Panoptic FCN

October 6th, 2021

Overview Model Experiments

Recall:

Panoptic Segmentation

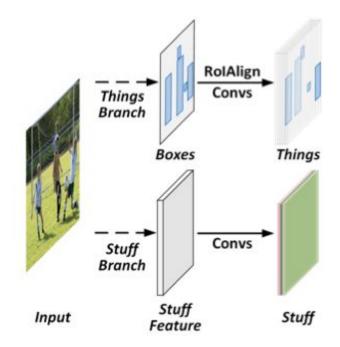
- Study of *stuff* and *things*
- Assign one class label and instance id to each pixel in an image
- Evaluated by Panoptic Quality (PQ)

Difficulty of unifying segmentation

- Countable things are discovered through instance-aware features to distinguish entities
- Stuff regions are found through semantically consistent features

Separate branches

- Differing feature needs led to models with separate branches
- Things were addressed by box-based and box-free branches
- Stuff was addressed by pixel-by-pixel branches



Separate branches Panoptic FPN

FCN for stuff

Mask R-CNN for things

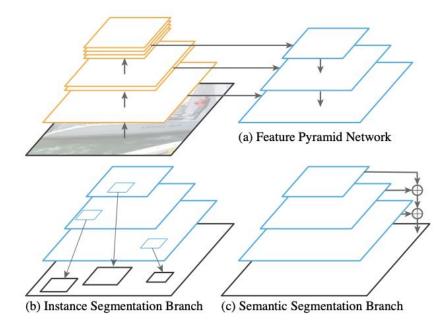


Figure from: Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125).

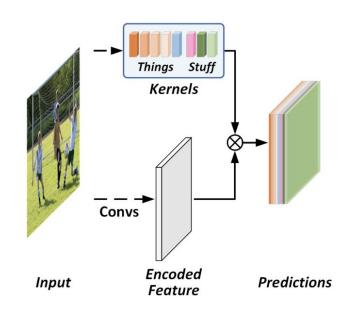
Separate branches

An ununified workflow

- Separate branches don't handle prediction uniformly
- Not in the spirit of PS

Unification

- Represent things and stuff features in the same way
- Predict things and stuff together



FCN for Semantic Segmentation

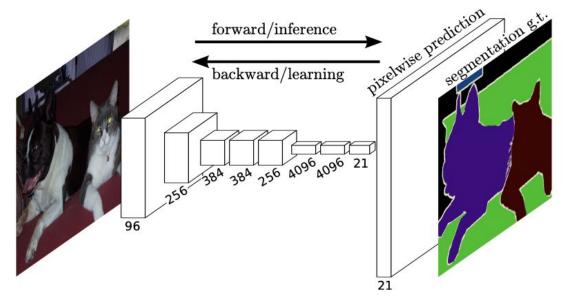
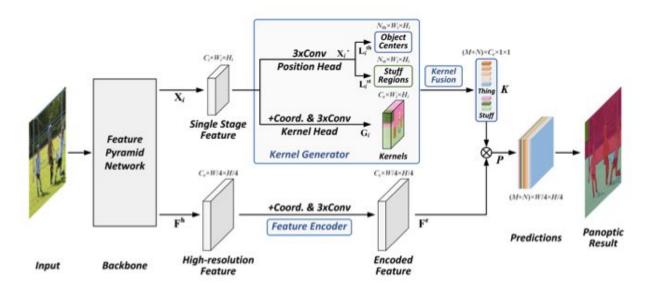


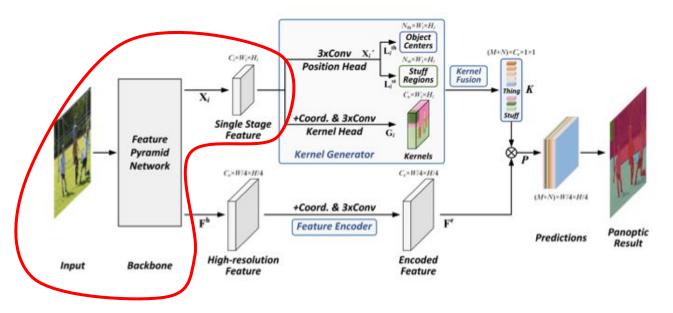
Figure from: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).

Overview Model Experiments

Architecture

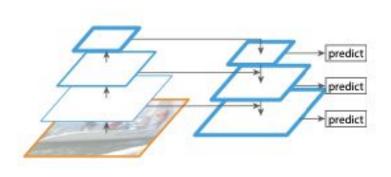


Architecture



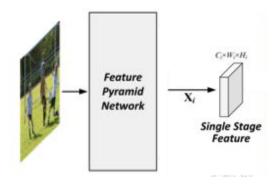
Architecture Feature Pyramid Network

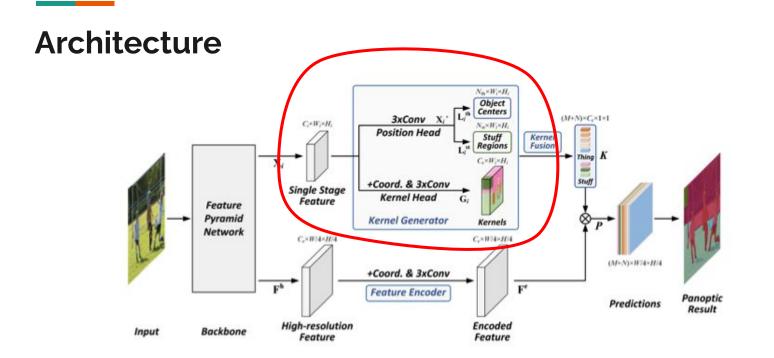
- FPNs proven to be a very effective feature extraction method
- Utilize FPN to help detect objects at different scales
- Compute feature map at each stage of the FPN



