Visual Question Answering Models

Fall 2021

Overview

Introduction

Bottom-up and Top-down Attention Model

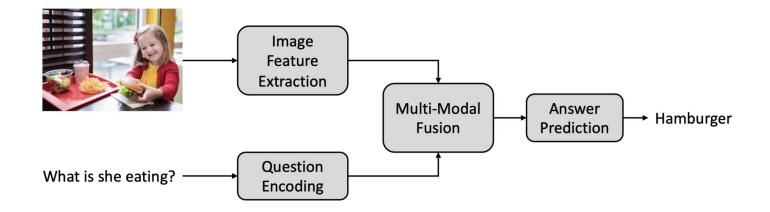
Vision Language Pre-training

Oscar Model

Grid Features vs Region Based Features

Without Convolution or Region Supervision

How does a typical VQA system work?



Slide: datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf

Overview

Introduction

Bottom-up and Top-down Attention Model

Vision Language Pre-training

Oscar Model

Grid Features vs Region Based Features

Without Convolution or Region Supervision

Fine-grained visual processing is often essential for visual and language tasks.

Learn to focus on image regions related to the task.

Q: What color is the traffic light?

Image: metouhey.com Bottom-up and top-down attention for image captioning and vqa. In CVPR. IEEE, 2018.

Fine-grained visual processing is often essential for visual and language tasks.

Learn to focus on image regions related to the task.

Q: What color is the traffic light? A: Red

Image: metouhey.com Bottom-up and top-down attention for image captioning and vqa. In CVPR. IEEE, 2018.

Fine-grained visual processing is often essential for visual and language tasks.

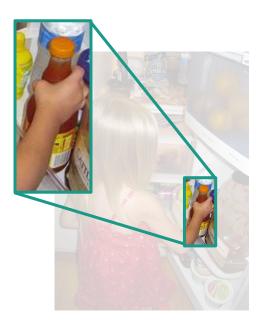
Learn to focus on image regions related to the task.

Q: Is the child holding a bottle or a can?

Image: visualqa.org Bottom-up and top-down attention for image captioning and vqa. In CVPR. IEEE, 2018.

Fine-grained visual processing is often essential for visual and language tasks.

Learn to focus on image regions related to the task.



Q: Is the child holding a bottle or a can? A: Bottle

Image: visualqa.org Bottom-up and top-down attention for image captioning and vqa. In CVPR. IEEE, 2018.

Learn to focus on image regions related to the task.

1. Set of attention candidate

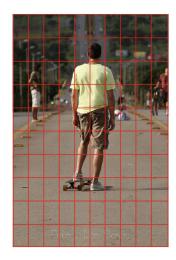
2. Text content representation

3. Learned attention function

Bottom-up and top-down attention for image captioning and vga. In CVPR. IEEE, 2018.

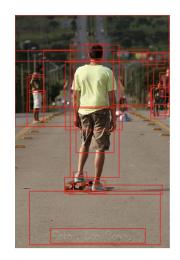
attended feature $\longleftarrow \widehat{v} = f(h,V)$

Attention Candidates



Spatial output of a CNN
$$V = \{v_1, \dots, v_{100}\}$$

10 x 10 grids



Object-based attention $V = \{v_1, \dots, v_k\}$

k regions

Enabling attention to be calculated at the level of objects and other salient image regions.

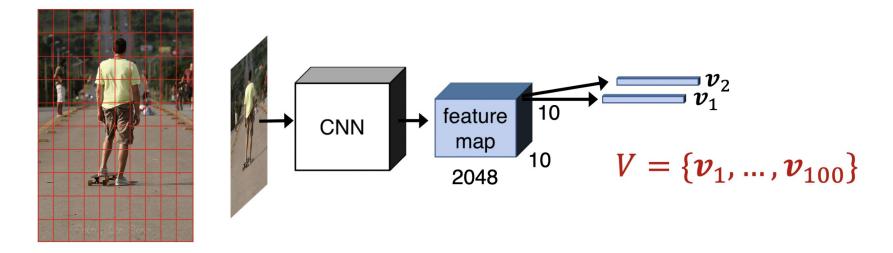
It is the natural basis for attention to be considered.

