
Danna Gurari
University of Colorado Boulder

Fall 2024

Introduction to Deep Learning
in Computer Vision

https://dannagurari.colorado.edu/course/recent-advances-in-computer-vision-fall-2024/

Review

• Last lecture:
• Computer vision: origins
• What makes computer vision hard?
• Research in computer vision
• Course logistics

• Assignments (Canvas)
• New reading assignments coming out today due the next two weeks

• Questions?

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Recall What a Machine Observes: Digital Image

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Recall What a Machine Observes: Digital Video

Time 1

1 hour

Analogous to:

Mult-Channel Color Images; e.g., 24-bit RGB

https://www.geeksforgeeks.org/matlab-rgb-image-representation/

Many Ways to Create Digital Images and Videos

Ultrasound

Infrared

X-ray

Visible

Microscopy

Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy
(photons)

Value = 82

Energy
(photons)

Value = 210

e.g., seeing what is visible to the naked human eye

Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy
(photons)

Value = 82

Energy
(photons)

Value = 210

e.g., seeing what is invisible to the naked human eye with infrared

Many Ways to Create Digital Images and Videos

1. Sound wave generation

2. For each reflected sound wave, (a)
record and (b) digitize to pixel values

3. Convert digitization to image

e.g., seeing what is invisible to the naked human eye with sound

Many Ways to Create Digital Images and Videos

My Focus in My Career

2004-2005: Washington University - Ultrasound

2005-2007: Raytheon (NPOESS) - Satellite

2007-2010: Boulder Imaging - Visible & Infrared

2010-2015: Boston University - Microscopy

2015-Present: Many more types!

Many Ways to Record Digital Visual Data

e.g., Roughly, can think of file formats as headers followed by pixel values (e.g., jpg, png)

Header: Instructions to parse file

Table: Pixel values
(e.g., RGB, CMYK, Lab, grayscale)

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Algorithm Dataset

Status Quo Until 2012

Algorithm
DatasetAlgorithm Dataset DatasetAlgorithm

Datasets tended to be relatively small (e.g., 10s or 100s of examples)

Status Quo Until 2012: Datasets

• Authors created datasets either with their cameras, by purchasing
datasets from companies, or downloading images from the Internet

• What’s wrong with such approaches?

• Unable to perform “fair” comparison between algorithms

• Lacks a community around a shared goal

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What features would help predict yes/no?

e.g., corners, lines, and model of expected body parts as connected shapes

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction

Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What rules should be used to predict yes/no?

e.g., choose threshold for number of model parts detected or
develop machine learning model that predicts from handcrafted features

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction

Limitations of Handcrafted Methods

• Challenging for engineers to design effective features (and rules) for
ALL examples (for every computer vision problem)!

Limitations of Handcrafted Methods

e.g., are these lines parallel?

Limitations of Handcrafted Methods

e.g., are these lines parallel?

Limitations of Handcrafted Methods

1. It is hard to hand-craft a complete set of methods

2. We, as humans, may not devise the best rules for a machine since our brains
(unconsciously) pre-process the data we sense

Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

Datasets tend to be large (e.g., billions or trillions of examples)

Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

What do you think
prompted this shift to
large-scale datasets?

Datasets tend to be large (e.g., billions or trillions of examples)

Research Since 2012: Dataset Challenges

Shutterstock

(Analogous to Tests in Schools, After Receiving Lessons)

Research Since 2012: Dataset Challenges

Key ingredients:

1. Test examples that includes target results

2. Metric for assessing the similarity between each model
prediction and the target result

3. New challenges for the community to tackle, evidenced
by dataset analysis and model benchmarking

Research Since 2012: Dataset Challenges

Many public dataset challenges and datasets:
• Google Dataset Search
• Kaggle
• Amazon’s AWS datasets
• UC Irvine Machine Learning Repository
• Quora.com
• Reddit
• Dataportals.org
• Opendatamonitor.eu
• Quandl.com

Research Since 2012: Algorithms

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

HANDCRAFTED APPROACH

Yes

Feature Extraction

COMPUTER-LEARNED APPROACH

Prediction

Neural
Networks

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Inspiration: Animal’s Computing Machinery

Neuron
- basic unit in the nervous system for receiving, processing, and

transmitting information; e.g., messages such as…

“hot”

https://www.clipart.email/clipart/don
t-touch-hot-stove-clipart-73647.html

“loud”

https://kisselpaso.com/if-the-sun-city-
music-fest-gets-too-loud-there-is-a-
phone-number-you-can-call-to-complain/