Architecture Feature Pyramid Network

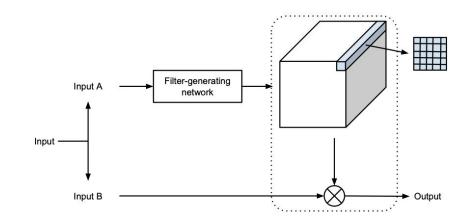
• Pass each feature map in separately to the Kernel Generator module





Architecture Kernel Generator?

- Traditional convolutional layers uses static filters
- But this dynamically generates filters based on the current input
- See Dynamic Filter Networks



Architecture Why use dynamic filters?

- We can extract features specific to the objects in the image
- Can adjust number of output tensor channels for varying amounts of instances

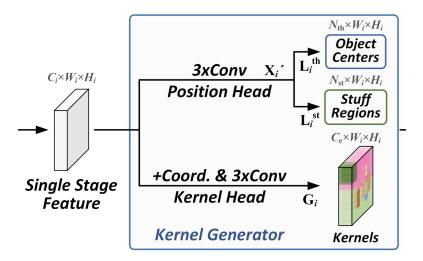
Figures from:

- 1. https://coachart.org/blog/4-benefits-of-soccer-for-kids-with-adaptations-for-disability-inclusion/
- 2. https://www.activekids.com/sports/articles/the-most-inexpensive-sports-for-kids

Architecture Kernel Generator

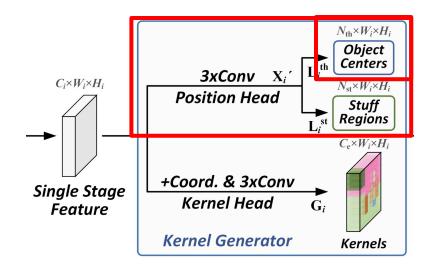
From each single stage feature, a...

- **Position head** performs localization and classification
- Kernel head generates kernel weights



Architecture: Kernel Generator Position Head

- Run input feature map through stacks of convolutions
- Generate a map for **object centers** and another for **stuff regions** through 2 branches



Kernel Generator: Position Head Object Centers

- Similar to CenterNet
 - Generates heat maps with the likelihood each pixel is an object center
 - Fully convolutional network
- Training requires us to generate ground truths

Figure from: Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. *arXiv preprint arXiv*:1904.07850.

Kernel Generator: Position Head Object Centers: GTs

- Two approaches to get center keypoints from annotated images:
 - Center of mass for each mask
 - Center of bounding box

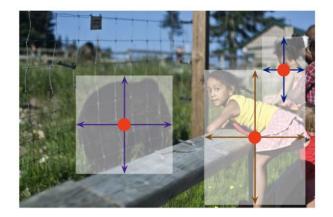


Figure from: Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. *arXiv preprint arXiv:*1904.07850.

Kernel Generator: Position Head Object Centers: GTs

• Pass center keypoints to a Gaussian kernel to generate ground truth heat map

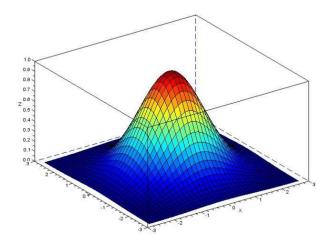
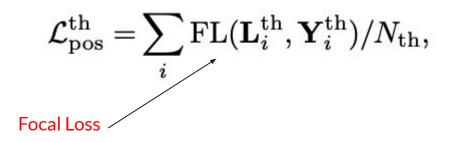


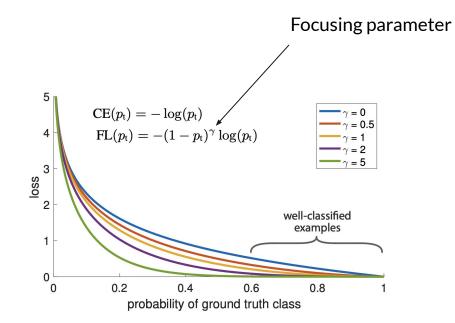
Figure from: https://zbigatron.com/generating-heatmaps-from-coordinates/