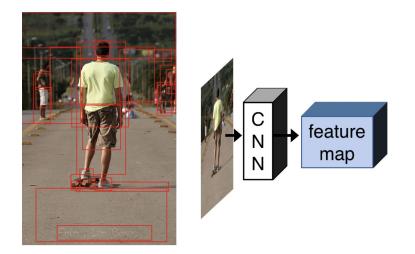
C: A **young man** on a **skateboard** looking down **street** with **people** watching.

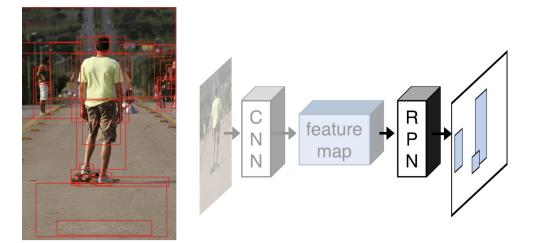
Q: Is the boy in the yellow shirt wearing head protective gear?

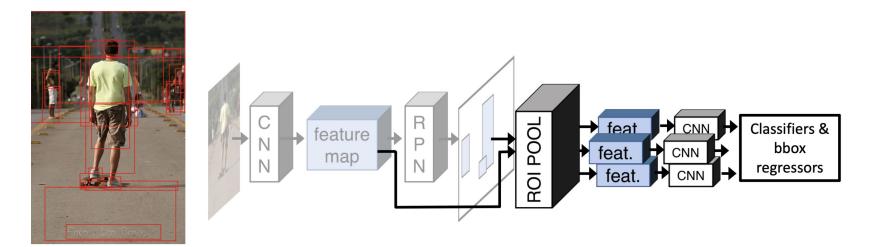
A: No

Spatial output of a CNN







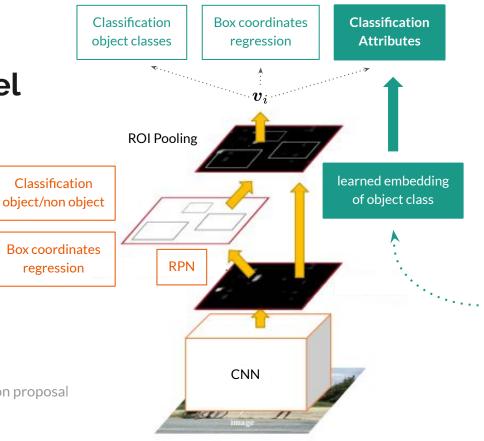


Bottom-up Attention Model

For each selected region i, v_i is defined as the mean-pooled convolutional feature from this region.

The original Faster R-CNN multi-task loss function contains four components. They add an additional multi-class loss component to train the attribute predictor.

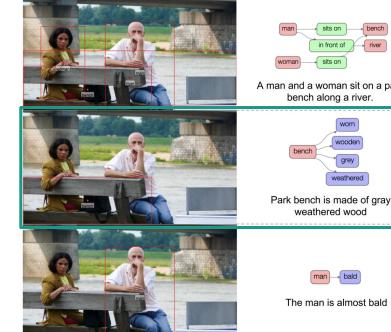
Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015



Pre-training Visual Genome Dataset

Visual Genome is a dataset, a knowledge base, an ongoing effort to connect structured image concepts to language.

To aid the learning of good feature representations, we add an additional training output for predicting attribute classes (in addition to object classes).



sits on bench in front of river sits on

A man and a woman sit on a park bench along a river.

> Nom wooden

> > grey

weathered

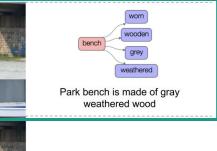
Visual genome: Connecting language and vision using crowdsourced dense image annotations. In arXiv, 2016.

