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Review

• Last lecture:
• Scene Classification Problem and Applications
• Scene Classification Datasets and Evaluation Metrics
• Scene Classification Models: Deep Features
• Attribute Classification: Problem, Applications, and Datasets

• Assignments (Canvas)
• Reading assignment was due earlier today 
• Next reading assignment due Monday
• Project proposal due in one week

• Questions?



Semantic Segmentation: Today’s Topics

• Motivation

• Datasets

• Evaluation metric 

• Fully convolutional network

• Swin transformer 

• Discussion (chosen by YOU ☺)
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Today’s Scope: Localize Pixels for Each Category

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Note: instances of the same 
category are NOT separated



Remodeling Inspiration

Bell et al; SIGGRAPH; 2013



Rotoscoping (many examples on Wikipedia)

https://www.starnow.co.uk/ahmedmohamm
ed1/photos/4650871/before-and-after-

rotoscopinggreen-screening



Disease Diagnosis; e.g.,

https://pathology.jhu.edu/brain-tumor/grading-classification



Face Makeover

Demo: https://www.maybelline.com/virtual-try-on-makeup-tools



Self-Driving Vehicles

https://www.inc.com/kevin-j-ryan/self-driving-cars-powered-by-people-playing-games-mighty-ai.html



Can you think of any other 
potential applications?
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Datasets

1945 1957 1966 1983

CVPR

1987

ICCV

1990

ECCV

1966 2009

VOC ADE20k

2017

e.g., 

# Categories:

# Images:

21

1112 train/val 25,210

Trend: build bigger datasets

3,169



VOC

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010

(superscript indicates year of inclusion in the challenge: 20051, 20062, 20073)

1. Category Selection

- 20 categories chosen: 

1) Initial 4 categories stem 

from existing dataset

2) 2006: added 6 classes

3) 2007: added 10 classes

- Categories added for 

more generalization and 

finer-grained coverage
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VOC

1. Category Selection

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010

2. Image Collection 3. Image Verification + Image Annotation

- University of Leeds annotation parties to 

recruit annotators annually

- Annotation guidelines & real-time 

assistance: detections subsequently 

refined to segmentations

- Post-hoc correction/feedback about the 

number and kind of errors made

- Annotations for each object class merged 

and another class added for background 

- 20 categories chosen: 

1) Initial 4 categories stem 

from existing dataset

2) 2006: added 6 classes

3) 2007: added 10 classes

- Categories added for 

more generalization and 

finer-grained coverage

- 500,000 images 

retrieved from 

Flickr with many 

search terms



VOC: Datasets Evolved

http://host.robots.ox.ac.uk/pascal/VOC/



VOC Annual Workshop

http://host.robots.ox.ac.uk/pascal/VOC/



VOC: Boundary Accuracy Heuristic 

“To give high accuracy but to keep the annotation time short enough to 
provide a large image set, a border area of 5 pixels width was allowed around 
each object where the pixels were labelled neither object nor background.”

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010



What is a Limitation of Datasets Built Around 
Specific Categories (e.g., Objects)?

Most pixels are labeled as `background’!

Lacks knowledge anything else is in the scene, such as a house, trees or flowers! 
Mark Everingham et al. The PASCAL Visual Object Classes Challenge: A Retrospective. IJCV 2015



Datasets

1945 1957 1966 1983

CVPR

1987

ICCV

1990

ECCV

1966 2009

VOC ADE20k

2017

e.g., 



ADE20K

1. Image Collection

- 25,210 images 

collected from 

existing datasets 

(SUN, Places, 

and LabelMe)

- Selected to 

capture all scene 

categories 

defined in SUN

2. Region Localization and Category Assignment 

- A single person annotated all images 

into three types and kept adding new 

categories as they were observed: (1) 

objects, (2) object parts, and (3) 

attributes (e.g., occluded)



ADE20K: User Annotation Tool



ADE20K: User Annotation Tool

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017



ADE20K

• Includes:

- “things”: objects that can easily 
be labeled; e.g., person, chair

- “stuff”: objects with no clear 
boundaries; e.g., sky, grass

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017
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Evaluation Metric

Score

Ground Truth:

Algorithm:

Evaluation 

Measure



Recall: IoU Metric

Score

Ground Truth:

Algorithm:



Recall: IoU Metric

Ground Truth:

Algorithm:

?



Recall: IoU Metric

Ground Truth:

Algorithm:

19

27



Mean IoU (mIoU)

• Mean IoU score over all categories
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Why Fully Convolutional Network?

Named after the proposed technique that excludes fully connected layers:

Jonathon Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks for 
Semantic Segmentation.” CVPR 2015.



Key Novelties of Fully Convolutional Networks

First work for pixelwise prediction to:

1. Train fully convolutional networks end-to-end 

2. Use supervised pre-training (recall, ViT benefited from this as well)



Architecture

Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

For each image pixel, 
the probability of 
each class is predicted



Architecture: Output Layer

• e.g., assume a 5-class classifier

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Output Layer

• e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture

Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

How many classes are 
there for VOC?
- 21 (20 object classes 
plus background)



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Do you recognize 
this architecture?



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Can use your favorite 
pretrained ImageNet classifier; 
AlexNet, VGG, GoogleNet



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

To make architecture 
fully convolutional, fully 
connected layers are 
converted to 
convolutional layers.

In the absence of fully 
connected layers, there 
are no constraints on the 
number of input nodes 
(and so any input image 
size can be supported).