Kernel Generator: Position Head Object Centers: Loss

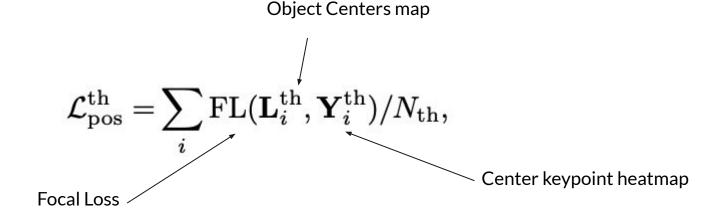


Focal Loss

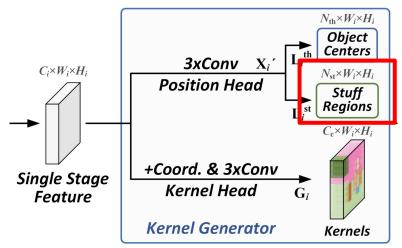
- Enhance Cross-Entropy Loss by reducing loss impact from well-classified examples
- Adds a tunable **focusing** parameter



Kernel Generator: Position Head Object Centers: Loss



Architecture: Kernel Generator **Position Head**



Kernel Generator: Position Head Stuff Regions

- Fully convolutional network
- Training requires us to generate ground truths
 - Bilinear interpolate semantic labels from the annotated images
 - Same resolution as feature map

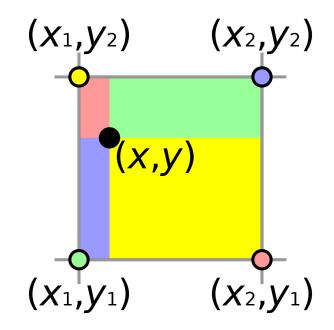
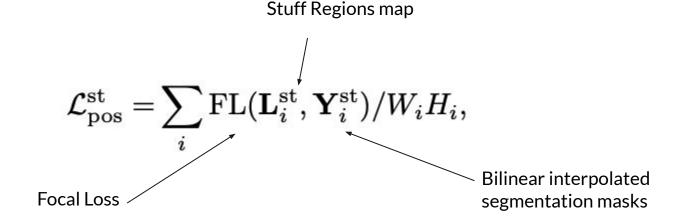
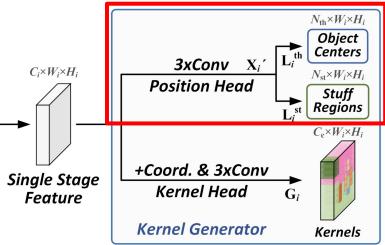


Figure from: https://upload.wikimedia.org/wikipedia/commons/9/91/Bilinear_interpolation_visualisation.svg

Kernel Generator: Position Head Stuff Regions: Loss

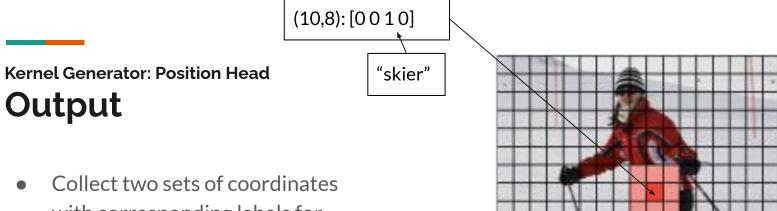


Architecture: Kernel Generator **Position Head**



Kernel Generator: Position Head Multitask Loss

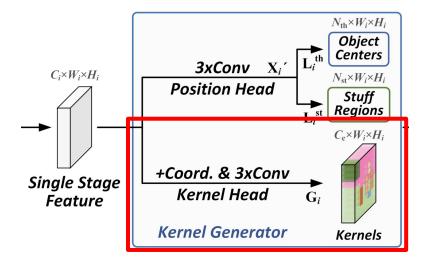
$$\mathcal{L}_{\mathrm{pos}} = \mathcal{L}_{\mathrm{pos}}^{\mathrm{th}} + \mathcal{L}_{\mathrm{pos}}^{\mathrm{st}}$$



- with corresponding labels for things and stuff
- Corresponding label will be the highest likelihood thing or stuff class for that point in the feature map
 - Must surpass threshold

Architecture: Kernel Generator

Kernel Head



Architecture: Kernel Generator Kernel Head

- Concatenate coordinates of each feature
 - CoordConv showed this to improve results related to coordinates in ConvNets
- Run map with coordinates through stacks of convolutions

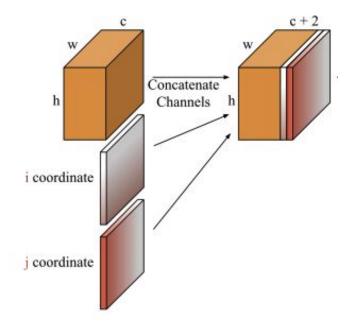
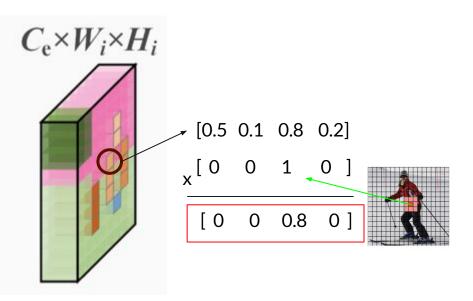


Figure from: Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E., Sergeev, A., & Yosinski, J. (2018). An intriguing failing of convolutional neural networks and the coordconv solution. *arXiv preprint arXiv*:1807.03247.

