Instance Segmentation Episode |
When Bounding Boxes Grow Up

Christopher Bate

September 28, 2021

Problem Definition and Motivation

Metrics and Evaluation

Instance Segmentation Datasets

From Convolution to Self Attention

Instance Segmentation - Definition

Instance segmentation combines object detection with a per-pixel
labeling task.
COCO LVIS

ey

Instance Segmentation - Motivation

Why segment instances? An example from robotics: Identify all
the lidar points which should be associated with each detection.

Credit: Estimation of Closest In-Path Vehicle (CIPV) by
Low-Channel LiDAR and Camera Sensor Fusion for Autonomous
Vehicle. Bae et al. (2021)

Instance Segmentation - Motivation - Robotics

Segmentation mask of object carries information about possible
orientations

et al. (2018)

Instance Segmentation - Motivation - Medical / Biological

Semantic Segmentation Instance Segmentation

B v ey * 6
&« ;
1 " ‘.‘o #
3 * L < -
S y b;
™ Y
> 0“’@" W Background » »
. .Jq.i}‘ W Tumor (T) i brrb
t"' B Lymphacyte h
. - Macrophage (M) L] b

Ref: Pathology Image Analysis Using Segmentation Deep Learning
Algorithms, Wang et al. (2019)

Masks - Representation

Choosing how to represent masks affects: data storage size,
loading times, geometry limitations

Method Pros Cons
Per-pixel mask | Represent any | Less efficient,
mask even with
compression
Geometric More efficient | May not be

representation | representation | able to
represent all
masks (.e.g
occlusions)

Instance Segmentation - Evaluation Metric |

The most often reported metric for instance detection and

segmentation is " Mean Average Precision” (mAP). How to we
calculate this quantity?

The following example is loosely based on the one given in A
Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit, Padilla et al, (2021).

Instance Segmentation - Average Precision Calculation

(VOC Style)

Hypothetical dataset: 5 images, 7 total ground truth objects. For
a fixed loU threshold 7 (e.g. 0.5), tabulate all* your detections,

order by confidence

Image | Conf | TP FP >>TP | >_FP | Prec. | Recall
2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
5 0.88 1 0 3 0 1.0 0.3
3 0.80 0 1 3 1 0.75 0.3
4 0.75 1 0 4 1 080 |05
9 0.61 1 0 5 1 083 | 0.7
7 0.54 1 0 6 1 0.85 0.7
10 0.31 0 1 6 2 0.75 0.9
8 023 |0 1 6 3 0.66 | 0.9
9 0.06 1 0 7 3 0.70 1.0

Instance Segmentation - Average Precision Calculation

(VOC Style) - PR Curve Integration

Image | Conf | TP FP >TP | >°FP | Prec. | Recall
2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
9 0.06 1 0 7 3 0.70 1.0

Instance Segmentation - Average Precision Calculation
(VOC Style) - Final

Image | Conf | TP FP >TP | >_FP | Prec. | Recall
2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
9 0.06 1 0 7 3 0.70 1.0

1. Create the table, graph, and integrate* for each class using

2. Average over all classes to get mAP.

loU threshold 7 = 0.5.

* _ Integration done using N interpolation points, "waterfall” the

precision to ensure it is monotonically decreasing.

Instance Segmentation - Average Precision Calculation

(COCO Style)

Similar to PASCAL VOCG-style calculation, except:

1.

Create PR curve, integrate, and average over classes (using
N = 101 recall interpolation points) using linearly spaced loU
thresholds 7 = {0.5,0.55, ...,0.95}.

2. This yields the set of scores {APys, ..., APy.gs5}
3. Take the average of this set to get COCO-style mAP.

Instance Segmentation - What about recall?

Recall is reported as well:

1. The average recall (AR) quantity AR, is defined as the
average recall over all classes when allowing only the top N
detection candidates per image (class agnostic).

2. Commonly reported on COCO dataset is ARy 10,100-

Datasets - Framework

Today: COCO, LVIS
How we'll analyze the datasets:

1. What is the task and why?
2. How do we measure success?

3. How do we get good accuracy (label quality) without breaking
the bank and deadline?

4. Can it push progress forward?

Note: All images and plots in the following slides are taken from
the respective papers unless otherwise noted.

Common Objects in Context (COCO) - Task Motivation

[Submitted on 1 May 2014 (v1), last revised 21 Feb 2015 (this version, v3)]

Microsoft COCO: Common Objects in Context

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar

We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the
question of object recognition in the context of the broader question of scene understanding. This is
achieved by gathering images of complex everyday scenes containing common objects in their natural
context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our
dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of
2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker
involvement via novel user interfaces for category detection, instance spotting and instance segmentation.
We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN.
Finally, we provide baseline performance analysis for bounding box and segmentation detection results
using a Deformable Parts Model.

1. 80 classes used, representing common types of objects
(" recognizable by a 4 year old")

All splits (train, val, test) combined have > 200, 000 images.

Classes are " pairwise distinct.” An object is easily recognizable
as 1 out of the 80 classes to minimize ambiguous cases.