Pre-training Visual Genome Dataset

1600 Object classes.

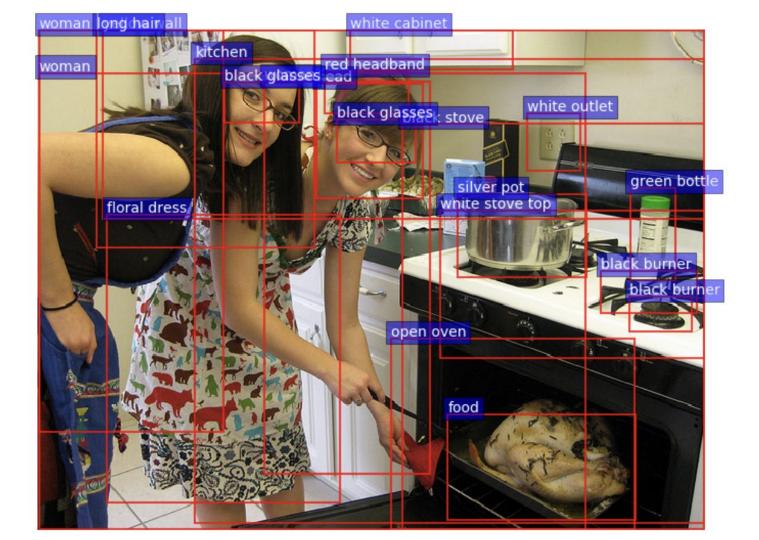
400 Attribute classes.

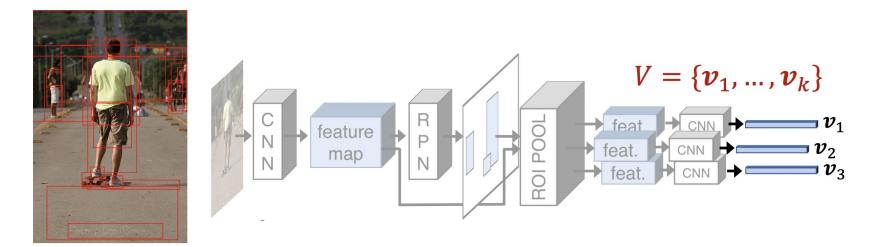
A man and a woman sit on a park bench along a river.



The man is almost bald

Visual genome: Connecting language and vision using crowdsourced dense image annotations. In arXiv preprint arxiv:1602.07332, 2016.



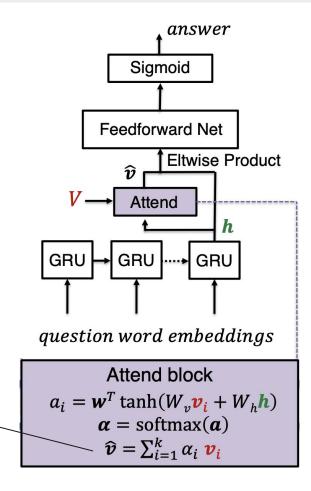


VQA Model

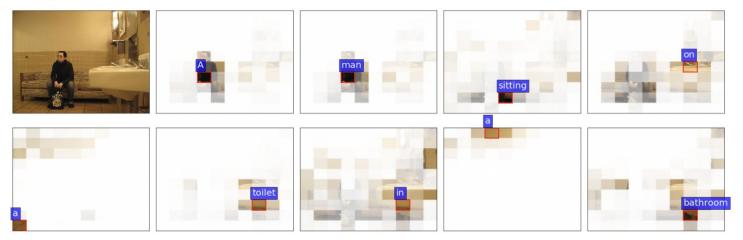
In CVPR. IEEE. 2018.

Given a set of spatial image features V, their proposed VQA model also uses a 'soft' top-down attention mechanism to weight each feature, using the question representation as context.

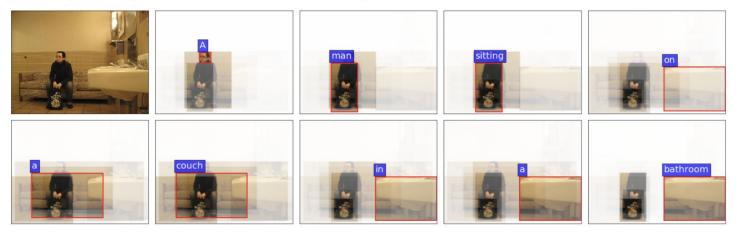
 $\widehat{\boldsymbol{v}} = f(\boldsymbol{h}, \boldsymbol{V})$ Bottom-up and top-down attention for image captioning and vga.



ResNet(10×10): A man sitting on a toilet in a bathroom.



Up-Down (Ours): A man sitting on a couch in a bathroom.



VQA examples - Counting

Q: How many oranges A: two are on pedestals?

VQA examples - Reading

Q: What is the name of A: none the realty company?