Architecture: Kernel Generator Kernel Head

- Select weights from the feature map we just generated
- Find matching coordinates in the two sets created for things and stuff
- Create two separate kernel weight maps for things and stuff

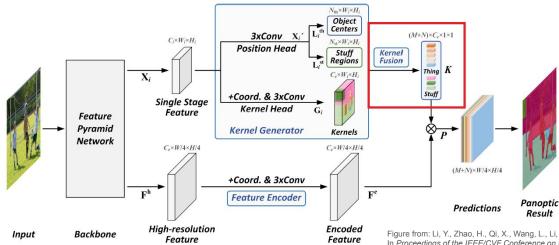


Figures from:

- Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv:1904.07850.
- Li, Y., Zhao, H., Qi, X., Wang, L., Li, Z., Sun, J., & Jia, J. (2021). Fully Convolutional Networks for Panoptic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 214-223).

Kernel Fusion

To ensure instance awareness and semantic-consistency for things and stuff, respectively.



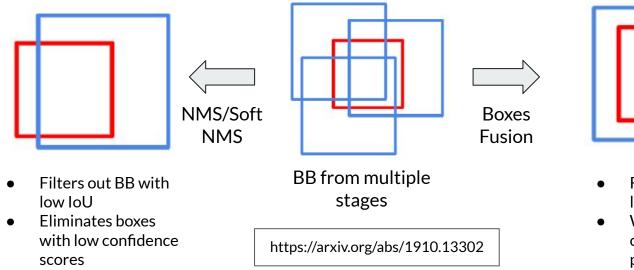
Merges repetitive kernel weights from multiple stages before final instance generation

How?

Weighted Boxes Fusion like procedure

Weighted Boxes Fusion

Note: Not used in Panoptic FCN



- Filters out BB with low loU
- Weighted Average of filtered BB proposals

How BB are in weighted box fusion, Kernel Weights are in Kernel Fusion

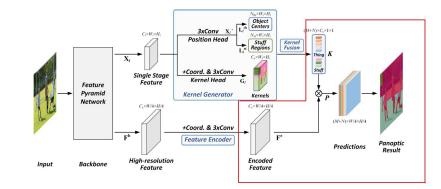
$$G^{th} = \{G_1, G_2, \dots, G_{j^2}, \dots, G_{m+n}\}$$

All Kernel Weights

Kernel Weights for things

Kernel Weights for stuff

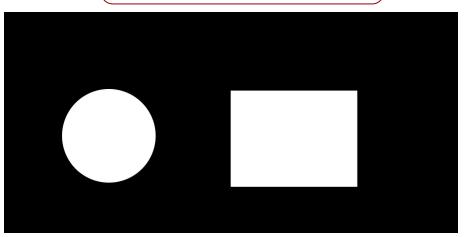
Kernel Weights when convolved with high resolution features gives predictions & segmentation outputs



Intuition and illustration

$$G = \{G_1, G_2, \dots, G_{j}, \dots, G_{M+N}\}$$

Original Image

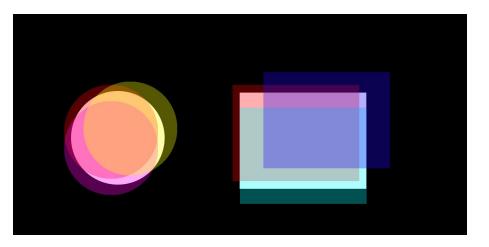


Let's visualize how these kernel weights looks like after convolution

Intuition

$$\left(G^{th} = \{ G^{th}_{1}, G^{th}_{2}, \dots, G^{th}_{j}, \dots, G^{th}_{M} \} \right)$$

Predicted Kernels (Visualized when convolved)



Fusion Steps

$$\left(G^{th} = \{G^{th}_{1}, G^{th}_{2}, \dots, G^{th}_{j}, \dots, G^{th}_{M}\}\right)$$

Step1: Create 2 Empty sets

G' = {Set of clusters}

K = {Set of fused kernel weights}

Step 2: Iterate through the set G and update G'

Step 2: Iterate through the set G and update G'

G' = {Set of clusters}

How to identify a cluster?

Top scoring kernel weight

$$G'_j = \{G_m : \mathrm{ID}(G_m) = \mathrm{ID}(G_j)\}$$

How is ID determined?

Things If the cosine similarity surpasses a given threshold **Stuff** All kernel weights which share the same category are marked as one ID

Step 2: Iterate through the set G and update G'

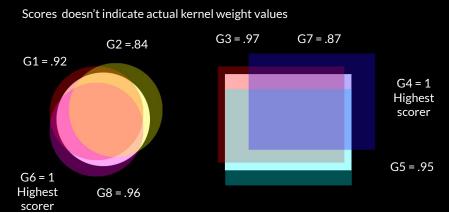
$$G'_j = \{G_m : \mathrm{ID}(G_m) = \mathrm{ID}(G_j)\}$$