“spicy”

https://www.babycenter.com/404_when-
can-my-baby-eat-spicy-
foods_1368539.bc

Inspiration: Animal’s Computing Machinery

Human: ~100 billion neurons in a brain
(& 100+ trillions connections/synapses)

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

Inspiration: Animal’s Computing Machinery

https://www.youtube.com/watch?v=oa6rvUJlg7o

Inspiration: Basic Understanding of Neurons

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

• When the input signals exceed a certain threshold within a short period of time, a neuron “fires”

• Neuron “firing” is an “all-or-none” process, where either a signal is sent or nothing happens

Sidenote: It Remains An Open Research Problem
to Understand How Individual Neurons Work

Origins of Neural Networks: Artificial Neurons

Computer
Vision

CVPR ICCV ECCVCVPR ICCV ECCV

1966 1983 1987 19901945 1957

Perceptron

Perceptron: Innovator and Vision

Frank Rosenblatt
(Psychologist)

New York Times article, July 8, 1958 :

https://www.nytimes.com/1958/07/08/arc
hives/new-navy-device-learns-by-doing-

psychologist-shows-embryo-of.html

https://en.wikipedia.org
/wiki/Frank_Rosenblatt

Perceptron (Artificial Neuron)

“Input signals”

“Output signal”

Artificial Neuron:

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

- weights (W) are learned
- outputs 1 or 0 (mimics

neurons by “firing” only
when sum exceeds threshold)

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

Fall of Perceptron (Artificial Neuron)

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

A Perceptron cannot solve XOR problem and so separate 1s from 0s (it’s a linear function):

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

How can a machine “walk, talk, see, write, reproduce itself and be
conscious of its existence” when it can’t solve the XOR problem?

Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Idea: Use Connected Neurons (i.e., Neural Networks)
to Transform Input into Features Useful for Prediction

http://cs231n.github.io/neural-networks-1/

Neural Network

This is a 3-layer neural network
(i.e., count number of hidden
layers plus output layer)

input values

each “hidden layer” uses outputs of
units (i.e., neurons) and provides them
as inputs to other units (i.e., neurons)

prediction

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

bias

weights

Neural Network

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network

• Training goal: learn model parameters

• Layers are called “hidden” because
algorithm decides how to use each
layer to produce its output

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Neural Network

How many weights are in this model?
• Input to Hidden Layer 1:

• 3x4 = 12
• Hidden Layer 1 to Hidden Layer 2:

• 4x4 = 16
• Hidden Layer 2 to Output Layer

• 4x1 = 4
• Total:

• 12 + 16 + 4 = 32

http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:

• 32
• Number of biases:

• 4 + 4 + 1 = 9
• Total

• 41

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3
• y = (w1x1 + w3x2 + b1)w5 + (w2x1 + w4x2 + b2)w6 + b3

• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Constant x linear function = linear function

Add Non-Linear Activation Functions

Python Machine Learning; Raschka & Mirjalili

Activation
Function

?

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

Add Non-Linear Activation Functions; e.g.,

Source: https://www.linkedin.com/pulse/activation-functions-neural-networks-leonardo-calderon-j-/

Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

INPUT OUTPUT

Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function () with these parameters:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Neural networks can solve XOR problem...
and so model non-linear functions!

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

Gradient Descent: Approach

• Repeatedly show a neural network examples to decide how to modify its
parameters (e.g., weights and biases) so it better converts inputs to match
desired outputs (performance error is measured by an objective/loss function)

• Analogy: hike from mountains to Boulder blind or blindfolded!

Start

End Point (Minimum)

W11x1

x2 h2

o1

b1

h1
b3

W22

b2

1

1

1

• Repeat:
1. Guess

2. Calculate error

• e.g., learn linear model for converting kilometers to miles when only
observing the input “miles” and output “kilometers”

Miles Kilometers = miles x constant Kilometers

Gradient Descent: Intuition

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

$10 Shekels = dollars x constant

Gradient Descent: Intuition

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Error = Guess - Correct

Gradient Descent: Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

Error = Guess - Correct$10 Shekels = dollars x constant

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

$10 Shekels = dollars x constant

Gradient Descent: Intuition

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

• Idea: repeatedly adjust constant (i.e., model parameter) to try to
reduce the error

Error = Guess - Correct$10 Shekels = dollars x constant

Gradient Descent: Possible Scenarios

Convex Functions (one minimum) Non-Convex Functions (multiple minima)

Our focus: deep learning

(simple 1-dimensional plots)

x

f(x)

x

f(x)

Currency conversion example

Gradient Descent: Objective Functions

What is the minimum possible value?