Results

VQA v2 val set (single-model):

	Yes/No	Number	Other	Overall	
ResNet (1×1)	76.0	36.5	46.8	56.3	
ResNet (14×14)	76.6	36.2	49.5	57.9	
ResNet (7×7)	77.6	37.7	51.5	59.4 +	-4
Up-Down (Ours)	80.3	42.8	55.8	63.2	

Benefits

Natural approach

Unifies vision & language tasks with object detection models

Transfer learning by pre-training on object detection datasets

Complementary to other models (just swap attention candidates)

Can be fine-tuned

Overview

Introduction

Bottom-up and Top-down Attention Model

Vision Language Pre-training

Oscar Model

Grid Features vs Region Based Features

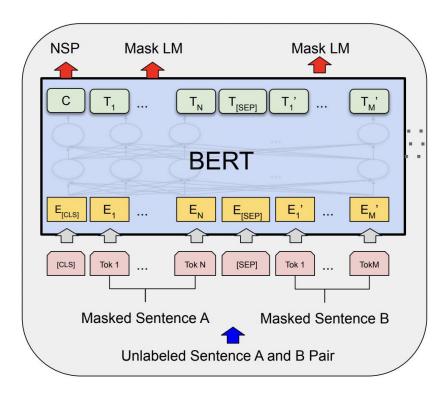
Without Convolution or Region Supervision

Vision Language Pre-training

One of the important factors for performance improvement is pre-training on massive amounts of datasets.

BERT (Delvin et al, 2018) Google's Conceptual Captions

www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks/



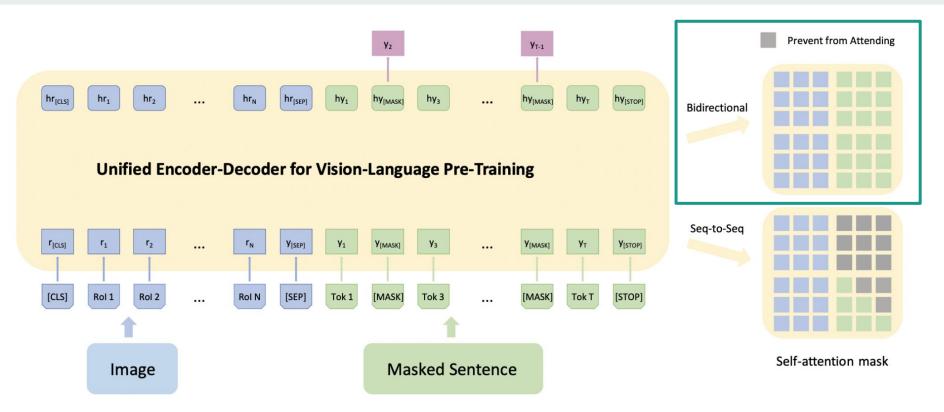
Masked Language Model (MLM)

input: regular sentence with [MASK] token output: hidden representation of [MASK] objective: predict vocabulary ID

www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks/ Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018

Input Token Embeddings	[CLS]	my E _{my}	dog E _{dog}	is E _{is}	cute	[SEP]	he E _{he}	likes	play	##ing	[SEP]]				-	Rol features		
Segment Embeddings Position	+ E _A +	► E _A		+ E _A +	+ E _A +	+ E _A +	+ E _B	+ E _B +	+ E _B	+ E _B +	+ E _B +]			+	+ linear transform			
Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀								
hidden representation																			
~																			
								Tran	sform	her									

www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks/ Bert: Pre-training of deep bidirectional transformers for language understanding. In arXiv preprint arXiv:1810.04805, 2018



www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks/ Unified Vision-Language Pre-Training for Image Captioning and VQA. In AAAI, 2020.

Overview

Introduction

Bottom-up and Top-down Attention Model

Vision Language Pre-training

Oscar Model

Grid Features vs Region Based Features

Without Convolution or Region Supervision

OSCAR Model

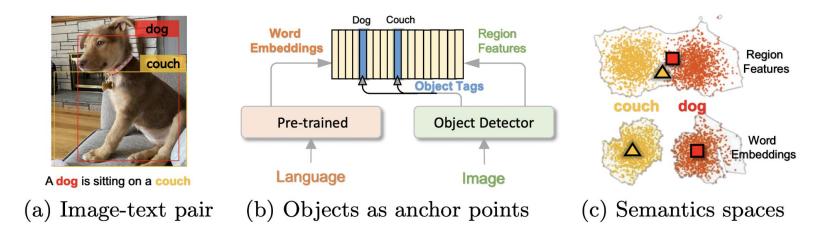
Objects tags is a language representation of visual concepts.