Assume Thres = 0.9

 $G^{th} = \{G^{th}_{1}, G^{th}_{2}, \dots, G^{th}_{8}\}$

G' = {Set of clusters}

 $G'_{th} = \{\{G1, G6, G8\}, \{G3, G4, G5\}\}$



Step 3: Generate final Kernel weights

 $G'_{th} = \{\{G1, G6, G8\}, \{G3, G4, G5\}\}\$ $K_j = AvgCluster(G'_j),$ $K^{th} = \{K1, K2\}$

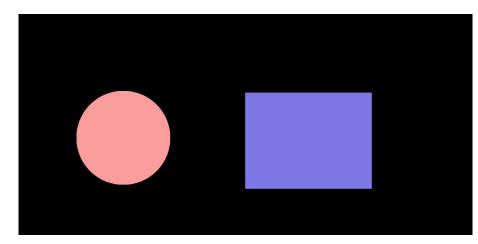
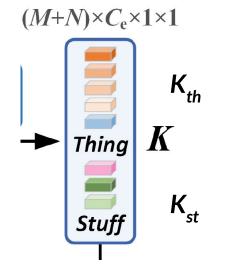


Figure from: Li, Y., Zhao, H., Qi, X., Wang, L., Li, Z., Sun, J., & Jia, J. (2021). Fully Convolutional Networks for Panoptic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 214-223).



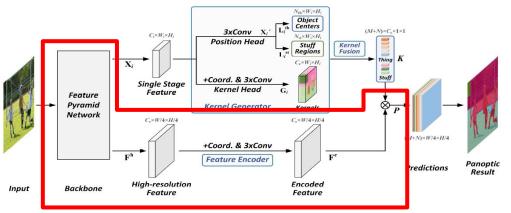
$$K^{st} = \{K^{st}_{1}, K^{st}_{2}, \dots, K^{st}_{j}, \dots, K^{st}_{N}\}$$

$$K^{th} = \{K^{th}_{1}, K^{th}_{2}, \dots, K^{th}_{j}, \dots, K^{th}_{M}\}$$

$$K = \{K_1, K_2, ..., K_j, ..., K_{M+N}\}$$

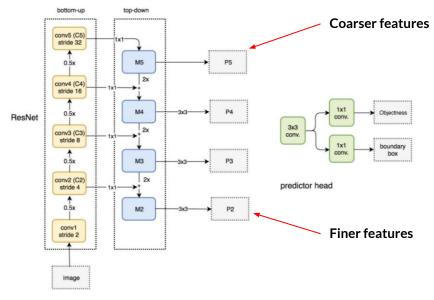
Each kernel weight can be viewed as an embedding of a single object or stuff

Overview



- 1. Which output from the FPN network to use for high resolution feature extraction?
- 2. Why encode position information?
- 3. The convolution step

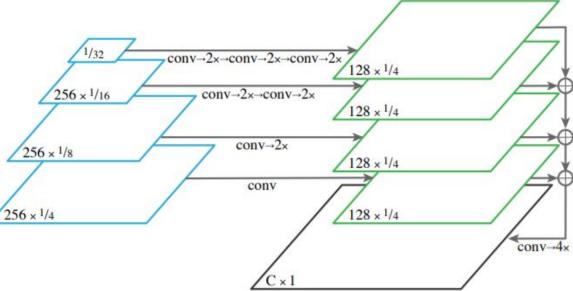
Which output from the FPN network to use for high resolution feature extraction?



- 1. P2 stage feature
- 2. Summed up feature from all stages
- 3. Features from semantic FPN ??

Semantic FPN

- Each stage of downsampling is upsampled to ¼ size
- Outputs from feature pyramid is element wise summed up



 $\label{eq:source:Figure_Source:Https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c$

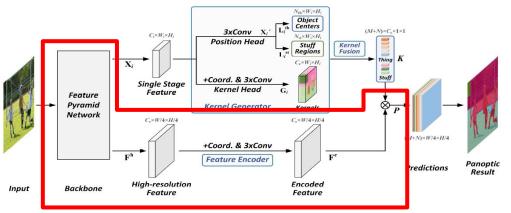
Which output from the FPN network to use for high resolution feature extraction?

- 1. P2 stage feature
- 2. Summed up feature from all stages
- 3. Features from semantic FPN

feature type	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
FPN-P2	40.6	46.0	32.4	31.6	41.3
FPN-Summed	40.5	46.0	32.1	31.7	41.1
Semantic FPN [18]	41.3	46.9	32.9	32.1	41.7

Semantic FPN output performs the best

Overview



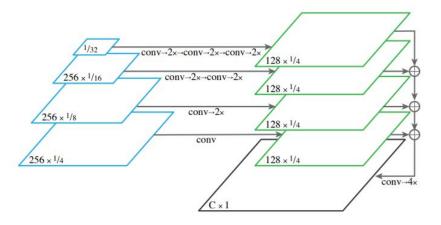
- 1. Which output from the FPN network to use for high resolution feature extraction?
- 2. Why encode position information?
- 3. The convolution step

Why encode position information?

