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Review

e Last lecture:
* Scene Classification Problem and Applications
* Scene Classification Datasets and Evaluation Metrics
* Scene Classification Models: Deep Features
» Attribute Classification: Problem, Applications, and Datasets

e Assignments (Canvas)
e Reading assignment was due earlier today
* Next reading assighment due Monday
* Project proposal due in one week

e Questions?



Semantic Segmentation: Today’s Topics

* Motivation

* Datasets

* Evaluation metric

* Fully convolutional network
e Swin transformer

* Discussion (chosen by YOU ©)



Semantic Segmentation: Today’s Topics

* Motivation



Today’s Scope: Localize Pixels for Each Category

P 0.6 sheep
P 0.3 dog
P 0.1 cat
P 0.0 horse

Image Recognition Semantic Segmentation

Note: instances of the same
category are NOT separated

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works



Remodeling Inspiration
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Rotoscoping (many examples on Wikipedia)
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https://pathology.jhu.edu/brain-tumor/grading-classification



Face Makeover

MAYBELLINE VIRTUAL BEAUTY STUDIO  SHOPALL  FACE  EYES LIPS  NAILS TIPS & TRENDS  BRAVE TOGETHER

Home

TRY IT ON

Time to makeup your mind! Experience your perfect makeup shades or try a

GET STARTED!

bold new look with Maybelline’s virtual try-on tool.
To begin, turn on your camera or upload a photo.

I Consent

to the processing of my image by Maybelline NY

SEE YOURSELF IN MAYBELLINE as set out in the privacy policy .

—

LIVE CAMERA

1 UPLOAD PHOTO

Demo: https://www.maybelline.com/virtual-try-on-makeup-tools



Selt-Driving Vehicles

o




Can you think of any other
potential applications?



Semantic Segmentation: Today’s Topics

 Datasets



Datasets

1945 1957 1966 1983 1987 1990 2009 2017

CVPR ICCV ECCV e.g., VOC ADE20k

# Categories: 21 3,169

#Images: 1112 train/val 25,210

Trend: build bigger datasets



VOC

1. Category Selection Objeets
_ Vehi<|3les Hous|ehold AnirLals Per|so:)n1
- 20 categories chosen: 4-wheeled —Furniture —Domestic
1) Initial 4 categories stem - Car' —Seating - Cat?
from existing dataset __Bus? __Chair? __Dog?
2) 2006: added 6 classes —2-wheeled —Sofa’ —Farmyard
3) 2007: added 10 classes —Bicycle! Dining table? —Cow?
—Motorbike! —TV/monitor? —Horse?
- Categories added for —Aeroplane® —Bottle3 —Sheep?
more generalization and —Boat? —Potted plant? —Bird3
finer-grained coverage —Train3
(superscript indicates year of inclusion in the challenge: 2005, 20062, 20073)

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010



VOC

1. Category Selection

2. Image Collection

- 20 categories chosen:

1) Initial 4 categories stem

from existing dataset
2) 2006: added 6 classes

3) 2007: added 10 classes

- Categories added for
more generalization and
finer-grained coverage

- 500,000 images
retrieved from
Flickr with many
search terms

(search terms per category)

— aeroplane, airplane, plane, biplane, monoplane, aviator, bomber,
hydroplane, airliner, aircraft, fighter, airport, hangar, jet, boeing,

fuselapge, wing, propellor, flving

— bicvcle, bike, cycle, cvelist, pedal, tandem, saddle, wheel, cycling,

ride, wheelie

— bird, birdie, birdwatching, nest, sea, aviary. birdcage, bird feeder,

bird table

— boat ship, barge, ferry, canoe, boating, craft, liner, cruise, sailing,
rowing, watercraft, regatta, racing, marina, beach, water, canal, river,

stream, lake, vacht

— bottle, cork, wine, beer, champagne, ketchup, squash, soda, coke,

lemonade, dinner, lunch, breakfast

— bus, omnibus, coach, shuttle, jitney, double-decker, motorbus,

school bus, depot, terminal, station, terminus, passenger, route

— car, automobile, cruiser, motorcar, vehicle, hatchback, saloon, con-
vertible, limousine, motor, race, traffic, trip, rally, city, street, road,

lane, village, town, centre, shopping, downtown, suburban
— cat, feling, pussy, mew, kitten, tabby, tortoiseshell, ginger, stray

