.3	0.4	0.5	0.6
1	0.7	0.2	0.6	0.1	0.9
0.9	0.8	0.7	0.3	0.5	0.2

3x3 Rol Pooling

Quantized approach: identify discrete integers for pooling to result in the target size e.g., 1x2 vector using max pooling

16

e.g., convert quantized 4x6 region into a 3x3 feature

4x6 Rol

0.1	0.2	0.3	0.4	0.5	0.6
1	0.7	0.2	0.6	0.1	0.9
0.9	0.8	0.7	0.3	0.5	0.2
0.2	0.5	1	0.7	0.1	0.1

Again, quantization discards information about the object from the original image (recall, the original image is orders of magnitude larger than the feature map!)

Quantized approach: identify discrete integers for pooling to result in the target size e.g., 1x2 vector using max pooling

16

e.g., convert quantized 4x6 region into a 3x3 feature

3x3 Rol Pooling (full size)

Information is lost for *all* channels for *every* region proposal (each of which is used to predict a class and bounding box)!

Quantized approach: identify discrete integers for pooling to result in the target size e.g., 1x2 vector using max pooling

ROIAlign Motivation: Summary

Original region on feature map

Quantization changes the information utilized from the original image, losing information about the object and adding extra image context (recall, the original image is orders of magnitude larger than the feature map!)

Perform pooling on sampled values in each box - e.g., max(0.14, 0.21, 0.51, 0.43) = ?

How do we find the four sample values?

3x3 Rol Pooling

Compute each sample value with interpolation between 4 points

Compute each sample value with interpolation between 4 points:1. Identify sample location

$$y \in X = X_box + (width/3) * 1 = 9.25 + (2.08/3) = 9.94$$

Y = Y_box + (height/3) * 1 = 6 + (1.51/3) = 6.50

- 2. Identify 4 points for interpolation, using the middle of each closest neighboring box in each direction
- 3. Calculate value using bilinear interpolation (= 0.14)

 $P \approx \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{11} + \frac{x - x_1}{x_2 - x_1} Q_{21} \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{12} + \frac{x - x_1}{x_2 - x_1} Q_{22} \right)$ $\approx \frac{7.5 - 6.5}{7.5 - 6.5} \left(\frac{10.5 - 9.94}{10.5 - 9.5} 0.1 + \frac{9.94 - 9.5}{10.5 - 9.5} 0.2 \right) + \frac{6.5 - 6.5}{7.5 - 6.5} \left(\frac{10.5 - 9.94}{10.5 - 9.5} 1 + \frac{9.94 - 9.5}{10.5 - 9.5} 0.7 \right)$

Compute each sample value with interpolation between 4 points:

- 1. Identify sample location
- Identify 4 points for interpolation, using the middle of each closest neighboring box in each direction
- 3. Calculate value using bilinear interpolation (=0.21)

Compute each sample value with interpolation between 4 points:

- 1. Identify sample location
- Identify 4 points for interpolation, using the middle of each closest neighboring box in each direction
- 3. Calculate value using bilinear interpolation (=0.51)

Compute each sample value with interpolation between 4 points:

- 1. Identify sample location
- Identify 4 points for interpolation, using the middle of each closest neighboring box in each direction
- Calculate value using bilinear interpolation (=0.43)

ROIAlign vs ROI Pooling

Original region on feature map

Both methods add extra image context

Only ROI pooling loses information about the object from the original image

Training: Multi-Task Learning

What are the three tasks (and so types of losses) used during training?

He et al. Mask R-CNN. ICCV 2017

Shared Layers Task 1 Task 2 Task 3

https://towardsdatascience.com/multi-tasklearning-with-pytorch-and-fastai-6d10dc7ce855

 $L = L_{class} + L_{box} + L_{mask}$

Summary: Focus for Today's Coding Tutorial

He et al. Mask R-CNN. ICCV 2017

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

Historical Context

Motivation: Sequential 2-Stage Methods Are Slow

e.g., Faster R-CNN (1) generates features of a pre-defined size for each candidate region (i.e., output of the pooling method) which is then used for (2) mask prediction

He et al. Mask R-CNN. ICCV 2017

YOLACT Contribution: First Real-Time Instance Segmentation Model With Strong Performance

Bolya et al. YOLACT: Real-time Instance Segmentation. ICCV 2019

YOLACT Demo

https://www.youtube.com/watch?v=AJXCYks2_6s

Why YOLACT?

Named after the approach where You Only Look At Coefficients:

Daniel Bolya, Chongy Zhou, Fanyi Xiao, & Yong Jae Lee. "YOLACT: Real-Time Instance Segmentation." ICCV 2019.

Architecture: 1-Stage With Two **Parallel** Tasks (i.e., Doesn't Create Feature Per Region)

2. Predict per-instance mask coefficients

1. Generate k prototype masks (similar to semantic segmentation)

Bolya et al. YOLACT: Real-time Instance Segmentation. ICCV 2019

(Fast operation)

Training: Multi-Task Learning

 Matches Mask R-CNN with 3 losses for 3 tasks, while also augmenting a coefficient diversity loss

$$L = L_{class} + L_{box} + L_{mask}$$

Instance Segmentation: Today's Topics

• Motivation

• Datasets

• Evaluation metric

• Mask R-CNN

• YOLACT