- We lose positional information due to multiple stages of upsampling and downsampling
- Encoding positional information brings better results

<i>coord</i> _w	$coord_{\rm f}$	PQ	PQ^{th}	$PQ^{\rm st}$	AP	mIoU
×	×	39.9	45.0	32.4	29.9	41.2
1	×	39.9	45.0	32.2	30.0	41.1
×	1	40.2	45.3	32.5	30.4	41.6
1	1	41.3	46.9	32.9	32.1	41.7

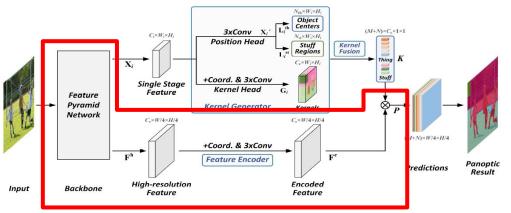
Figure from: Li, Y., Zhao, H., Qi, X., Wang, L., Li, Z., Sun, J., & Jia, J. (2021). Fully Convolutional Networks for Panoptic Segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 214-223).



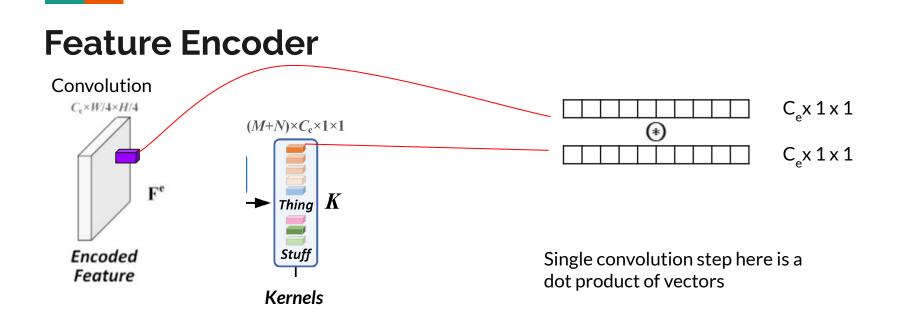
Semantic FPN

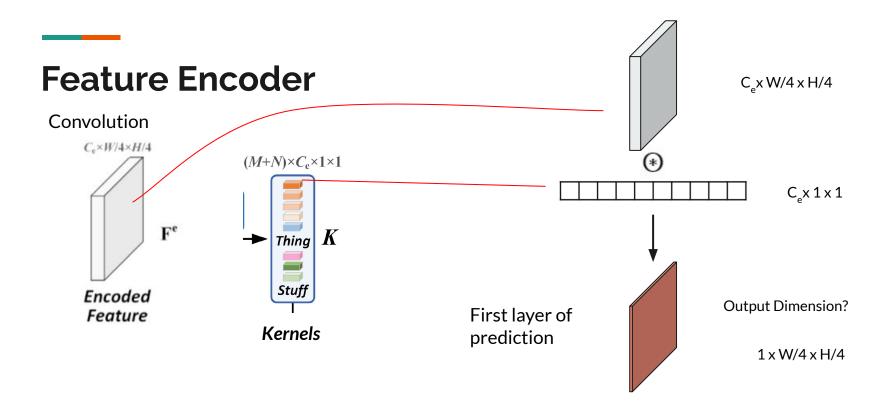
 $\label{eq:source:Figure_Source:Higher_Source:Higher_Source:Higher_Source:Figure_Source:Higher_Sour$

Overview

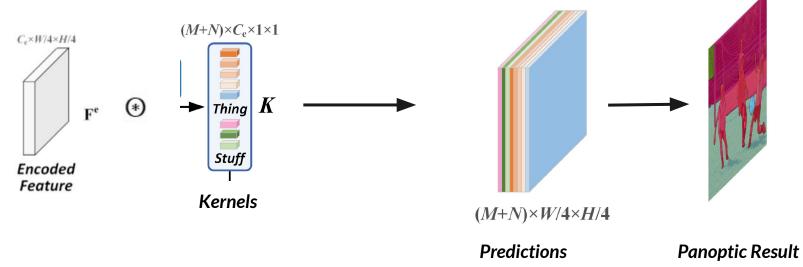


- 1. Which output from the FPN network to use for high resolution feature extraction?
- 2. Why encode position information?
- 3. The convolution step





Convolution



Some Panoptic Segmentation Results - Visualization

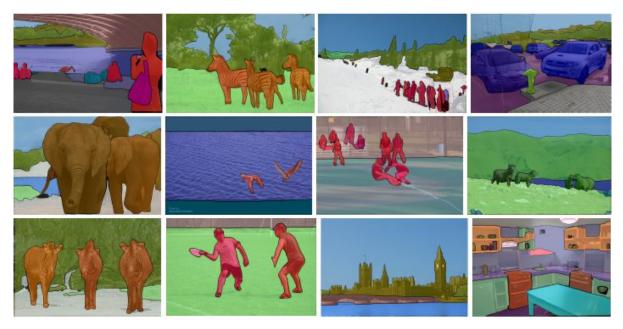
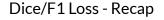


Figure from: Li, Y., Zhao, H., Qi, X., Wang, L., Li, Z., Sun, J., & Jia, J. (2021). Fully Convolutional Networks for Panoptic Segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 214-223).