— chair, seat, rocker, rocking, deck, swivel, camp, chaise, office, stu-

dio, armchair, recliner, sitting, lounge, living reom, sitting room
— cow, beef, heifer, moo, dairy, milk, milking, farm

~ dog. hound, bark, kennel, heel, bitch, canine, puppy. hunter, collar,

leash

— horse, gallop, jump, buck, equine, foal, cavalry, saddle, canter,
buggy, mare, neigh, dressage, trial, racehorse, steeplechase, thor-
ocughbred, cart, equestrian, paddock. stable, farrier

— motorbike, motorcycle, minibike, moped, dirt, pillion, biker, trials,
motorcycling, motorcyclist, engine, motocross, scramble, sidecar,
scooler, trail

— person, people, family, father, mother, brother, sister, aunt, un-
cle, grandmother, prandma, grandfather, grandpa. grandson, grand-
daughter, niece, nephew, cousin

— sheep, ram, fold, fleece, shear, baa, bleat, lamb, ewe, wool, Alock

— sofa, chesterfield, sentee, divan, couch, bolster

— table, dining, cafe, restaurant, kitchen, banquet, party, meal

~ potted plant, pot plant, plant, patio, windowsill, window sill, vard,
greenhouse, glass house, basket, cutting, pot, cooking, grow

— train, express, locomotive, freight, commuter, platform, subway, un-
derground, steam, railway, railroad, rail, wbe, underground, track,
carriage, coach, metro, sleeper, railcar, buffet, cabin, level crossing

— tv/monitor, television, plasma, fatscreen, flat screen, led, o,
watching, dvd, deskiop, compuier, computer monitor, PC, console,
game

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010



VOC

1. Category Selection 2. Image Collection 3. Image Verification + Image Annotation
- University of Leeds annotation parties to
- 20 Categories chosen: recruit annotators annua”y

1) Initial 4 categories stem

. - Annotation guidelines & real-time
from existing dataset

- 500,000 images| | assistance: detections subsequently

2) 2006: added 6 classes | retrieved from |__| refined to segmentations
3) 2007: added 10 classes Flickr with many
search terms - Post-hoc correction/feedback about the
- Categories added for number and kind of errors made
more generalization and
finer-grained coverage - Annotations for each object class merged

and another class added for background

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010



VOC: Datasets Evolved

The table below gives a brief summary of the main stages of the VOC development.

Year Statistics New developments Motes
Only 4 classes; bicycles, cars, Images were largely taken from
motorbikes, people. exising public datasels, and were
2005 | Train/validationtest: 1578 images | Two competitions: classification and detection not as challenging as the flickr
containing 2209 annotated images subsequently used. This
objects. dataset is obsolete.
10 classes: bicycle, bus, car, cat,
cow, dog, horse, motorbike, The MSRC images were easier
2006 person, sheep. Images from flickr and from Microsoft Research than flickr as the photos often

Trainfvalidationtest: 2618 images
containing 4754 annotated
objects.

Cambridge (MSAC) dataset

concantrated on the object of
intarast. This datasel is absolala.

http://host.robots.ox.ac.uk/pascal/VOC/



VOC Annual Workshop

@ The PASCAL Visual Object Clz X -

@ Not Secure | host.robots.ox.ac.uk/pascal/VOC/ v 8

The PASCAL Visual Object Classes Homepage

CE
%+ PASCAL2

earning

The PASCAL VOC project:

Provides standardised image data sets for object class recognition

Provides a common set of tools for accessing the data sets and annotations

Enables evaluation and comparison of different methods

Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

Pascal VOC data sets

Data sets from the VOC challenges are available through the challenge links below, and evalution of new
methods on these data sets can be achieved through the PASCAL VOC Evaluation Server. The evaluation
server will remain active even though the challenges have now finished.

http://host.robots.ox.ac.uk/pascal/VOC/



VOC: Boundary Accuracy Heuristic

Class segmentation

“To give high accuracy but to keep the annotation time short enough to
provide a large image set, a border area of 5 pixels width was allowed around
each object where the pixels were labelled neither object nor background.”

