Semantic Segmentation

Danna Gurari

University of Colorado Boulder Fall 2021

Review

- Last lecture:
 - Overview of object detection algorithms
 - Baseline Model: R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - YOLO
- Assignments (Canvas)
 - Reading assignment due earlier today
 - Reading assignments out that are due tomorrow and next week
- Questions?

Semantic Segmentation: Today's Topics

Problem

Applications

Datasets

Evaluation metric

Computer vision models: fully convolutional networks

Semantic Segmentation: Today's Topics

Problem

Applications

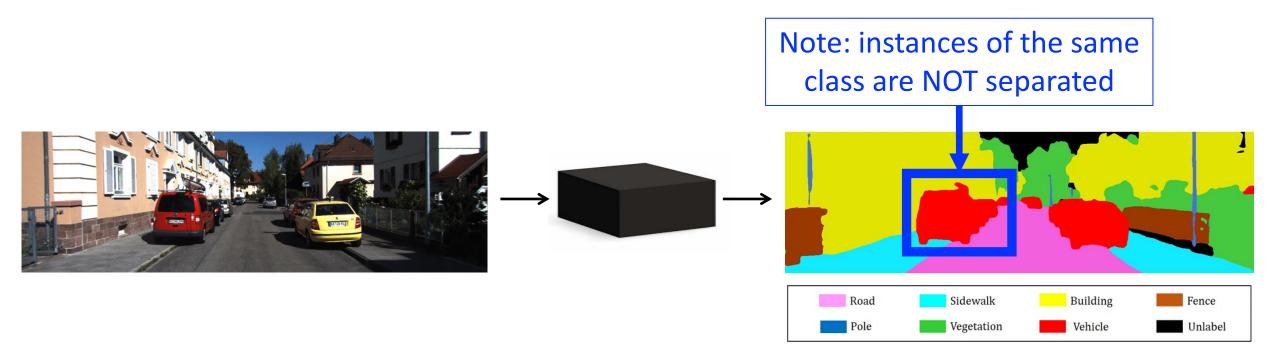
Datasets

Evaluation metric

Computer vision models: fully convolutional networks

Definition

Locate all pixels that belong to a particular category; e.g.,



Object Segmentation vs Detection

Why choose object "segmentation" over "detection"?

http://mmcheng.net/msra10k/

Semantic Segmentation: Today's Topics

Problem

Applications

Datasets

Evaluation metric

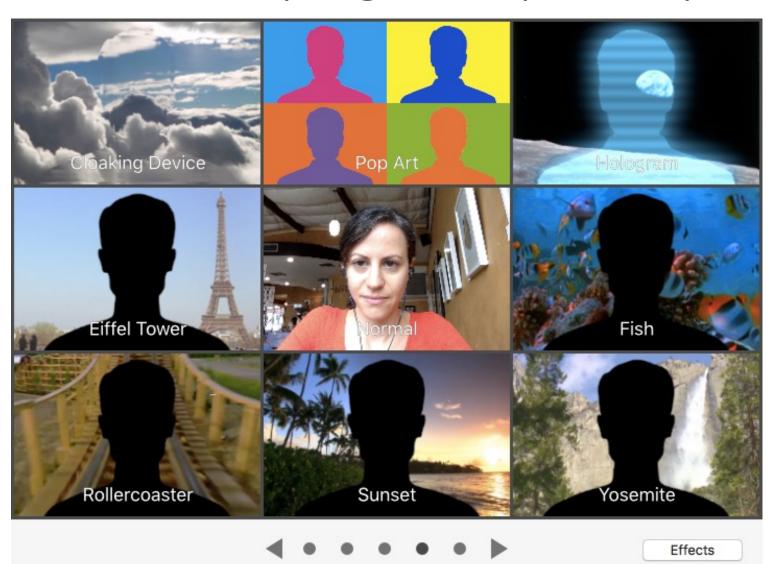
Computer vision models: fully convolutional networks

Remodeling Inspiration

(a) Target photo

(b) Retextured

Rotoscoping (many examples on Wikipedia)



https://www.starnow.co.uk/ahmedmohammed1/photos/4650871/before-and-after-rotoscopinggreen-screening