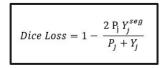


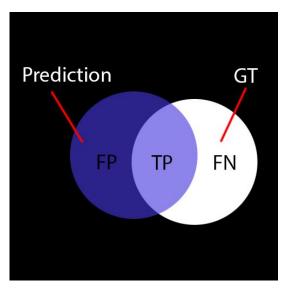
 $\label{eq:discover} \textit{Dice score} = \frac{1}{\frac{1}{\textit{Precision}} + \frac{1}{\textit{Recall}}}$

 $Dice\ score\ =\ \frac{2\ TP}{2\ TP\ +FN\ +FP}$

 $Dice \ score = \frac{2 \ Intersection}{Intesection + Union}$

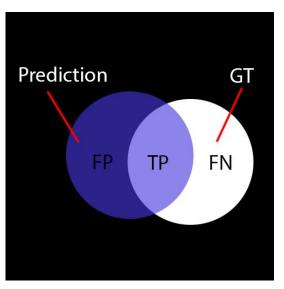
 $Dice (For one instance) = \frac{2 P_j Y_j^{seg}}{P_j + Y_j}$





Dice/F1 Loss - Recap

 $Dice Loss = Dice(P_j, Y_j)$



If there are M things and N stuff

Dice Loss

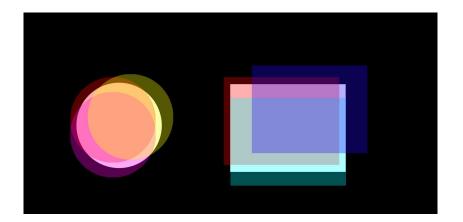
$$\mathcal{L}_{\text{seg}} = \sum_{j} \text{Dice}(\mathbf{P}_{j}, \mathbf{Y}_{j}^{\text{seg}}) / (M + N),$$

To further release the potential of Kernel Generator - Weighted Dice Loss

Weighted Dice Loss

- Multiple positives of each object is sampled.
- k positions of M things will be sampled in decreasing order of their scores

WDice(
$$\mathbf{P}_{j}, \mathbf{Y}_{j}^{\text{seg}}$$
) = $\sum_{k} w_{k} \text{Dice}(\mathbf{P}_{j,k}, \mathbf{Y}_{j}^{\text{seg}})$,
Where $w_{k} = s_{k} / \Sigma_{j} s_{j}$



Optimized target loss

$$\mathcal{L}_{\text{seg}} = \sum_{j} \text{WDice}(\mathbf{P}_{j}, \mathbf{Y}_{j}^{\text{seg}}) / (M + N),$$

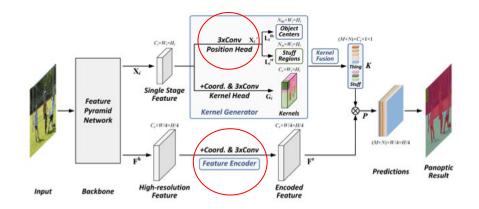
$$\mathcal{L} = \lambda_{\rm pos} \mathcal{L}_{\rm pos} + \lambda_{\rm seg} \mathcal{L}_{\rm seg}.$$

Optimization of the Model

How can the architecture be optimised to increase the panoptic quality?

Experiments

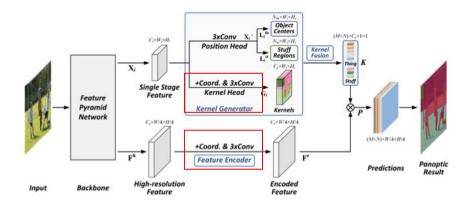
deform	conv num	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
×	1	38.4	43.4	31.0	28.3	39.9
×	2	38.9	44.1	31.1	28.9	40.1
×	3	39.2	44.7	31.0	29.6	40.2
×	4	39.2	44.9	30.8	29.4	39.9
1	3	39.9	45.0	32.4	29.9	41.2



Achieves peak PQ at 3 stacked Conv3X3

# of convs			
3			

coord _w	$coord_{\rm f}$	PQ	PQ^{th}	$PQ^{\rm st}$	AP	mIoU
×	×	39.9	45.0	32.4	29.9	41.2
1	×	39.9	45.0	32.2	30.0	41.1
×	1	40.2	45.3	32.5	30.4	41.6
1	1	41.3	46.9	32.9	32.1	41.7



# of convs	Positional info encoding			
3	$\operatorname{Coord}_{w,}\operatorname{coord}_{f}$			

class-aware	thres	PQ	PQ^{th}	$PQ^{\rm st}$	AP	mIoU
1	0.80	39.7	44.3	32.9	29.9	41.7
1	0.85	40.8	46.1	32.9	31.5	41.7
1	0.90	41.3	46.9	32.9	32.1	41.7
1	0.95	41.3	47.0	32.9	31.1	41.7
1	1.00	38.7	42.6	32.9	25.4	41.7
×	0.90	41.2	46.7	32.9	30.9	41.7

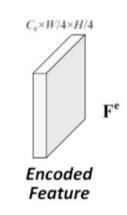
The network attains the best performance with thres 0.90.