This is the key reason why OSCAR outperforms previous methods.

	Contras	stive Lo	oss		Maske	d Toke	n Loss							
Features														
Network		Multi-Layer Transformers												
Embeddings	\bigcirc								\bigcirc			\bigcirc		
Data	[CLS] A dog is [MASK] on a couch [SEP] Word Tokens									couch ct Tags	[SEP]	Region	Features	
Modality	•							Lan	guage)	Image Languag	e	Image	
Dictionary	•										5 0		• <u> </u>	

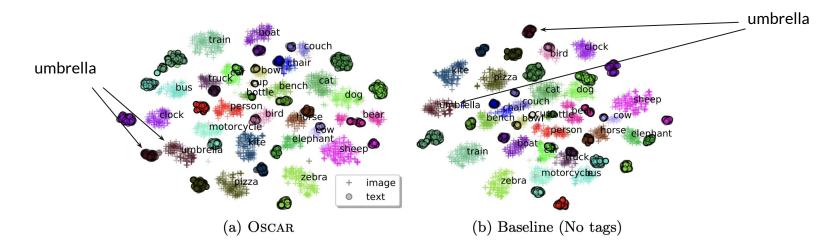
www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

OSCAR Model



www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

OSCAR Model - Feature space visualization



www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

OSCAR Model

Understanding Image-Text Pairs: 6.5M A masked token loss over (1) Masked Token Loss (2) Contrastive Loss ONLVR2 O VQA OGQA words & tags Image-Text Retrieval O Text-Image Retrieval **Image-Text Representation** A contrastive loss between tags Generation A dog is sitting and others. on a couch ¹ Couc • Image Captioning O Novel Object Captioning Word-Tag-Region Triplet Pre-training Fine-tuning

www.microsoft.com/en-us/research/publication/oscar-object-semantics-aligned-pre-training-for-vision-language-tasks Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

Dataset

Table 5: Statistics of the pre-training corpus.

Source	COCO (train)	$\begin{array}{c} \mathrm{CC} \\ \mathrm{(all)} \end{array}$	SBU (all)	$\left \begin{matrix} {\rm Flicker30k} \\ {\rm (train)} \end{matrix} \right $				Total		
$\rm Image/Text 112k/560k 3.0M/3.0M 840k/840k 29k/145k 83k/444k 79k/1026k 48k/484k 4.1M/840k 10000000000000000000000000000000000$										

Oscar model is pre-trained on a large-scale V+L dataset composed of 6.5 million pairs

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

Contrastive Loss

a contrastive loss for the modality view, which measures the model's capability of distinguishing an original triple and its "polluted" version (that is, where an original object tag is replaced with a randomly sampled one).

$$\mathcal{L}_{\mathrm{C}} = -\mathbb{E}_{(\boldsymbol{h}', \boldsymbol{w}) \sim \mathcal{D}} \log p(y | f(\boldsymbol{h}', \boldsymbol{w}))$$

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

Masked Token Loss

a masked token loss for the dictionary view, which measures the model's capability of recovering the masked element (word or object tag) based on its context

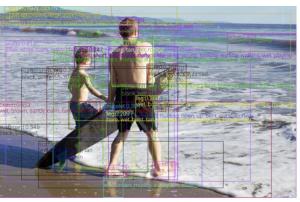
$$\mathcal{L}_{\mathrm{MTL}} = -\mathbb{E}_{(\boldsymbol{v},\boldsymbol{h})\sim\mathcal{D}}\log p(h_i|\boldsymbol{h}_{\setminus i}, \boldsymbol{v})$$

www.microsoft.com/en-us/research/blog/objects-are-the-secret-key-to-revealing-the-world-between-vision-and-language Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020

VinVL: Revisiting Visual Representations in Vision-Language Models

VinVL captures much richer image semantics

X152-FPN model trained on OpenImages



X152-C4 model trained on four public object detection datasets

datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf VinVL: Revisiting Visual Representations in Vision-Language Models. In CVPR, 2021