Disease Diagnosis; e.g.,

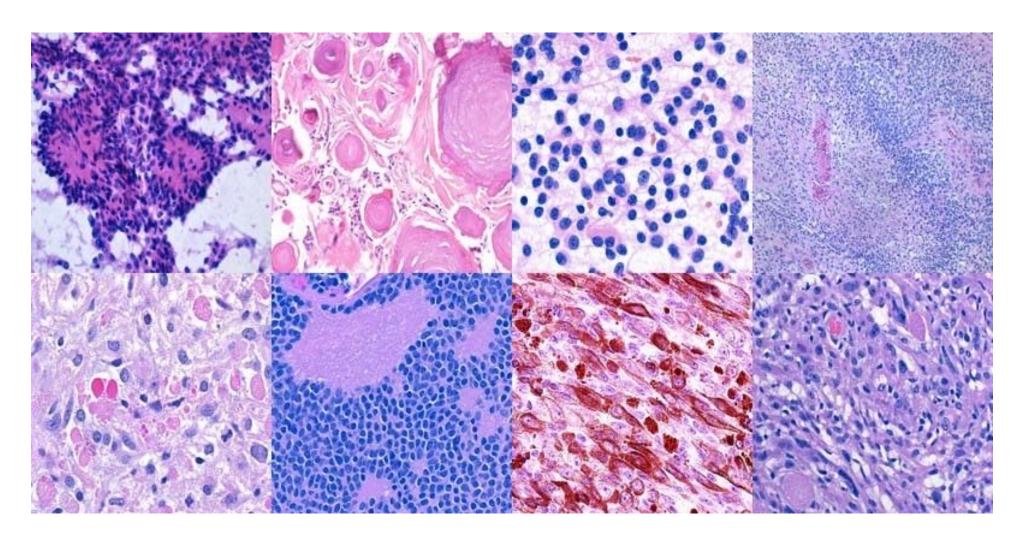
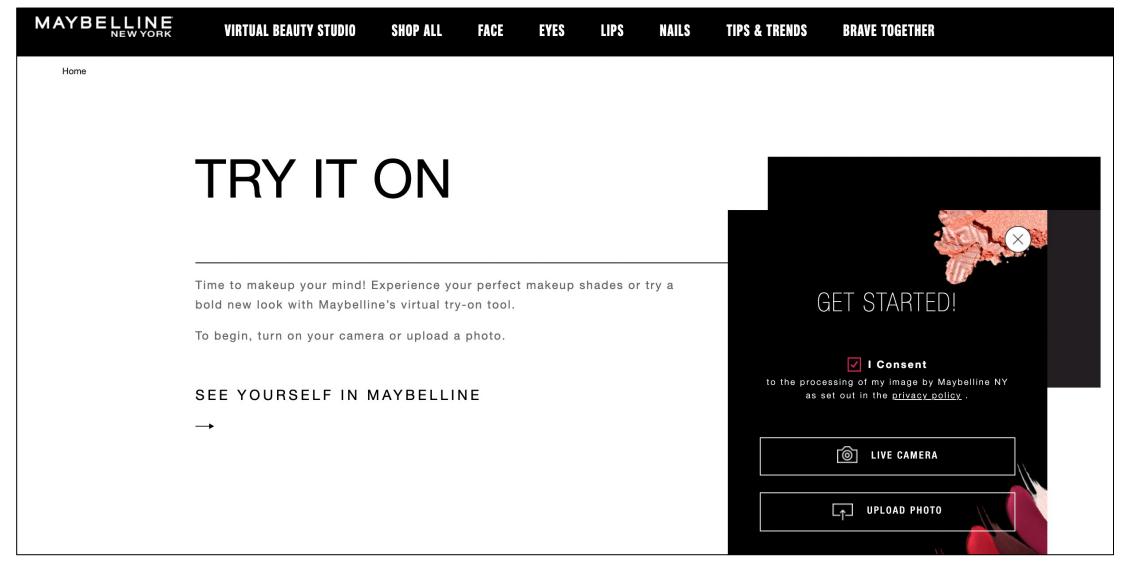


Figure Source: https://pathology.jhu.edu/brain-tumor/grading-classification

Face Makeover



Demo: https://www.maybelline.com/virtual-try-on-makeup-tools

Self-Driving Vehicles

Figure Source: https://www.inc.com/kevin-j-ryan/self-driving-cars-powered-by-people-playing-games-mighty-ai.html

Can you think of any other potential applications?