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010



What is a Limitation of Datasets Built Around
Specific Categories (e.g., Objects)?

Most pixels are labeled as "background’!

Lacks knowledge anything else is in the scene, such as a house, trees or flowers!
Mark Everingham et al. The PASCAL Visual Object Classes Challenge: A Retrospective. IJCV 2015



Datasets

1945 1957 1966 1983 1987 1990 2009

CVPR ICCV ECCV e.g., VOC




ADE20K

1. Image Collection 2. Region Localization and Category Assignment

- 25,210 images
collected from
existing datasets

(SUN, Places, - A single person annotated all images

and LabelMe) 5| into three types and kept adding new
categories as they were observed: (1)

- Selected to objects, (2) object parts, and (3)

capture all scene attributes (e.g., occluded)

categories

defined in SUN




ADE20K: User Annotation Tool

Polygons in this image (0)

Hige all polygons

Drag a tag on tep of ancther one to
create a part-of relaticnship.

Proces

Done




ADE20K: User Annotation Too

= ceiling = sink = kitchen island
= wall Lt faucet = glass (wine)
= wall = soap dispenser = glass (wine)
= window (arch) = spice rack = coasters
L pane (glass) = coffee maker = bowl
L figurine = knife set = bowl
= door frame = knife set = frash can
= double door = range = dog dish
L goor L butonpanel = dog dish
L handie L dia = chair
- tray L gial L back
« figurine L gial L seat (fabric)
= refrigerator (crop) L gia leg
= cabinet L screentime L 1eg
L door L stove L leg
L inob L pumer = chair
L door L burner L back
L knob L burer L seat (fabric)
L door L burner leg
L knob L oven L leg
= jar L door L leg
= cabinet L hande = chair
b doie = toaster L back
L knob = blender L seat (tabric)
= cabinet = pot leg
L goor = box L teg
L knob = worktop L leg
L door = cabinet L leg
knob L grawer » side table (crop)
= cabinet L inob = rug
L door ® jar = sofa (crop)
L knob = salt cellar = cushion
= microwave = worktop = cushion
L goor = paperfowels = cushion
L window = dishwasher = floor (tile)
L button (door release) * C2DInet = carpet
= outlet = cabinet = bowl!
= pot = bottle rack = light switch

= napkin rack = picture (map)

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017



ADE20K

* Includes:

- “things”: objects that can easily
be labeled; e.g., person, chair

- “stuff”: objects with no clear
boundaries; e.g., sky, grass

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017



Semantic Segmentation: Today’s Topics

* Evaluation metric



Evaluation Metric

Ground Truth:;

|

-

Algorithm:

Evaluation
Measure

~

— Score

|




Recall: loU Metric

Ground Truth:;
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Algorithm:
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Recall: loU Metric

Ground Truth:;

Algorithm:




Recall: loU Metric

Ground Truth:;

19

Algorithm:

27



Mean loU (mloU)

 Mean loU score over all categories



Semantic Segmentation: Today’s Topics

* Fully convolutional network



Why Fully Convolutional Network?

Named after the proposed technique that excludes fully connected layers:

Jonathon Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks for
Semantic Segmentation.” CVPR 2015.



Key Novelties of Fully Convolutional Networks

First work for pixelwise prediction to:
1. Train fully convolutional networks end-to-end

2. Use supervised pre-training (recall, ViT benefited from this as well)



Input: RGB image of ANY size

Output: Image of same size as input

Architecture

For each image pixel,

\).
the probability of <.
each class is predicted

A
.‘_}'@\QQX
N
| g
© 00021
Q27,2
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21

Long, Shelhamer, and Darrell. Fully Convolutional NETWOTrKS Tor semantic segmentation. CVPR 2015



- -]
=== =
coooo

= = e -
Soaas s
ocooo s
ooo s cwvoooo
=== e nu_u...._u.u.u_.u_
nun.ﬂ.ﬂ..u_ﬂ.ﬂﬂ_ﬂ_.. -

F= =~ = = = = = = =
oCoooooooo00
Scooo o oo oo og

=== - - - - - -
F= - - - - - - - - = = S oo oo oo
P = - - - - - oo oo o
== -F-N-N--N-F- = oo =g = =