Common Objects in Context (COCO) - Task Motivation

1. Ensure images reflect context and not only close-up, centered
shots.

2. Focus on a smaller number of categories (versus ImageNet),
with a large number of instances per category.

3. Provide segmentation masks to ensure accurate labeling.

Common Objects in Context (COCO) - How do we
measure success?

1. "Non iconic” - images should have several categories, with
good centroid distribution.

2. Image mining process - used Flikr, but with semi-automated
pruning process.

3. Measure labeler P/R to validate the process (below).

4. Labeler agreement at each stage (next).

01X pa1a|dwod sqof Jo Jaquinu

Precision/recall for Experts and aggregates of Workers 1 P
o0
AG ® 8% .,
oc 09
E
o
D
cos
s ° 2
S 1 ° d]
o 2
& 2 3 4. ° “ 07
5
67 sg‘.
10 0.6
o

o7 07 0.8 0.9 10 °
Recall

Common Objects in Context (COCO) - How do we get
good accuracy?

Structured Labeling Pipeline
1. Stage | - Cateogry labeling
2. Stage Il - Instance spotting

3. Stage Il - Instance segmentation

B
<,

Po—
v

i e

(a) Category labeling (b) Instance spotting (c) Instance segmentation

Common Objects in Context (COCO) - Results - Instances

per Category

e
<

Instances per category

1,

100,000
10,000
000
100

1,000,000

Common Objects in Context (COCO) - Results - Per
Image - Instances and Categories

Categories per image (a) Instances per image

80% 60%
0% —8—-C0CO (3.5) so% —8—C0C0 (7.7)
60% 8 PASCALVOC (1.4) —8—PASCALVOC (2.3)

N
]
R

—e—ImageNet (3.0)

&
=

—e—ImageNet (1.7)

—e—SUN (17.0)
——SUN (9.8)

Percentage of images
w 2
g 5
x® R

Percentage of images
8
x®

20%
10%
10%
0% 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of categories Number of instances

u}
o)
I
i
it

Common Objects in Context (COCO) - Does it push
progress forward?

70 =

DyHead (Swin-L, multi scale, self-training)

60
CSP-p6 + Mish (multi-scale) YOLOV4-P7 with-TTA
NAS-FPN (AmoebaNet-D, leamed aug)
50
D-RFCN + SNIP (DPN-98 with flip, mul:scale).
o
<. Mask R-CNN (ResNeXt-101-EPN)
8 FasterRONN (oox 'Tw_m“’un_g»r‘
FastRENN
20 &
10
Jul'15 Jan 16 Jul'16 Jan 17 Jul 17 Jan 18 Jul1g Jan 19 Jul19 Jan 20 Jul'20 Jan 21 dul'21

Other models o~ Models with highest box AP

Source: Papers With Code

LVIS: A Dataset for Large Vocabulary Instance
Segmentation

LVIS: A Dataset for Large Vocabulary Instance Segmentation

Agrim Gupta, Piotr Dollar, Ross Girshick

Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to
complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced "el-vis'): a new dataset for Large Vocabulary Instance
Segmentation. We plan to collect ~2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian
distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for
object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at this

http URL.

LVIS - Task and Motivation

1. Task - Reuse images from existing MS COCO dataset, but
add more categories with more detailed segmentation masks.

2. Motivation - The opposite of COCO's instances/category
goal: capture the natural distribution object appearance

3. Motivation - Current popular models typically perform poorly
"in the low sample regime”

4. Motivation - " The long tail of rare categories is inescapable;
annotating more images simply uncovers previously unseen,
rare categories’ - A common industry problem

5. Motivation* - Solve two simultaneous problems: low
examples/category and a non-exhaustive training set

The "Inescapable Long Tail”

1000 ” —— with 1-10 images (rare)
.g 2 100 —— with 11-100 (common)
5 750 3 NSy
[i
- 500 = 50
£ 250 g //’
z £ 0

0 0 2000 4000 0 2000 4000
Number of annotated images Number of annotated images

Figure 9. (Left) As more images are annotated, new categories
are discovered. (Right) Consequently, the percentage of low-shot
categories (blue curve) remains large, decreasing slowly.

LVIS vs. COCO - |

— |

Fagnahle 13—
Ccoco LVIS
Coarse polygon annotations Precise polygon annotations

Source: A Good Bounding Box is not a Guarantee of a Good
Mask. Tan et al. ECCV 2020 LVIS Workshop.

LVIS vs. COCO - Il

coco LvIS

Source: LVIS Introductory Talk. Agrim Gupta. ECCV 2020 LVIS
Workshop.

LVIS - Federated Dataset - |

Problem: Exhaustive labeling of 160k images with 1000 categories
in multi-class regime is very difficult. There will be unavoidable
ambiguity.

1. Separate into multiple single-class datasets.

2. The global image collection has positive/negative subsets P,
and N, for each category c.

3. Final dataset D = U(P: U N¢)

Why use a federated dataset?

LVIS - Federated Dataset - |l

Problem: Multi-class labeling, non-exhaustive labels make a
federated dataset difficult to evaluate.