# of convs	Combining coordinates	Threshold of Kernel Fusion		
3	$\operatorname{Coord}_{w,}\operatorname{coord}_{f}$	0.90		

kernel-fusion	nms	PQ	PQ^{th}	$\underline{PQ}^{\rm st}$	AP	mIoU
×	×	38.7	42.6	32.9	25.4	41.7
×	1	38.7	42.6	32.9	27.8	41.7
1	×	41.3	46.9	32.9	32.1	41.7
1	1	41.3	46.9	32.8	32.3	41.7

# of convs	Combining coordinates	Threshold of Kernel Fusion	Method of removing repetitive predictions		
3	$\operatorname{Coord}_{w,}\operatorname{coord}_{f}$	0.90	Kernel Fusion only		

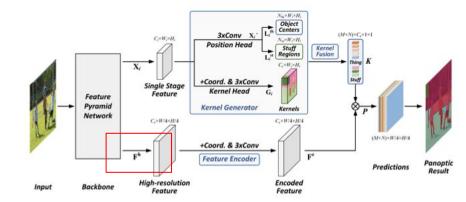
channel num	PQ	$\mathbf{PQ}^{\mathrm{th}}$	$PQ^{\rm st}$	AP	mIoU
16	39.9	45.0	32.1	30.8	41.3
32	40.8	46.3	32.5	31.7	41.6
64	41.3	46.9	32.9	32.1	41.7
128	41.3	47.0	32.6	32.6	41.7



Highest PQ with 64 channels, and extra channels contribute little improvement

# of convs	Combining coordinates	Threshold of Kernel Fusion	Method of removing repetitive predictions	# of channels	
3	Coord _{w,} coord _f	0.90	Kernel Fusion only	64	

feature type	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
FPN-P2	40.6	46.0	32.4	31.6	41.3
FPN-Summed	40.5	46.0	32.1	31.7	41.1
Semantic FPN [18]	41.3	46.9	32.9	32.1	41.7



# of convs	Combining coordinates	Threshold of Kernel Fusion	Method of removing repetitive predictions	# of channels	High res feature generator method	
3	Coord _{w,} coord _f	0.90	Kernel Fusion only	64	Semantic FPN	

weighted	k	PQ	$PQ^{\rm th}$	$\underline{PQ}^{\rm st}$	AP	mIoU
×		40.2	45.5	32.4	31.0	41.3
1	1	40.0	45.1	32.4	30.9	41.4
1	3	41.0	46.4	32.7	31.6	41.4
1	5	41.0	46.5	32.9	32.1	41.7
1	7	41.3	46.9	32.9	32.1	41.7
1	9	41.3	46.8	32.9	32.1	41.8

Best PQ with 7 top-scoring kernels

# of convs	Combining coordinates	Threshold of Kernel Fusion	Method of removing repetitive predictions	# of channels	High res feature generator method	K in weighted Dice Loss
3	Coord _{w,} coord _f	0.90	Kernel Fusion only	64	Semantic FPN	7

Results for Panoptic FCN on COCO val-dev set

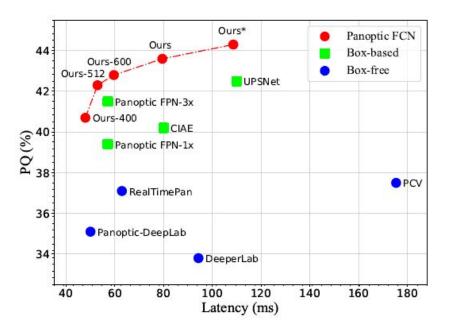
Method	Backbone	PQ	$PQ^{\rm th}$	PQst
	box-based			
Panoptic FPN [18]	Res101-FPN	40.9	48.3	29.7
CIAE [11]	DCN101-FPN	44.5	49.7	36.8
AUNet [25]	ResNeXt152-FPN	46.5	55.8	32.5
UPSNet [50]	DCN101-FPN	46.6	53.2	36.7
Unifying [‡] [24]	DCN101-FPN	47.2	53.5	37.7
BANet [5]	DCN101-FPN	47.3	54.9	35.9
	box-free			
DeeperLab [51]	Xception-71	34.3	37.5	29.6
SSAP [10]	Res101-FPN	36.9	40.1	32.0
PCV [43]	Res50-FPN	37.7	40.7	33.1
Panoptic-DeepLab [6]	Xception-71	39.7	43.9	33.2
AdaptIS [40]	ResNeXt-101	42.8	53.2	36.7
Axial-DeepLab [44]	Axial-ResNet-L	43.6	48.9	35.6
Panoptic FCN	Res101-FPN	45.5	51.4	36.4
Panoptic FCN	DCN101-FPN	47.0	53.0	37.8
Panoptic FCN*	DCN101-FPN	47.1	53.2	37.8
Panoptic FCN* [‡]	DCN101-FPN	47.5	53.7	38.2

Highest PQ value with the Enhanced Panoptic FCN model

Speed Accuracy Results

Speed Accuracy

Surpasses all previous models by a large margin in terms of speed-accuracy balance



Other Panoptic Segmentation Models

- Mask Former July 2021
- Max-DeepLab April 2021
- Panoptic Seg Former September 2021

There is high momentum in the research of Panoptic Segmentation with the advent of Transformer Encoders!!

Thank You

Questions?