[ e e o = [ =g = = = = = e gl = O =
[ = = = Sooogo0 OO0 OO

Output Layer

Architecture

oo oSO
P I I N -
nu_nu.nu.nunu.nuﬁ._ﬂ_.ﬂ._nuh..
nu.u_uﬂ.u_.u_nununu.nununu._._ \

cooooo oo os ) Y
CoOOooo oo oo O Slooooooooooo
- [ Y R R N I W
SoooC00o o 2o s cogocCoooooooo

P - =] coodocoocoooos

- . =S oo oSNS oo o008 s

Voooooowooooo

el -2 -E=1-E-F-F-N-

oo s

oo

=

)
\as®

L e e = e o
el i i e e e =
e O S SO
- oo
- E-E-E-N--F- - -
etk -E ===~
i e e == === = = === = = = - = =]
il -E-N-T-N-F- oo oo o oo oo
B e ey e coowooocooo oo
il el R - ==X cooowoooooe o
o D LD e e CooooCoooo oo
Veoeooooo e e e W
ScooooocovToooo
B - - - - A --F-
= CoOooo00 o0 oY oe
- - - - - - -
oo oo Se s
P = = = = = = === = =]
F= === = = - = - -
COoOooOoO00 TS e e -
- N - F-F-F N P N N N N N
- - - - N-F-F-F-F-y- P - - - - F-F-Fr-F-y-
SO0 oo oo oo To Soooooooo0oo
P O R NN N N Coo oo 0SS o S
Vooeoocooorooooe
cCoooooSgoo oS
L e e = = = = = =
o i s B = = g Rl il
P il o W B i == A e

0
L
1]
LY
G
G
G
G
G
Source: https://www.jeremyjordan.me/semantic-segmentation/

-

o
!
-.lﬂ- 1
9
[F )
=
=

i,l.,j.{'i'e

e B R R
EF e o e e e e e jﬁr
o
e = = = el == U_
L= = == = = L = = l.%._...
S oo 0000 &~
(== = = = = = == = = =]
e cooofooooooo
ﬂ._ el = o W= = = = = = = =
D
(=23

sy

e e.g., assume a 5-class classifier



Architecture: Output Layer

* e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

0: Background/Unknown
1: Person

2: Purse

3: Plants/Grass

4: Sidewalk

e Gy W o

-
L

Source: https://www.jeremyjordan.me/semantic-segmentation/



Input: RGB image of ANY size

Output: Image of same size as input

Architecture

How many classes are -
there for VOC? <.
- 21 (20 object classes
e
plus background) \q&\%
.‘_}'@
N
| g
© 00021
N QO® 2
/,5% A f)f)b DA
21

Long, Shelhamer, and Darrell. Fully Convolutional NETWOTrKS Tor semantic segmentation. CVPR 2015



Architecture

p Do you recognize
this architecture?

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture

Can use your favorite
pretrained ImageNet classifier;
AlexNet, VGG, GoogleNet

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



To make architecture
fully convolutional, fully
connected layers are

AI’Ch IteCtU e converted to

convolutional layers.

In the absence of fully
connected layers, there
are no constraints on the
number of input nodes
(and so any input image
size can be supported).

| g
(0,0 21

w 3%& 3%& ,Lc)b

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture

Ar?other res.ult of ,{)\0‘\ X
this change is
that, unlike for
classification, a
class can be
assigned to each
“coarse region”

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Coarse Region Classification
(Recall Intuition)

Using
VGG16
instead:

%
pooll conv2  pool2 conv3 pool3 conv4 pool4 convd poold  conv6-7

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Coarse Region Classification
(Recall Intuition)

Each line represents a
convolutional layer

N

image convl pooll conv2 pool2 conv3 pool3 conv4 pool4 conv) pool5 conv6-7

Using
VGG16
instead:

N/

Grids reflect relative spatial
coarseness at each layer

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Coarse Region Classification
(Recall Intuition)

Stacking many convolutional layers leads to learning patterns in increasingly larger
regions of the input (e.g., pixel) space.