Semantic Segmentation: Today's Topics

Problem

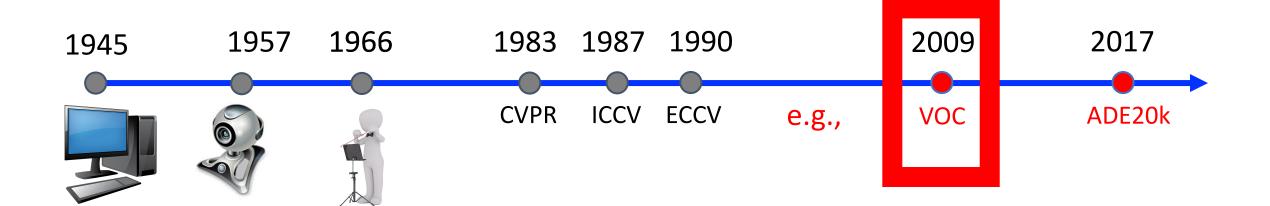
Applications

Datasets

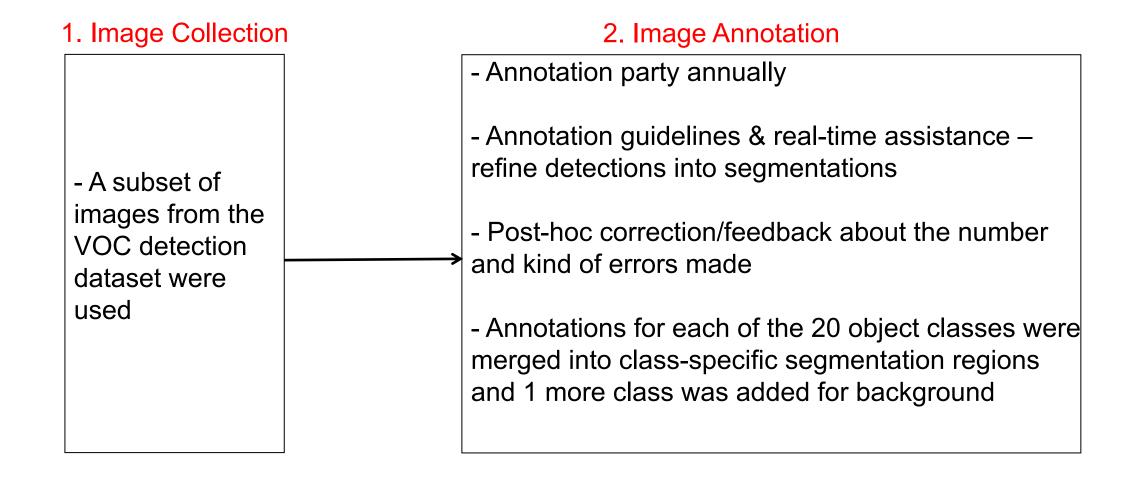
Evaluation metric

Computer vision models: fully convolutional networks

Datasets

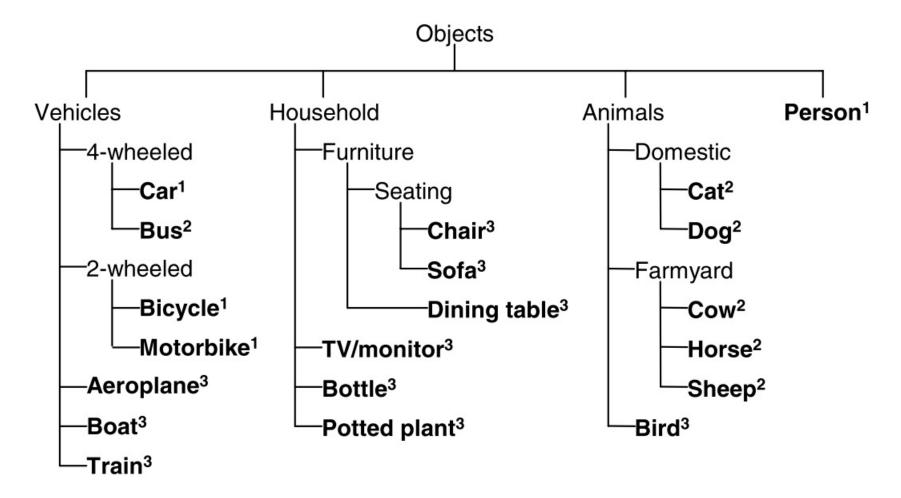


VOC



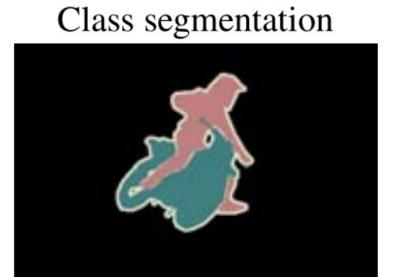
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC: Recall Categories Included (Leaf Nodes)



Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC: Boundary Accuracy Heuristic

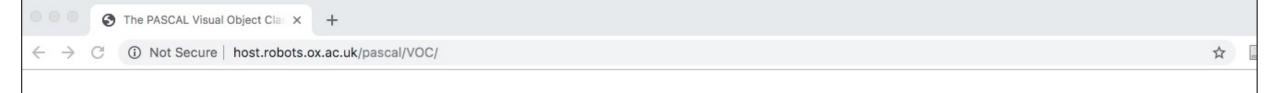


"To give high accuracy but to keep the annotation time short enough to provide a large image set, a border area of 5 pixels width was allowed around each object where the pixels were labelled neither object nor background."

VOC: "Difficult" Objects Excluded

Objects that are challenging to recognize are discarded (i.e., dashed regions): flagged for reasons of "small size, illumination, image quality or the need to use significant contextual information... no penalty is incurred for detecting them. The aim of this annotation is to maintain a reasonable level of difficulty..."

