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Review

• Last lecture:
• Computer vision: origins
• What makes computer vision hard? 
• Research in computer vision
• Course logistics

• Assignments (Canvas)
• New reading assignments coming out today due the next two weeks

• Questions?



Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks
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Recall What a Machine Observes: Digital Image

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Recall What a Machine Observes: Digital Video

Time 1

1 hour

Analogous to: 



Mult-Channel Color Images; e.g., 24-bit RGB

https://www.geeksforgeeks.org/matlab-rgb-image-representation/



Many Ways to Create Digital Images and Videos

Ultrasound

Infrared

X-ray

Visible

Microscopy



Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy 
(photons)

Value = 82

Energy 
(photons)

Value = 210

e.g., seeing what is visible to the naked human eye



Many Ways to Create Digital Images and Videos

http://what-when-how.com/introduction-to-video-and-image-processing/image-
acquisition-introduction-to-video-and-image-processing-part-1/

Energy 
(photons)

Value = 82

Energy 
(photons)

Value = 210

e.g., seeing what is invisible to the naked human eye with infrared



Many Ways to Create Digital Images and Videos

1. Sound wave generation

2. For each reflected sound wave, (a) 
record and (b) digitize to pixel values 

3. Convert digitization to image

e.g., seeing what is invisible to the naked human eye with sound



Many Ways to Create Digital Images and Videos



My Focus in My Career

2004-2005: Washington University - Ultrasound

2005-2007: Raytheon (NPOESS) - Satellite

2007-2010: Boulder Imaging - Visible & Infrared

2010-2015: Boston University - Microscopy

2015-Present: Many more types!



Many Ways to Record Digital Visual Data

e.g., Roughly, can think of file formats as headers followed by pixel values (e.g., jpg, png)

Header: Instructions to parse file

Table: Pixel values 
(e.g., RGB, CMYK, Lab, grayscale)



Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks



Algorithm Dataset

Status Quo Until 2012

Algorithm
DatasetAlgorithm Dataset DatasetAlgorithm

Datasets tended to be relatively small (e.g., 10s or 100s of examples)



Status Quo Until 2012: Datasets

• Authors created datasets either with their cameras, by purchasing 
datasets from companies, or downloading images from the Internet

• What’s wrong with such approaches?

• Unable to perform “fair” comparison between algorithms

• Lacks a community around a shared goal



Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT



Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What features would help predict yes/no?

e.g., corners, lines, and model of expected body parts as connected shapes  

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction



Status Quo Until 2012: Algorithms

• An engineer manually designs methods to interpret an image

What rules should be used to predict yes/no?

e.g., choose threshold for number of model parts detected or 
develop machine learning model that predicts from handcrafted features

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, IJCV 2004

Feature Extraction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

Prediction



Limitations of Handcrafted Methods

• Challenging for engineers to design effective features (and rules) for 
ALL examples (for every computer vision problem)!



Limitations of Handcrafted Methods

e.g., are these lines parallel?



Limitations of Handcrafted Methods

e.g., are these lines parallel?



Limitations of Handcrafted Methods

1. It is hard to hand-craft a complete set of methods

2. We, as humans, may not devise the best rules for a machine since our brains 
(unconsciously) pre-process the data we sense



Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

Datasets tend to be large (e.g., billions or trillions of examples)



Status Quo Since 2012

Algorithms

Dataset

Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx

What do you think 
prompted this shift to 
large-scale datasets?

Datasets tend to be large (e.g., billions or trillions of examples)



Research Since 2012: Dataset Challenges

Shutterstock

(Analogous to Tests in Schools, After Receiving Lessons)



Research Since 2012: Dataset Challenges

Key ingredients:

1. Test examples that includes target results

2. Metric for assessing the similarity between each model 
prediction and the target result

3. New challenges for the community to tackle, evidenced 
by dataset analysis and model benchmarking



Research Since 2012: Dataset Challenges

Many public dataset challenges and datasets:
• Google Dataset Search
• Kaggle
• Amazon’s AWS datasets
• UC Irvine Machine Learning Repository
• Quora.com
• Reddit
• Dataportals.org
• Opendatamonitor.eu
• Quandl.com



Research Since 2012: Algorithms

Feature Extraction Prediction

or

e.g., Is a person present?