OJO§ O§O§O
oot

https://www.deeplearningbook.org/contents/convnets.html



Architecture: Fully vs Convolution Layers

‘tabbv cat”

0,00 o0 | I I | |
qf) o 3%& 3%& 1665‘69 D(QQ ,\90

\

convolutionalization

tabby cat hc.}t:xmp Each slice indicates
the likelihood each
pixel in the coarse
region belongs to
the class identified
by the filter

gb

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Fully vs Convolution Layers

‘tabbv cat”

0.00 a0 I I I | |
f)f)b 3‘60‘ 3‘65‘ ,.Lc)@b‘g() Q> XQQ

\

convolutionalization

tabby cat heatmmap L
" If convolutionizing

ImageNet trained
classifiers, how
many classes would
be predicted for
each coarse region?

9000
, Lob @b a0 5O7 60740

gb

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Coarse Region Classification

Locates 20 object classes
plus background for VOC

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Challenge: how to decode from
coarse region classifications to

ArCh |teCtu re per pixel classification?

21
Long, Shelhamer, and Darrell. Fully Convoluti entation. CVPR 2015



Architecture: Upsampling (Many Approaches)
Nearest Neighbor 1l 202 “Bed of Nails” 1 ol2 o
1|2 11112 2 12 0 00 0
3 4 3/3|4 4 3 4 3 0|4 0O
3/3|4 4 0 0J]0 O
Input: 2 x 2 Qutput: 4 x 4 Input: 2 x 2 Output: 4 x 4
gea:lgnc:g{l;:‘ Erhich element was max! ﬂ:: Fl;J ogﬁf:)?'ulsi,'}?om
1 216 3 pooling layer 0o 0 2 0
35|21 5 6 112 01 0 0
_ ! _ 212 1 7 | 8 | Restof the network il B 0/0]0]0
7 3|4 8 3 0 0 4
| I.nput: 4x4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf



Architecture: Upsampling
(Transposed Convolutional Layer)

* Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

» Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly,
"deconvolution layer”, there are many implementations

2X2 4 > 2X2 — 3x3
output kernel Image
]

https://www.machinecurve.com/index.php/2019/09/29/understanding-
transposed-convolutions/#the-goal-reconstructing-the-original-input



Architecture: Upsampling
(Transposed Convolutional Layer)

* Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

» Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly,
"deconvolution layer”, there are many implementations

Input Kernel

011 Transposed 011

2| 3 Conv 2| 3

(padding is used for

intermediate values) Output
ofo 0| 1 ofo]1
=]10]0 + 2|3 [+|0]2 + o|3|=|l0]4]6
416 6|9 4 1121 9

https://d2l.ai/chapter_computer-vision/transposed-conv.html



Architecture: Upsampling
(Transposed Convolutional Layer)

* Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

» Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly,

"deconvolution layer”, there are many implementations

Input Kernel

011 Transposed 011
Conv
213 (stride 2) 213

(stride is used to compute intermediate values)

010 011
010 2|3

012 0|3
4|6 6|9

https://d2l.ai/chapter_computer-vision/transposed-conv.html

A~ | O] O O

DN O] O

(o> 3 I en T B \C B i en

O | W] w

Output



Next challenge: how to decode a highly

Architecture detailed per pixel classification from

the coarse region classifications?

21
Long, Shelhamer, and Darrell. Fully Convoluti entation. CVPR 2015



Next challenge: how to decode a highly

AFC h |teCt ure: ReS U |tS detailed per pixel classification from

the coarse region classifications?

Ground truth target Predicted segmentation

https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Update to Use Skip Connections

32x upsampled
image convl pooll conv2 pool2 conv3 pool3 conv4 pool4 convo poold5  conv6-7 prediction (FCN-32s)

_

16x upsampled
prediction (FCN-16s)

2x conv7

FCN16: Fuses class predictions of lower-
level, more fine-grained features with
the predictions at the coarser features

pool4

3X upsampled
4x conv7 prediction (FCN-8s)
2x pool4

FCN8: Fuses predictions of even lower-
level, more fine-grained features with
both predictions at the coarser features




Architecture: Results

Ground truth target FCN-32s FCN-16s FCN-8s

Skip connections support capturing finer-grained
details while retaining correct semantic information!

https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Upsampling + Skip Connections

Seems complicated... why not instead preserve the

image size and solve for per-pixel classification? _ ){)\00 S
- would yield many model parameters and so Ny

unreasonable computational burden

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Encoder Decoder Architecture

For efficiency, the image is encoded
(downsampled) into a lower-resolution
feature map that effectively
discriminates between classes...