• 0: all predictions are correct

Predicted valueTrue value

Mean taken over n instances

Many options exist!

e.g., minimize the squared error (aka, L2 loss,
quadratic loss) between prediction and ground truth

Gradient Descent: Definitions

Which letter(s) show global minima?

Which letter(s) show local minima?

• Gradient: a vector indicating how a slight change to each function variable in x increases the
output f(x) (partial derivatives when there are multiple variables)

• Recall, a derivative indicates the slope (rise/run) of the function at any point

• Gradient descent: to minimize the function, iteratively step in opposite direction of gradient
(i.e., descent rather than ascent)

x

f(x)

A
B

C

Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Key challenge: calculating gradients

Solution: backpropagation

Gradient Descent: Implementation

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

1945 1950

Backpropagation to calculate
gradients for neural networks

19861847

Gradient
descent

• Idea: compute gradient on loss function to inform how to nudge model parameters to reduce loss

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Chain rule of calculus: can compute all
derivatives from top to bottom using only
local derivative information at each node;

e.g.,

Backpropagation Basics: Chain Rule

• Idea: compute gradient on loss function to inform how to nudge model parameters to reduce loss

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Chain rule of calculus: can compute all
derivatives from top to bottom using only
local derivative information at each node;

e.g.,

Backpropagation Basics: Chain Rule

Intuitive example: how much faster is my
husband compared to my daughter? (dz/dx)

my husband travels twice
as fast as my son (dz/dy)

my son travels three times as
fast as my daughter (dy/dx)

Gradient Descent: How Much to Update?
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure dissatisfaction with
a model’s predictions on
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

• Many ways to use the gradients

• Basic choice: Step size / learning rate
• (a) When rate is too small, convergence to good solution is slow

• (b) When rate is too large, convergence to good solution is impossible

(a) (b)

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

Gradient Descent: Implementation

For excellent step-by-step tutorial, watch this video:

https://www.youtube.com/watch?v=VMj-3S1tku0

Critical Foundation for Training: Hardware

Idea: Train Algorithms Using
GPUs (think Porsche) Instead of CPUs (think Golf Cart)

Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf

Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf

Hardware: CPU versus GPU

• Graphical Processing Units: accelerates computational workloads due
to MANY more processing cores

https://www.researchgate.net/figure/The-main-difference-between-CPUs-
and-GPUs-is-related-to-the-number-of-available-cores-A_fig7_273383346

Rise of “Deep Learning” Open Source Platforms

2011 2012 2014 2015

(Paszke et al.)

2013

(Jia et al.)(Bastien et al.) (Abadi et al.)

2016 2017

(Collobert et al.)

Popular for the
research community

GPU Machines: Rent Versus Buy?

Rent from Cloud

(e.g., Microsoft Azure):

Buy:

Coding Tutorial Demo:

• Use Google Colab to create and train a neural network with PyTorch

Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks

	Slide 1
	Slide 2: Review
	Slide 3: Today’s Topics
	Slide 4: Today’s Topics
	Slide 5: Recall What a Machine Observes: Digital Image
	Slide 6: Recall What a Machine Observes: Digital Video
	Slide 7: Mult-Channel Color Images; e.g., 24-bit RGB
	Slide 8: Many Ways to Create Digital Images and Videos
	Slide 9: Many Ways to Create Digital Images and Videos
	Slide 10: Many Ways to Create Digital Images and Videos
	Slide 11: Many Ways to Create Digital Images and Videos
	Slide 12: Many Ways to Create Digital Images and Videos
	Slide 13: My Focus in My Career
	Slide 14: Many Ways to Record Digital Visual Data
	Slide 15: Today’s Topics
	Slide 16: Status Quo Until 2012
	Slide 17: Status Quo Until 2012: Datasets
	Slide 18: Status Quo Until 2012: Algorithms
	Slide 19: Status Quo Until 2012: Algorithms
	Slide 20: Status Quo Until 2012: Algorithms
	Slide 21: Limitations of Handcrafted Methods
	Slide 22: Limitations of Handcrafted Methods
	Slide 23: Limitations of Handcrafted Methods
	Slide 24: Limitations of Handcrafted Methods
	Slide 25: Status Quo Since 2012
	Slide 26: Status Quo Since 2012
	Slide 27: Research Since 2012: Dataset Challenges
	Slide 28: Research Since 2012: Dataset Challenges
	Slide 29: Research Since 2012: Dataset Challenges
	Slide 30: Research Since 2012: Algorithms
	Slide 31: Today’s Topics
	Slide 32: Inspiration: Animal’s Computing Machinery
	Slide 33: Inspiration: Animal’s Computing Machinery
	Slide 34: Inspiration: Animal’s Computing Machinery
	Slide 35: Inspiration: Basic Understanding of Neurons
	Slide 36: Origins of Neural Networks: Artificial Neurons
	Slide 37: Perceptron: Innovator and Vision
	Slide 38: Perceptron (Artificial Neuron)
	Slide 39: Fall of Perceptron (Artificial Neuron)
	Slide 40: Fall of Perceptron (Artificial Neuron)
	Slide 41: Fall of Perceptron (Artificial Neuron)
	Slide 42: Fall of Perceptron (Artificial Neuron)
	Slide 43: Fall of Perceptron (Artificial Neuron)
	Slide 44: Fall of Perceptron (Artificial Neuron)
	Slide 45: Fall of Perceptron (Artificial Neuron)
	Slide 46: Idea: Use Connected Neurons (i.e., Neural Networks) to Transform Input into Features Useful for Prediction
	Slide 47: Neural Network
	Slide 48: Neural Network
	Slide 49: Neural Network
	Slide 50: Neural Network
	Slide 51: Neural Network
	Slide 52: Neural Network
	Slide 53: Neural Network
	Slide 54: Neural Network
	Slide 55: Neural Network
	Slide 56: Neural Network
	Slide 57: Neural Network
	Slide 58: Neural Network
	Slide 59: Neural Network
	Slide 60: Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions
	Slide 61: Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions
	Slide 62: Add Non-Linear Activation Functions
	Slide 63: Add Non-Linear Activation Functions; e.g.,
	Slide 64: Non-Linear Example: Revisiting XOR problem
	Slide 65: Non-Linear Example: Revisiting XOR problem
	Slide 66: Non-Linear Example: Revisiting XOR problem
	Slide 67: Non-Linear Example: Revisiting XOR problem
	Slide 68: Non-Linear Example: Revisiting XOR problem
	Slide 69: Non-Linear Example: Revisiting XOR problem
	Slide 70: Non-Linear Example: Revisiting XOR problem
	Slide 71: Non-Linear Example: Revisiting XOR problem
	Slide 72: Non-Linear Example: Revisiting XOR problem
	Slide 73: Non-Linear Example: Revisiting XOR problem
	Slide 74: Non-Linear Example: Revisiting XOR problem
	Slide 75: Non-Linear Example: Revisiting XOR problem
	Slide 76: Non-Linear Example: Revisiting XOR problem
	Slide 77: Non-Linear Example: Revisiting XOR problem
	Slide 78: Non-Linear Example: Revisiting XOR problem
	Slide 79: Today’s Topics
	Slide 80: Gradient Descent: Approach
	Slide 81: Gradient Descent: Intuition
	Slide 82: Gradient Descent: Intuition
	Slide 83: Gradient Descent: Intuition
	Slide 84: Gradient Descent: Intuition
	Slide 85: Gradient Descent: Intuition
	Slide 86: Gradient Descent: Intuition
	Slide 87: Gradient Descent: Intuition
	Slide 88: Gradient Descent: Possible Scenarios
	Slide 89: Gradient Descent: Objective Functions
	Slide 90: Gradient Descent: Definitions
	Slide 91: Gradient Descent: Implementation
	Slide 92: Gradient Descent: Implementation
	Slide 93: Gradient Descent: Implementation
	Slide 94: Backpropagation Basics: Chain Rule
	Slide 95: Backpropagation Basics: Chain Rule
	Slide 96: Gradient Descent: How Much to Update?
	Slide 97: Gradient Descent: Implementation
	Slide 98: Critical Foundation for Training: Hardware
	Slide 99: Hardware: CPU versus GPU
	Slide 100: Hardware: CPU versus GPU
	Slide 101: Hardware: CPU versus GPU
	Slide 102: Rise of “Deep Learning” Open Source Platforms
	Slide 103: GPU Machines: Rent Versus Buy?
	Slide 104: Coding Tutorial Demo:
	Slide 105: Today’s Topics
	Slide 106