VOC Annual Workshop



The **PASCAL** Visual Object Classes Homepage

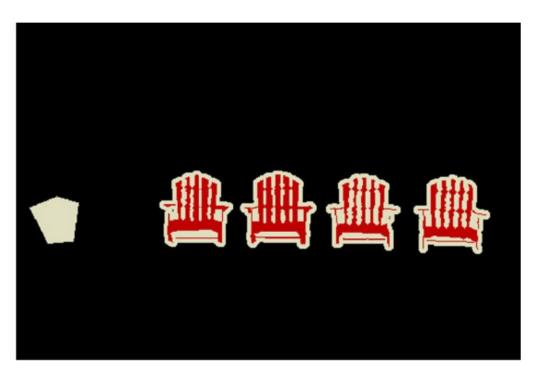
The PASCAL VOC project:

- Provides standardised image data sets for object class recognition
- · Provides a common set of tools for accessing the data sets and annotations
- · Enables evaluation and comparison of different methods
- Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

Pascal VOC data sets

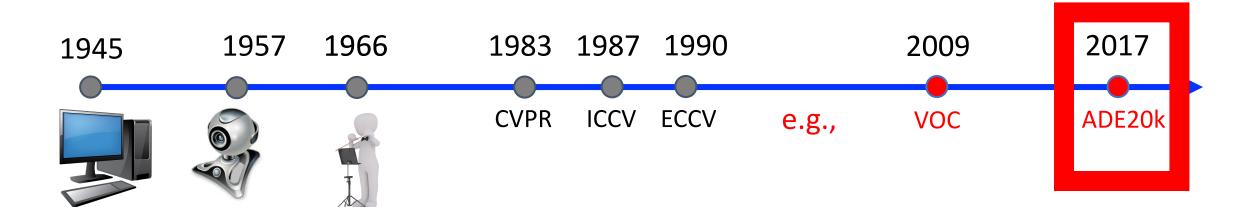
Data sets from the VOC challenges are available through the challenge links below, and evalution of new methods on these data sets can be achieved through the <u>PASCAL VOC Evaluation Server</u>. The evaluation server will remain active even though the challenges have now finished.

What is a Limitation of Datasets Built Around Specific Categories (e.g., Objects)?



No knowledge that anything else is in the scene, such as a house, trees or flowers! A further consequence is that the majority of pixels are labeled as `background'.