>
eﬂ‘&

e‘bg

| (upsampled) into a

Then, the feature
map is decoded

full-resolution
segmentation map.

ation. CVPR 2015



Training: Took 3 days on 1 GPU

* Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make prediction

Quantify the dissatisfaction
with a model’s results on the
training data

Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

Update each parameter
using calculated gradients

(a) Forward pass >

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Training: How Neural Networks Learn

* Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
0 make prediction

Quantify the dissatisfaction
with a model’s results on the
training data

. pass: using
Sum of gradients for all pixels (acts like a minibatch) predicted output, calculate

Sum across all pixels the distance between predicted
and true distributions using cross entropy loss

gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018
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Cross Entropy Loss

ining

and true distributions per pixel

with cross entropy loss

(Multinomial Logistic Loss)

e e.g., assume a 5-class classifier
* Distance between predicted

Tra



Architecture: Algorithm Training

Training updates weights of
pretrained network (aka, fine-tuning)

21
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Results

mean U mean [U inference
VOC2011 test VOC2012 test time
R-CNN [ ] 47.9 - -
SDS [ 0] 52.6 51.6 ~ 50s
FCN-8s 62.7 62.2 ~ 175 ms

Compared to existing methods, produces better results at a faster speed!

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Semantic Segmentation: Today’s Topics

 Swin transformer



Why Swin Transformer?

Named after the proposed technique: Shifted Windows

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows.
ICCV 2021.



Novelty

 Demonstrates a transformer “backbone” can generalize to diverse
vision tasks, with state-of-the-art results for semantic
segmentation and object detection (aka — dense prediction
problems) as well as strong results for image classification



Why ViT Is Inadequate for Dense Prediction

Image classification Object detection/Semantic segmentation
- What image label is predicted? - What pixel label(s) are predicted?
- “Big” patches are sufficient - “Big” patches may be insufficient

Issue: quadratic expense of self-attention necessitated 16 x 16 patches, but this
can be too large for pixel-level predictions (e.g., locating needle in a haystack)



Key ldea of Swin: Modify Self-Attention Module

Swin Transformer

e Em EE EE EE EE ER BN BN EE B BN EE B EE EE EE Em Em Em oy,
o o o O O O O EE EE O O EE EE O O e Em

Embedded
Patches

Liu et al. ICCV 2021. Dosovitskiy et al. ICLR 2021.



Architecture
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Contains a series of modified self-attention modules

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Key ldea: Modified Self-Attention Module

Applies self-attention only between the fixed
number of patches in each window to capture
fine-grained details (i.e., limited to local context)

Layer |

What is the computational complexity?

- Linear based on fixed patch number
chosen per window rather than quadratic
based on number of input patches

A local window to
perform self-attention

A patch

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Key ldea: Modified Self-Attention Module

Applies self-attention only between the fixed In each subsequent layer, windows shifted to infuse
number of patches in each window to capture global context by enabling communication between
fine-grained details (i.e., limited to local context) previously non-communicative neighboring patches

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Architecture

Each patchis 4 x 4 (x3); Input linearly converted to a target (smaller) size;
Smaller than 16 x 16 (x3) e.g., 96 and 192

# of patches:
of patches: 7w «2C H W4 e
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Contains a series of modified self-attention modules

How many image pixels
are in each image patch? Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Architecture

Neighboring patches merged into increasingly bigger patches (mimics convolutional layers);
this hierarchical design also increases global context to better support visual content at
different scales! (output feature maps match resolution of common CNNs, e.g., VGG & ResNet)
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Contains a series of modified self-attention modules at different resolutions

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Dense Prediction: State-of-the Art Results

Four object detection algorithms tested on COCO 2017 with three “backbone” sources:
- ResNe(X)t

- DeiT

- Swin: was consistently top-performer

UperNet semantic segmentation algorithm tested on ADE20K with two “backbone” sources:
- DeiT
- Swin: was consistently top-performer

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021



Semantic Segmentation: Today’s Topics

* Discussion (chosen by YOU ©)



Semantic Segmentation: Today’s Topics
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