Yes

INPUT OUTPUT

HANDCRAFTED APPROACH

Yes

Feature Extraction

COMPUTER-LEARNED APPROACH

Prediction

Neural 
Networks



Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks



Inspiration: Animal’s Computing Machinery 

Neuron 
- basic unit in the nervous system for receiving, processing, and 

transmitting information; e.g., messages such as…

“hot”

https://www.clipart.email/clipart/don
t-touch-hot-stove-clipart-73647.html

“loud”

https://kisselpaso.com/if-the-sun-city-
music-fest-gets-too-loud-there-is-a-
phone-number-you-can-call-to-complain/

“spicy”

https://www.babycenter.com/404_when-
can-my-baby-eat-spicy-
foods_1368539.bc



Inspiration: Animal’s Computing Machinery 

Human: ~100 billion neurons in a brain 
(& 100+ trillions connections/synapses)

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg



Inspiration: Animal’s Computing Machinery 

https://www.youtube.com/watch?v=oa6rvUJlg7o



Inspiration: Basic Understanding of Neurons

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

• When the input signals exceed a certain threshold within a short period of time, a neuron “fires”

• Neuron “firing” is an “all-or-none” process, where either a signal is sent or nothing happens

Sidenote: It Remains An Open Research Problem 
to Understand How Individual Neurons Work



Origins of Neural Networks: Artificial Neurons

Computer 
Vision 

CVPR ICCV ECCVCVPR ICCV ECCV

1966 1983 1987 19901945 1957

Perceptron



Perceptron: Innovator and Vision

Frank Rosenblatt
(Psychologist)

New York Times article, July 8, 1958 :
 

https://www.nytimes.com/1958/07/08/arc
hives/new-navy-device-learns-by-doing-

psychologist-shows-embryo-of.html

https://en.wikipedia.org
/wiki/Frank_Rosenblatt



Perceptron (Artificial Neuron)

“Input signals”

“Output signal”

Artificial Neuron:

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

- weights (W) are learned
- outputs 1 or 0 (mimics 

neurons by “firing” only 
when sum exceeds threshold)



Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output: 
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1  XOR  x2

0 0

0 1

1 0

1 1

?

?

?

?

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969
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Fall of Perceptron (Artificial Neuron)

x1 x2 x1  XOR  x2

0 0

0 1

1 0

1 1

0

1

1

0

A Perceptron cannot solve XOR problem and so separate 1s from 0s (it’s a linear function):

Marvin Minsky and Seymore Papert, Perceptrons, MIT Press, 1969

How can a machine “walk, talk, see, write, reproduce itself and be 
conscious of its existence” when it can’t solve the XOR problem?



Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Idea: Use Connected Neurons (i.e., Neural Networks) 
to Transform Input into Features Useful for Prediction



http://cs231n.github.io/neural-networks-1/

Neural Network

This is a 3-layer neural network 
(i.e., count number of hidden 
layers plus output layer)

input values

each “hidden layer” uses outputs of 
units (i.e., neurons) and provides them 
as inputs to other units (i.e., neurons)

prediction



Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and 
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

bias

weights



Neural Network

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

• How does this relate to a perceptron?

• Unit: computes a weighted sum and 
applies an activation function
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Neural Network

• How does this relate to a perceptron?

• Unit: computes a weighted sum and 
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/



Neural Network

• Training goal: learn model parameters

• Layers are called “hidden” because 
algorithm decides how to use each 
layer to produce its output

http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

Neural Network

How many weights are in this model?
• Input to Hidden Layer 1:

• 3x4 = 12
• Hidden Layer 1 to Hidden Layer 2:

• 4x4 = 16
• Hidden Layer 2 to Output Layer

• 4x1 = 4
• Total: 

• 12 + 16 + 4 = 32



http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:

• 32
• Number of biases:

• 4 + 4 + 1 = 9
• Total

• 41



Hidden Layers Alone Are NOT Enough to 
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g., 

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3 
• y = (w1x1 + w3x2 + b1 )w5 + (w2x1 + w4x2 + b2)w6 + b3

• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!



Hidden Layers Alone Are NOT Enough to 
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g., 

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3 

A chain of LINEAR functions at any depth is still a LINEAR function!

Constant x linear function = linear function



Add Non-Linear Activation Functions 

Python Machine Learning; Raschka & Mirjalili

Activation 
Function

?

• Each unit applies a non-linear “activation” function to the weighted input to 
mimic a neuron firing



Add Non-Linear Activation Functions; e.g.,

Source: https://www.linkedin.com/pulse/activation-functions-neural-networks-leonardo-calderon-j-/



Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

INPUT OUTPUT



Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function (                                           ) with these parameters:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0
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1
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1 1

-2
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0

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: ReLU activation function (                                           ) with these parameters:
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Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function (                                           ) with this model:

Neural networks can solve XOR problem... 
and so model non-linear functions!



Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks



Gradient Descent: Approach

• Repeatedly show a neural network examples to decide how to modify its 
parameters (e.g., weights and biases) so it better converts inputs to match 
desired outputs (performance error is measured by an objective/loss function) 

• Analogy: hike from mountains to Boulder blind or blindfolded!

Start

End Point (Minimum)

W11x1

x2 h2

o1

b1

h1
b3

W22

b2

1

1

1



• Repeat:
1. Guess

2. Calculate error

• e.g., learn linear model for converting kilometers to miles when only 
observing the input “miles” and output “kilometers”

Miles Kilometers = miles x constant Kilometers

Gradient Descent: Intuition



• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

$10 Shekels = dollars x constant

Gradient Descent: Intuition



• Repeat:
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2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Error = Guess - Correct

Gradient Descent: Intuition

$10 Shekels = dollars x constant
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• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels
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$10 Shekels = dollars x constant



Gradient Descent: Intuition

• Repeat:
1. Guess

2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

• Idea: repeatedly adjust constant (i.e., model parameter) to try to 
reduce the error

Error = Guess - Correct$10 Shekels = dollars x constant



Gradient Descent: Possible Scenarios

Convex Functions (one minimum) Non-Convex Functions (multiple minima)

Our focus: deep learning

(simple 1-dimensional plots)

x

f(x)

x

f(x)

Currency conversion example



Gradient Descent: Objective Functions

 

What is the minimum possible value?

• 0: all predictions are correct

Predicted valueTrue value

Mean taken over n instances

Many options exist! 

e.g., minimize the squared error (aka, L2 loss, 
quadratic loss) between prediction and ground truth



Gradient Descent: Definitions

Which letter(s) show global minima?

Which letter(s) show local minima?

• Gradient: a vector indicating how a slight change to each function variable in x increases the 
output f(x) (partial derivatives when there are multiple variables)

• Recall, a derivative indicates the slope (rise/run) of the function at any point

• Gradient descent: to minimize the function, iteratively step in opposite direction of gradient 
(i.e., descent rather than ascent)

x

f(x)

A
B

C



Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure dissatisfaction with 
a model’s predictions on 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Gradient Descent: Implementation
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure dissatisfaction with 
a model’s predictions on 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Key challenge: calculating gradients

Solution: backpropagation



Gradient Descent: Implementation

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

1945 1950

Backpropagation to calculate 
gradients for neural networks

19861847

Gradient 
descent



• Idea: compute gradient on loss function to inform how to nudge model parameters to reduce loss

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Chain rule of calculus: can compute all 
derivatives from top to bottom using only 
local derivative information at each node; 

e.g.,

Backpropagation Basics: Chain Rule



• Idea: compute gradient on loss function to inform how to nudge model parameters to reduce loss

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Chain rule of calculus: can compute all 
derivatives from top to bottom using only 
local derivative information at each node; 

e.g.,

Backpropagation Basics: Chain Rule

Intuitive example: how much faster is my 
husband compared to my daughter? (dz/dx)

my husband travels twice 
as fast as my son (dz/dy)

my son travels three times as 
fast as my daughter (dy/dx)



Gradient Descent: How Much to Update?
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure dissatisfaction with 
a model’s predictions on 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

• Many ways to use the gradients

• Basic choice: Step size / learning rate
• (a) When rate is too small, convergence to good solution is slow

• (b) When rate is too large, convergence to good solution is impossible

(a) (b) 

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb



Gradient Descent: Implementation

For excellent step-by-step tutorial, watch this video: 

https://www.youtube.com/watch?v=VMj-3S1tku0



Critical Foundation for Training: Hardware

Idea: Train Algorithms Using 
GPUs (think Porsche) Instead of CPUs (think Golf Cart)



Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf



Hardware: CPU versus GPU

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf



Hardware: CPU versus GPU

• Graphical Processing Units: accelerates computational workloads due 
to MANY more processing cores

https://www.researchgate.net/figure/The-main-difference-between-CPUs-
and-GPUs-is-related-to-the-number-of-available-cores-A_fig7_273383346



Rise of “Deep Learning” Open Source Platforms

2011 2012 2014 2015

(Paszke et al.)

2013

(Jia et al.)(Bastien et al.) (Abadi et al.)

2016 2017

(Collobert et al.)

Popular for the 
research community



GPU Machines: Rent Versus Buy? 

Rent from Cloud 

(e.g., Microsoft Azure):

Buy:



Coding Tutorial Demo: 

• Use Google Colab to create and train a neural network with PyTorch



Today’s Topics

• Ways of seeing: image and video acquisition

• Evolution of computer vision (before versus after 2012)

• Fundamentals of a neural network architecture

• Training deep neural networks
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