Datasets



ADE20K

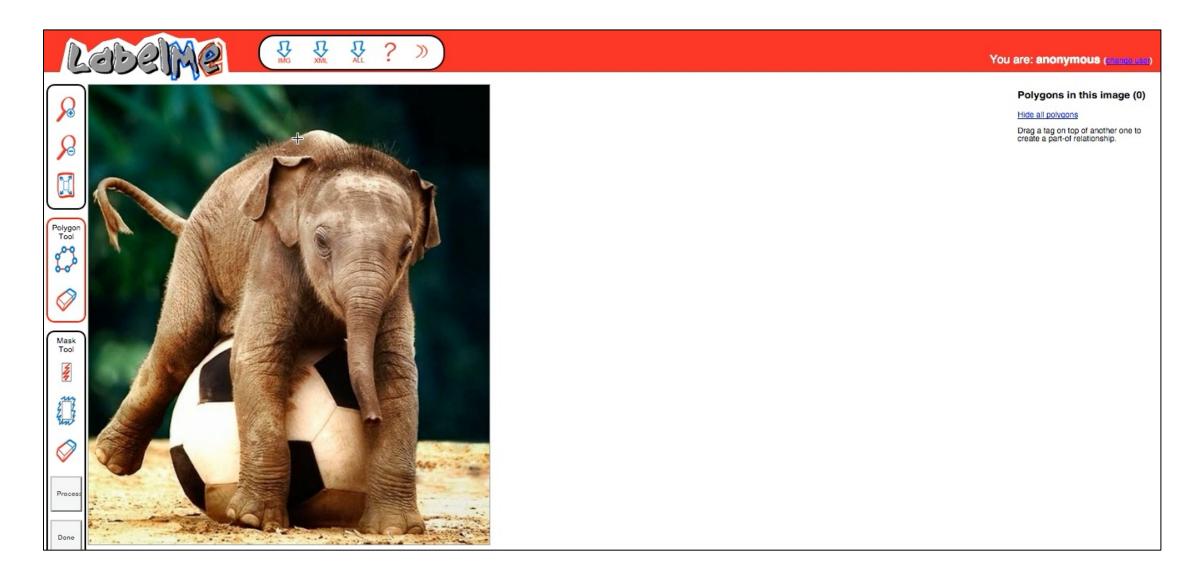
1. Image Collection

- 25,210 images collected from existing datasets (SUN, Places, and LabelMe)
- Selected to capture all scene categories defined in SUN

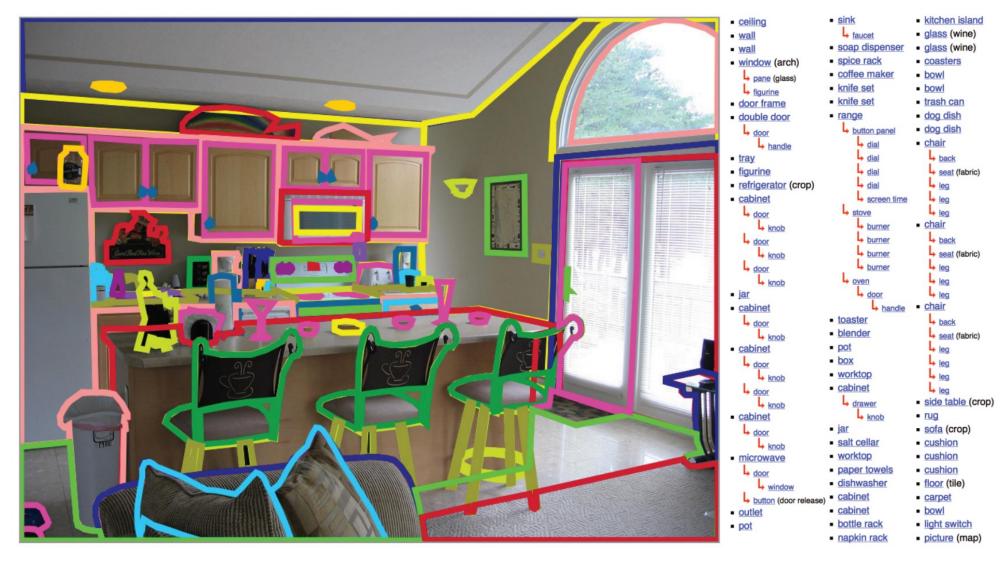
2. Region Localization and Category Assignment

- A single person annotated all images into three types and kept adding new categories as they were observed: (1) objects, (2) object parts, and (3) attributes (e.g., occluded)