Visual feature	VQA		GQA		I:	Image Captioning			NoCaps		Image Retrieval			Text Retrieval			NLVR2	
visual leature	test-dev	test-std	test-dev	test-std	B@4	Μ	С	S	С	S	R@ 1	R@5	R@10	R@1	R@5	R@10	dev	test-P
Anderson et al. [2]	73.16	73.44	61.58	61.62	40.5	29.7	137.6	22.8	86.58	12.38	54.0	80.8	88.5	70.0	91.1	95.5	78.07	78.36
Ours	75.95	76.12	65.05	64.65	40.9	30.9	140.6	25.1	92.46	13.07	58.1	83.2	90.1	74.6	92.6	96.3	82.05	83.08
Δ	2.79 ↑	$2.68 \uparrow $	$3.47\uparrow$	3.03 ↑	0.4↑	$1.2\uparrow$	3.0 ↑	$2.3 \uparrow \mid$	5.9 ↑	0.7↑	$4.1\uparrow$	$2.4\uparrow$	$1.6 \uparrow$	4.6 ↑	$1.5 \uparrow$	$0.8 \uparrow $	3.98 ↑	$4.71\uparrow$

Table 1: Uniform improvements on seven VL tasks by replacing visual features from Anderson *et al.* [2] with ours. The NoCaps baseline is from VIVO [9], and our results are obtained by directly replacing the visual features. The baselines for rest tasks are from OSCAR [21], and our results are obtained by replacing the visual features and performing OSCAR+ pre-training. All models are BERT-Base size. As analyzed in Section 5.2, the new visual features contributes 95% of the improvement.

Visual feature matter!

datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf VinVL: Revisiting Visual Representations in Vision-Language Models. In CVPR, 2021

Overview

Introduction

Bottom-up and Top-down Attention Model

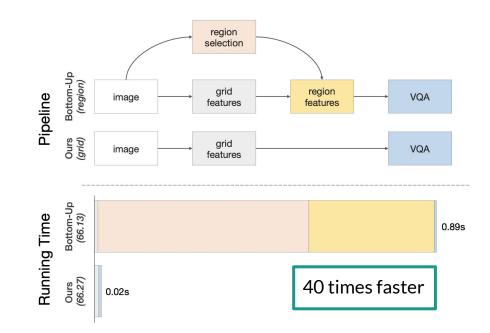
Vision Language Pre-training

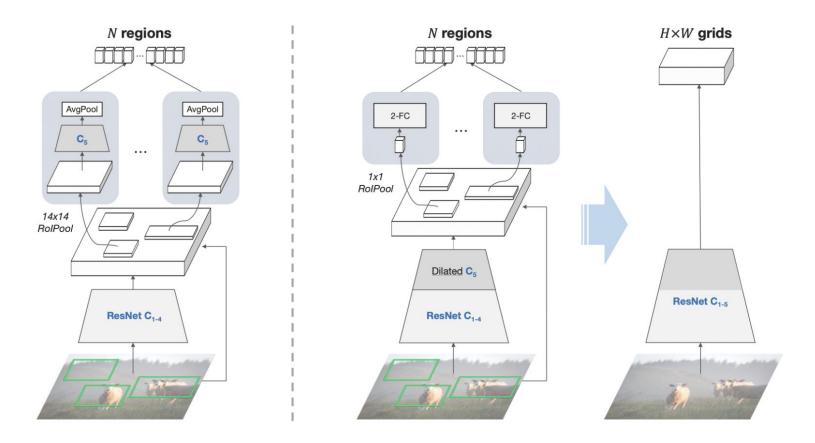
Oscar Model

Grid Features vs Region Based Features

Without Convolution or Region Supervision

Using grid features is fast, and it can achieve comparable performance with regional features.





In Defense of Grid Features for Visual Question Answering. In CVPR, 2020.

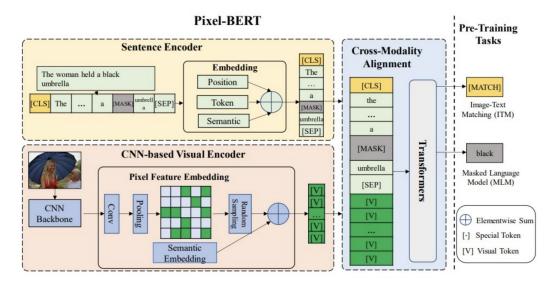
Why previous methods based on grid features cannot outperform **Bottom-Up and Top-Down Attention** features?

Why previous methods based on grid features cannot outperform **Bottom-Up and Top-Down Attention** features?