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Another result of 
this change is 
that, unlike for 
classification, a 
class can be 
assigned to each 
“coarse region”



Architecture: Coarse Region Classification 
(Recall Intuition)

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Using 
VGG16 

instead:



Architecture: Coarse Region Classification 
(Recall Intuition)

Grids reflect relative spatial 
coarseness at each layer

Each line represents a 
convolutional layer

Using 
VGG16 

instead:

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015



Architecture: Coarse Region Classification 
(Recall Intuition)
Stacking many convolutional layers leads to learning patterns in increasingly larger 
regions of the input (e.g., pixel) space.

https://www.deeplearningbook.org/contents/convnets.html



Architecture: Fully vs Convolution Layers

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Each slice indicates 
the likelihood each 
pixel in the coarse 
region belongs to 
the class identified 
by the filter



Architecture: Fully vs Convolution Layers

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

If convolutionizing 
ImageNet trained 
classifiers, how 
many classes would 
be predicted for 
each coarse region?



Architecture: Coarse Region Classification 

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Locates 20 object classes 
plus background for VOC



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Challenge: how to decode from 
coarse region classifications to 

per pixel classification?



Architecture: Upsampling (Many Approaches)

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



Architecture: Upsampling 
(Transposed Convolutional Layer)

• Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 
”deconvolution layer”, there are many implementations

https://www.machinecurve.com/index.php/2019/09/29/understanding-
transposed-convolutions/#the-goal-reconstructing-the-original-input



Architecture: Upsampling 
(Transposed Convolutional Layer)

https://d2l.ai/chapter_computer-vision/transposed-conv.html

(padding is used for 
intermediate values)

• Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 
”deconvolution layer”, there are many implementations



Architecture: Upsampling 
(Transposed Convolutional Layer)

https://d2l.ai/chapter_computer-vision/transposed-conv.html

(stride is used to compute intermediate values)

• Idea: learn convolutional filters to upsample the coarse image with fractional sized steps

• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 
”deconvolution layer”, there are many implementations



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Results

https://www.jeremyjordan.me/semantic-segmentation/

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Update to Use Skip Connections

FCN16: Fuses class predictions of lower-
level, more fine-grained features with 
the predictions at the coarser features

FCN8: Fuses predictions of even lower-
level, more fine-grained features with 

both predictions at the coarser features



Architecture: Results

https://www.jeremyjordan.me/semantic-segmentation/

Skip connections support capturing finer-grained 
details while retaining correct semantic information!



Architecture: Upsampling + Skip Connections

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Seems complicated… why not instead preserve the 
image size and solve for per-pixel classification? 
- would yield many model parameters and so 
unreasonable computational burden



Architecture: Encoder Decoder Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Then, the feature 
map is decoded 
(upsampled) into a 
full-resolution 
segmentation map.

For efficiency, the image is encoded 
(downsampled) into a lower-resolution 
feature map that effectively 
discriminates between classes…



Training: Took 3 days on 1 GPU

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Sum across all pixels the distance between predicted 
and true distributions using cross entropy loss

Sum of gradients for all pixels (acts like a minibatch)

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Training: Cross Entropy Loss 
(Multinomial Logistic Loss)
• e.g., assume a 5-class classifier

• Distance between predicted 
and true distributions per pixel 
with cross entropy loss



Architecture: Algorithm Training

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Training updates weights of 
pretrained network (aka, fine-tuning)



Results

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015

Compared to existing methods, produces better results at a faster speed!



Semantic Segmentation: Today’s Topics

• Motivation

• Datasets

• Evaluation metric 

• Fully convolutional network
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Why Swin Transformer?

Named after the proposed technique: Shifted Windows 

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. 
ICCV 2021.



Novelty

• Demonstrates a transformer “backbone” can generalize to diverse 
vision tasks, with state-of-the-art results for semantic 
segmentation and object detection (aka – dense prediction 
problems) as well as strong results for image classification



Why ViT Is Inadequate for Dense Prediction

Object detection/Semantic segmentation
- What pixel label(s) are predicted?
- “Big” patches may be insufficient

Image classification
- What image label is predicted?
- “Big” patches are sufficient

Issue: quadratic expense of self-attention necessitated 16 x 16 patches, but this 
can be too large for pixel-level predictions (e.g., locating needle in a haystack) 



Key Idea of Swin: Modify Self-Attention Module

Liu et al. ICCV 2021. Dosovitskiy et al. ICLR 2021.

ViTSwin Transformer



Architecture

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021

Contains a series of modified self-attention modules



Key Idea: Modified Self-Attention Module

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021

What is the computational complexity? 
- Linear based on fixed patch number 
chosen per window rather than quadratic 
based on number of input patches

Applies self-attention only between the fixed 
number of patches in each window to capture 
fine-grained details (i.e., limited to local context)



Key Idea: Modified Self-Attention Module

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021

Applies self-attention only between the fixed 
number of patches in each window to capture 
fine-grained details (i.e., limited to local context)

In each subsequent layer, windows shifted to infuse 
global context by enabling communication between 
previously non-communicative neighboring patches 



Architecture

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021

Why “x3”? 

- Assumes 
RGB image

How many image pixels 
are in each image patch?

Each patch is 4 x 4 (x3); 
Smaller than 16 x 16 (x3)

# of patches:

Input linearly converted to a target (smaller) size; 
e.g., 96 and 192

Contains a series of modified self-attention modules



Architecture

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021

Neighboring patches merged into increasingly bigger patches (mimics convolutional layers); 
this hierarchical design also increases global context to better support visual content at 
different scales! (output feature maps match resolution of common CNNs, e.g., VGG & ResNet)

Contains a series of modified self-attention modules at different resolutions



Dense Prediction: State-of-the Art Results

Four object detection algorithms tested on COCO 2017 with three “backbone” sources:
- ResNe(X)t
- DeiT
- Swin: was consistently top-performer

UperNet semantic segmentation algorithm tested on ADE20K with two “backbone” sources:
- DeiT
- Swin: was consistently top-performer

Liu et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. ICCV 2021
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