1. Images are manually annotated with binary label e. indicating
whether or not it has been exhaustively labeled for category c.
When e is false, false positives for category ¢ are not
counted.

2. The global image collection has positive/negative subsets P
and N, for each category c.

Why use a federated dataset?

LVIS - How do we get good accuracy?

Expanded labeling pipeline vs. COCO:

g Not "exhaustive:
e {Book}

€ar
Coffee
Person

Stage 1: Object spotting, Stage 2: Exhaustive instance Stage 3 & 4 (back and forth): Stage 5: Exhaustive

Stage 6: Negative labels
one instance per category marking of each category Segmentation and verification

annotation verification

Figure 4. Our annotation pipeline comprises six stages. Stage 1: Object Spotting elicits annotators to mark a single instance of many
different categories per image. This stage is iterative and causes annotators to discover a long tail of categories. Stage 2: Exhaustive
Instance Marking extends the stage 1 annotations to cover all instances of each spotted category. Here we show additional instances of
book. Stages 3 and 4: Instance Segmentation and Verification are repeated back and forth until ~99% of all segmentations pass a quality
check. Stage 5: Exhaustive Annotations Verification checks that all instances are in fact segmented and flags categories that are missing
one or more instances. Stage 6: Negative Labels are assigned by verifying that a subset of categories do not appear in the image.

LVIS - Analysis |

fimages

107!

107

Percen

—— Open Images v4

0 5 0

Number of categories per image

0 200 400 600 800 1000 0.0 02 04 0.6 08 0
Sorted category index. Relative segmentation mask size

(a) Distribution of category count per image. (b) The number of instances per category (on 5k (c) Relative segmentation mask size (square root
LVIS has a heavier tail than COCO and Open Im- images) reveals the long tail with few examples. of mask-area-divided-by-image-arca) compared

ages training set. ADE20K is the most uniform.

Orange dots: categories in common with COCO. between LVIS, COCO, and ADE20K.
Figure 6. Dataset statistics. Best viewed digitally.

LVIS - Does it push progress forward?
LVIS Workshop (ECCV 2020) Results:

LVIS Challenge 2020 v1.0 Leaderboard

i IvisTraveler 413 32.0 40.5 46.3
2 TXunAl 39.7 317 38.2 45.0
3 MMDet 39.0 28.0 38.0 452
4 Asynchronous SSL 38.3 27.9 38.6 42.7
5 CenterNet2 36.4 26.3 350 426
6 PAI-Vision 34.7 26.3 343 39.0
7 Argus 33.8 23.6 33.8 38.5
8 Frank 27.6 15.6 26.2 34.7
9 xphai 26.9 12.6 253 35.3

Baseline 26.7 19.0 25.2 32.0
10 Innova 262 202 249 303

Ll zjuyingyi 223 11.1 21.7 28.1

From Convolution to Self Attention - |

Consider the block matrix data X which is of shape (1 x 5)
(ignoring block parameter). Each x; is a column vector.

X:[xl x2 x3 x4 X5]

From Convolution to Self Attention - Il

Convolution as (block) matrix multiplication, filter W convolved
with input X to yield Y:

Wi =[wl w2 (2)
Y = wx’ (3)

w2 0 0O 0 O

wl w2 0 0 0
0 wl w2 0 0
0 0 wl w2 0
0 0 0 wl w2

[x1 x2 x3 x4 X5]T (4)

From Convolution to Self Attention - Il

Taking a step back, we have

Y = wxT’ (5)

Currently W is 5 x 5 (sparse, omitting the block size). There are
only learnable vectors of size C: wy, ws.
Let's do something slightly arbitrary.

Yy =QxT (6)

Where Q is now 5 x 5 dense. We now have 25 parameters. This is
a super-set of the possible operators vs. the convolution structure.

From Convolution to Self Attention - |l

Let's do something a little more interesting, however. The insight
we want to have is that the input parameterizes the
transformation. What does this mean?

Let's make @ a function of X:

Q@ = q(X) (7)

Y =q(X)XT (8)

But what specific form should g have?

From Convolution to Self Attention - IV

But what specific form should g have?

Let's choose one common type of factorization, loosely based on
the " Gram matrix” idea: We want a 5x5 matrix, so we can choose
a matrix K:

q(X) = (XK)"(XK) (9)
The output is of shape (5 x 5).

From Convolution to Self Attention - IV

But what specific form should g have?

Let's choose one common type of factorization, loosely based on
the " Gram matrix" (X7 X) idea: We want a 5x5 matrix, so we can
choose a matrix K which is C x 5

q(X) = (XK)"(XK) (10)
The output is of shape (5 x C) x (C x 5) = (5 x 5).

From Convolution to Self Attention - V

In summary we now have
Y = [(XK)T(XK)IXT (11)
We can apply a row-wise normalization p:
Y = o((XK) T (XK)DXT (12)

To get to actual "dot product self attention” we increase learnable
parameters:

Y = p((XWq) T (XWi) (Wi X)T (13)

Questions

	Problem Definition and Motivation
	Metrics and Evaluation
	Instance Segmentation Datasets
	From Convolution to Self Attention