- 1. Pre-training task
- 2. Input image size

		accuracy	time (ms)		accuracy	time (ms)		accuracy	time (ms)		B4	М	С	S	time (ms)
Pythi	a [16]	68.31	-	MCAN [50]	70.93	-	Pythia [16]	54.22	-	BUTD [2]	36.2	27.0	113.5	20.3	-
]	R	68.21	929	R	72.01	963	R	54.28	874	R	36.2	27.7	113.9	20.8	1101
(3	67.76	39	G	72.59	72	G	54.17	38	G	36.4	27.4	113.8	20.7	240
(a)			(b)						(d)						

Pixel-BERT: An E2E Pre-training Framework



datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Transformers. In arXiv, 2020 From grid features to region features, and to grid features again?

Overview

Introduction

Bottom-up and Top-down Attention Model

Vision Language Pre-training

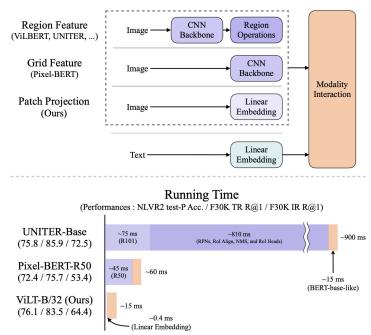
Oscar Model

Grid Features vs Region Based Features

Without Convolution or Region Supervision

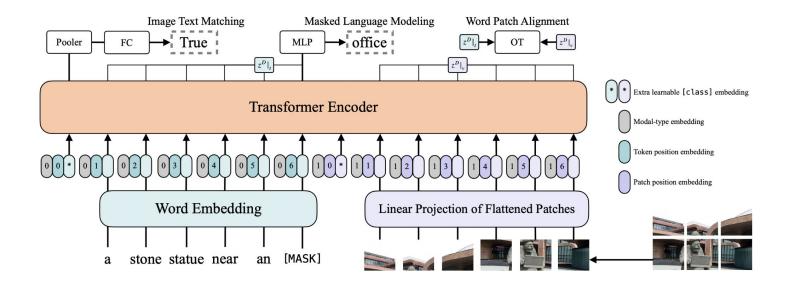
ViLT: Without Convolution or Region Supervision

ViLT is very fast since both object detection models and CNNs are not used.



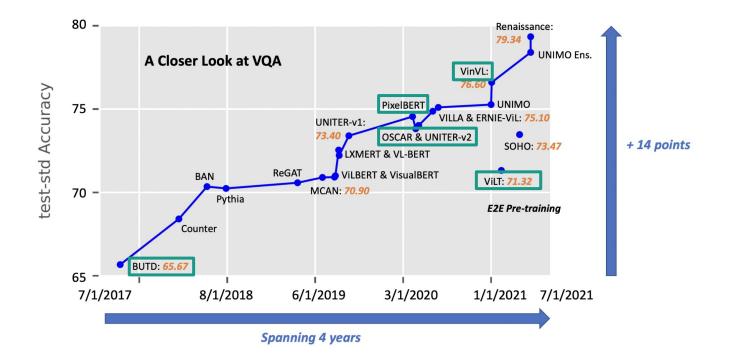
Visual Embedding Schema

datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. In ICML, 2021



A single unified transformer is learned

datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. In ICML, 2021



However, performance-wise, it is still not ideal!

datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf

Thank you! Any Questions?

References

Papers:

- Bottom-up and top-down attention for image captioning and vqa. In CVPR. IEEE, 2018.
- Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015
- ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. In ICML, 202
- In Defense of Grid Features for Visual Question Answering. In CVPR, 2020.
- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In ECCV, 2020
- Bert: Pre-training of deep bidirectional transformers for language understanding. In arXiv, 2018.
- In Defense of Grid Features for Visual Question Answering. In CVPR, 2020.
- VinVL: Revisiting Visual Representations in Vision-Language Models. In CVPR, 2021
- Visual genome: Connecting language and vision using crowdsourced dense image annotations. In arXiv, 2016.

References

Others:

- datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf
- microsoft.com/en-us/research/blog/objects-are-the-secret-key-to-revealing-the-world-between-vision-a nd-language
- youtube.com/watch?v=A5Lzjpjiyzc
- youtube.com/watch?v=TBOnKekODCI
- youtube.com/watch?v=QNesnXfyYq8