
Instance Segmentation Episode I
When Bounding Boxes Grow Up

Christopher Bate

September 28, 2021



Problem Definition and Motivation

Metrics and Evaluation

Instance Segmentation Datasets

From Convolution to Self Attention



Instance Segmentation - Definition
Instance segmentation combines object detection with a per-pixel
labeling task.

COCO LVIS

Credit: https://cocodataset.org/explore
https://www.lvisdataset.org/explore



Instance Segmentation - Motivation
Why segment instances? An example from robotics: Identify all
the lidar points which should be associated with each detection.

Credit: Estimation of Closest In-Path Vehicle (CIPV) by
Low-Channel LiDAR and Camera Sensor Fusion for Autonomous

Vehicle. Bae et al. (2021)



Instance Segmentation - Motivation - Robotics

Segmentation mask of object carries information about possible
orientations

Ref: DeepIM: Deep Iterative Matching for 6D Pose Estimation. Li
et al. (2018)



Instance Segmentation - Motivation - Medical / Biological

Ref: Pathology Image Analysis Using Segmentation Deep Learning
Algorithms, Wang et al. (2019)



Masks - Representation

Choosing how to represent masks affects: data storage size,
loading times, geometry limitations

Method Pros Cons

Per-pixel mask Represent any
mask

Less efficient,
even with
compression

Geometric
representation

More efficient
representation

May not be
able to
represent all
masks (.e.g
occlusions)



Instance Segmentation - Evaluation Metric I

The most often reported metric for instance detection and
segmentation is ”Mean Average Precision” (mAP). How to we
calculate this quantity?

The following example is loosely based on the one given in A
Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit, Padilla et al, (2021).



Instance Segmentation - Average Precision Calculation
(VOC Style)

Hypothetical dataset: 5 images, 7 total ground truth objects. For
a fixed IoU threshold τ (e.g. 0.5), tabulate all* your detections,
order by confidence

Image Conf TP FP
∑

TP
∑

FP Prec. Recall

2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
5 0.88 1 0 3 0 1.0 0.3
3 0.80 0 1 3 1 0.75 0.3
4 0.75 1 0 4 1 0.80 0.5
9 0.61 1 0 5 1 0.83 0.7
7 0.54 1 0 6 1 0.85 0.7
10 0.31 0 1 6 2 0.75 0.9
8 0.23 0 1 6 3 0.66 0.9
9 0.06 1 0 7 3 0.70 1.0



Instance Segmentation - Average Precision Calculation
(VOC Style) - PR Curve Integration

Image Conf TP FP
∑

TP
∑

FP Prec. Recall

2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
...

...
...

...
...

...
...

...

9 0.06 1 0 7 3 0.70 1.0



Instance Segmentation - Average Precision Calculation
(VOC Style) - Final

Image Conf TP FP
∑

TP
∑

FP Prec. Recall

2 0.95 1 0 1 0 1.0 0.1
1 0.91 1 0 2 0 1.0 0.2
...

...
...

...
...

...
...

...

9 0.06 1 0 7 3 0.70 1.0

1. Create the table, graph, and integrate* for each class using
IoU threshold τ = 0.5.

2. Average over all classes to get mAP.

* - Integration done using N interpolation points, ”waterfall” the
precision to ensure it is monotonically decreasing.



Instance Segmentation - Average Precision Calculation
(COCO Style)

Similar to PASCAL VOC-style calculation, except:

1. Create PR curve, integrate, and average over classes (using
N = 101 recall interpolation points) using linearly spaced IoU
thresholds τ = {0.5, 0.55, ..., 0.95}.

2. This yields the set of scores {AP0.5, ...,AP0.95}
3. Take the average of this set to get COCO-style mAP.



Instance Segmentation - What about recall?

Recall is reported as well:

1. The average recall (AR) quantity AR
N

is defined as the
average recall over all classes when allowing only the top N
detection candidates per image (class agnostic).

2. Commonly reported on COCO dataset is AR1,10,100.



Datasets - Framework

Today: COCO, LVIS
How we’ll analyze the datasets:

1. What is the task and why?

2. How do we measure success?

3. How do we get good accuracy (label quality) without breaking
the bank and deadline?

4. Can it push progress forward?

Note: All images and plots in the following slides are taken from
the respective papers unless otherwise noted.



Common Objects in Context (COCO) - Task Motivation

1. 80 classes used, representing common types of objects
(”recognizable by a 4 year old”)

2. All splits (train, val, test) combined have > 200, 000 images.

3. Classes are ”pairwise distinct.” An object is easily recognizable
as 1 out of the 80 classes to minimize ambiguous cases.



Common Objects in Context (COCO) - Task Motivation

1. Ensure images reflect context and not only close-up, centered
shots.

2. Focus on a smaller number of categories (versus ImageNet),
with a large number of instances per category.

3. Provide segmentation masks to ensure accurate labeling.



Common Objects in Context (COCO) - How do we
measure success?

1. ”Non iconic” - images should have several categories, with
good centroid distribution.

2. Image mining process - used Flikr, but with semi-automated
pruning process.

3. Measure labeler P/R to validate the process (below).

4. Labeler agreement at each stage (next).



Common Objects in Context (COCO) - How do we get
good accuracy?

Structured Labeling Pipeline

1. Stage I - Cateogry labeling

2. Stage II - Instance spotting

3. Stage III - Instance segmentation



Common Objects in Context (COCO) - Results - Instances
per Category



Common Objects in Context (COCO) - Results - Per
Image - Instances and Categories



Common Objects in Context (COCO) - Does it push
progress forward?

Source: Papers With Code



LVIS: A Dataset for Large Vocabulary Instance
Segmentation



LVIS - Task and Motivation

1. Task - Reuse images from existing MS COCO dataset, but
add more categories with more detailed segmentation masks.

2. Motivation - The opposite of COCO’s instances/category
goal: capture the natural distribution object appearance

3. Motivation - Current popular models typically perform poorly
”in the low sample regime”

4. Motivation - ”The long tail of rare categories is inescapable;
annotating more images simply uncovers previously unseen,
rare categories” - A common industry problem

5. Motivation* - Solve two simultaneous problems: low
examples/category and a non-exhaustive training set



The ”Inescapable Long Tail”



LVIS vs. COCO - I

Source: A Good Bounding Box is not a Guarantee of a Good
Mask. Tan et al. ECCV 2020 LVIS Workshop.



LVIS vs. COCO - II

Source: LVIS Introductory Talk. Agrim Gupta. ECCV 2020 LVIS
Workshop.



LVIS - Federated Dataset - I

Problem: Exhaustive labeling of 160k images with 1000 categories
in multi-class regime is very difficult. There will be unavoidable
ambiguity.

1. Separate into multiple single-class datasets.

2. The global image collection has positive/negative subsets Pc

and Nc for each category c .

3. Final dataset D = ∪c(Pc ∪ Nc)

Why use a federated dataset?



LVIS - Federated Dataset - II

Problem: Multi-class labeling, non-exhaustive labels make a
federated dataset difficult to evaluate.

1. Images are manually annotated with binary label ec indicating
whether or not it has been exhaustively labeled for category c .
When ec is false, false positives for category c are not
counted.

2. The global image collection has positive/negative subsets Pc

and Nc for each category c .

Why use a federated dataset?



LVIS - How do we get good accuracy?

Expanded labeling pipeline vs. COCO:



LVIS - Analysis I



LVIS - Does it push progress forward?
LVIS Workshop (ECCV 2020) Results:



From Convolution to Self Attention - I

Consider the block matrix data X which is of shape (1× 5)
(ignoring block parameter). Each xi is a column vector.

X =
[
x1 x2 x3 x4 x5

]
(1)



From Convolution to Self Attention - II

Convolution as (block) matrix multiplication, filter W convolved
with input X to yield Y :

W1 =
[
w1 w2

]
(2)

Y = WXT (3)


w2 0 0 0 0
w1 w2 0 0 0
0 w1 w2 0 0
0 0 w1 w2 0
0 0 0 w1 w2

 [x1 x2 x3 x4 x5
]T

(4)



From Convolution to Self Attention - II

Taking a step back, we have

Y = WXT (5)

Currently W is 5× 5 (sparse, omitting the block size). There are
only learnable vectors of size C : w1,w2.
Let’s do something slightly arbitrary.

Y = QXT (6)

Where Q is now 5× 5 dense. We now have 25 parameters. This is
a super-set of the possible operators vs. the convolution structure.



From Convolution to Self Attention - III

Let’s do something a little more interesting, however. The insight
we want to have is that the input parameterizes the
transformation. What does this mean?

Let’s make Q a function of X :

Q = q(X ) (7)

Y = q(X )XT (8)

But what specific form should q have?



From Convolution to Self Attention - IV

But what specific form should q have?
Let’s choose one common type of factorization, loosely based on
the ”Gram matrix” idea: We want a 5x5 matrix, so we can choose
a matrix K :

q(X ) = (XK )T (XK ) (9)

The output is of shape (5× 5).



From Convolution to Self Attention - IV

But what specific form should q have?
Let’s choose one common type of factorization, loosely based on
the ”Gram matrix” (XTX ) idea: We want a 5x5 matrix, so we can
choose a matrix K which is C × 5

q(X ) = (XK )T (XK ) (10)

The output is of shape (5× C )× (C × 5) = (5× 5).



From Convolution to Self Attention - V

In summary we now have

Y = [(XK )T (XK )]XT (11)

We can apply a row-wise normalization ρ:

Y = ρ((XK )T (XK )])XT (12)

To get to actual ”dot product self attention” we increase learnable
parameters:

Y = ρ((XWq)T (XWk))(WvX )T (13)



Questions


	Problem Definition and Motivation
	Metrics and Evaluation
	Instance Segmentation Datasets
	From Convolution to Self Attention