ADE20K: User Annotation Tool



ADE20K: User Annotation Tool

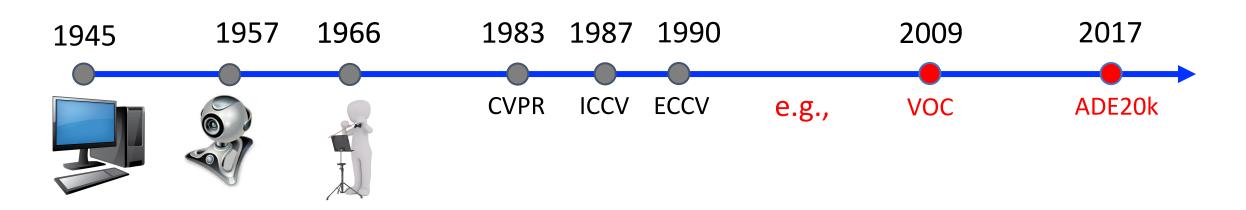


Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017.

ADE20K

- Includes:
- "things": objects that can easily be labeled; e.g., person, chair
- "stuff": objects with no clear boundaries; e.g., sky, grass

Datasets



Categories: 21 3169

Images: 1112 train/val 25,210

Trend: build bigger datasets

Semantic Segmentation: Today's Topics

Problem

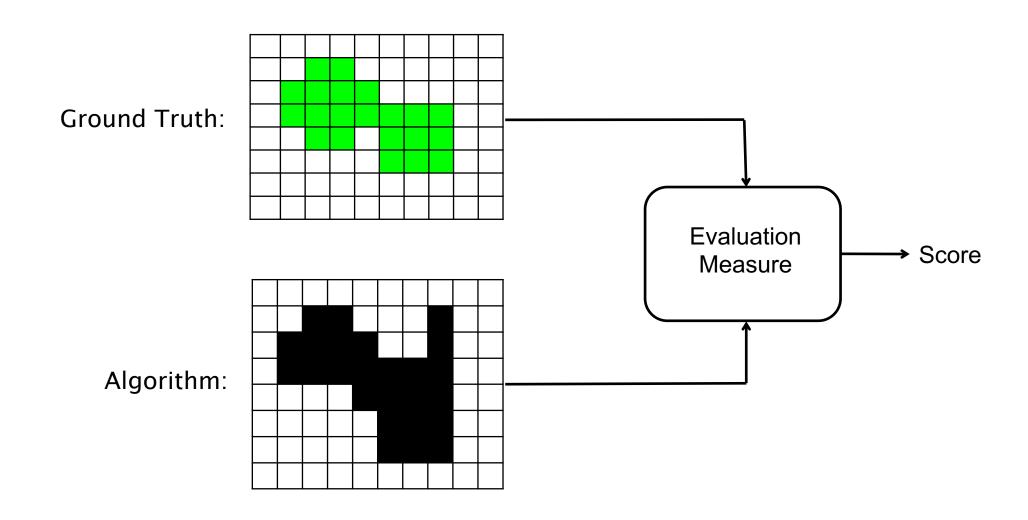
Applications

Datasets

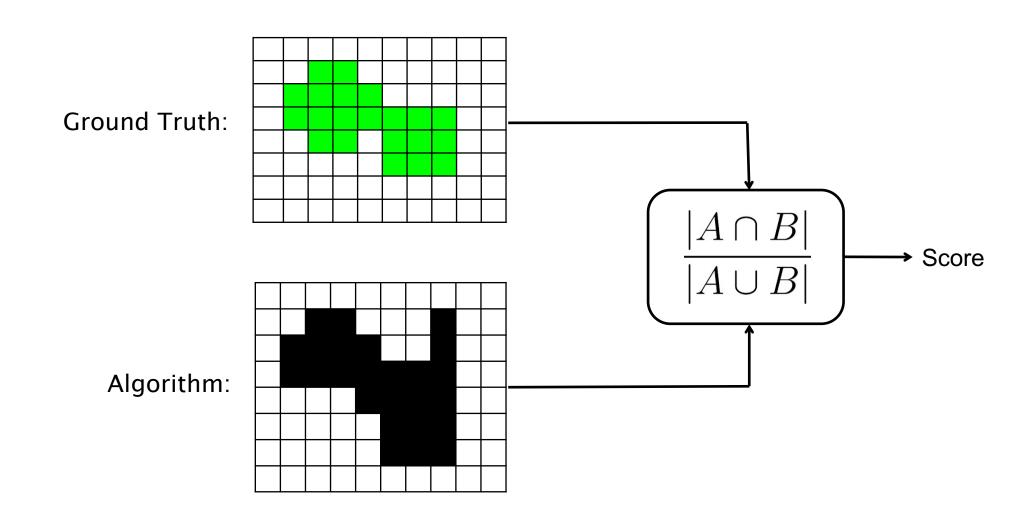
Evaluation metric

Computer vision models: fully convolutional networks

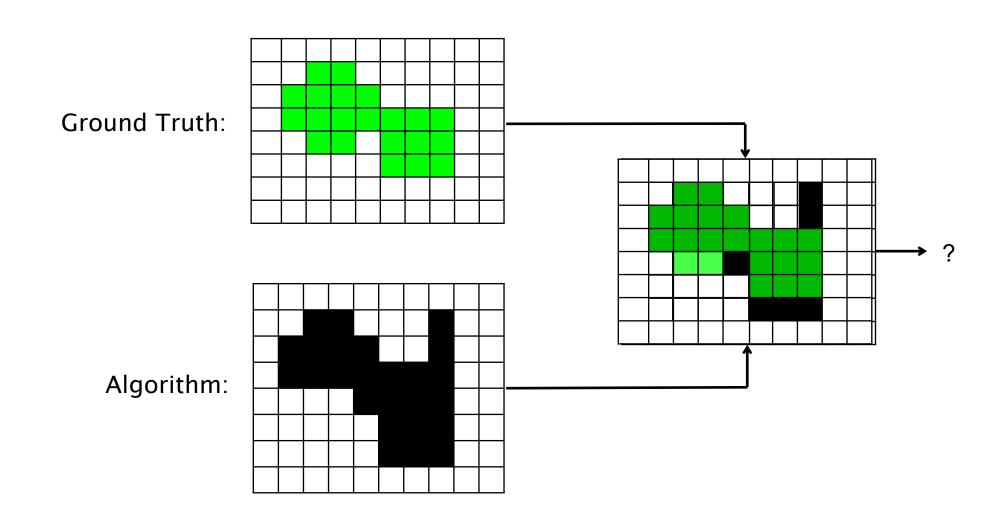
Evaluation Metric



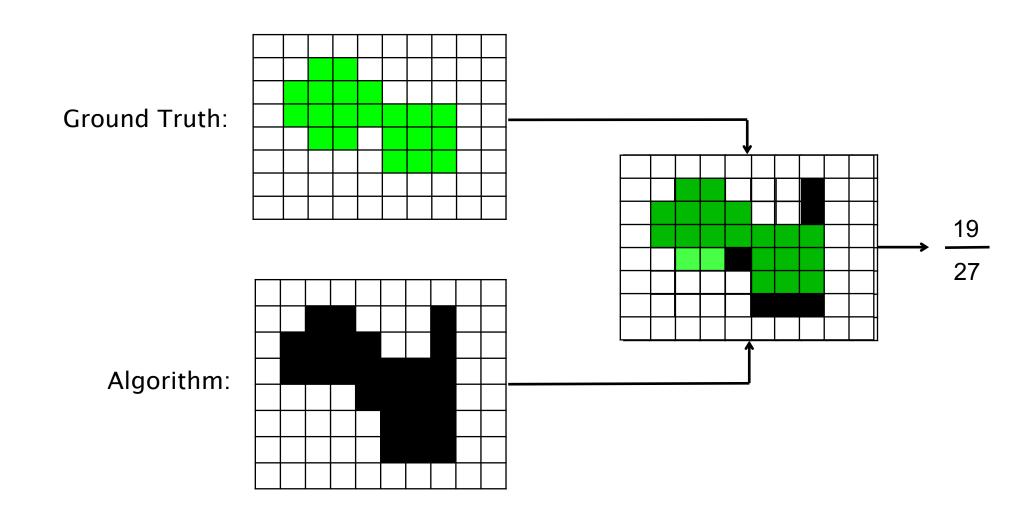
Recall: IoU Metric



Recall: IoU Metric



Recall: IoU Metric



Semantic Segmentation

- Mean IoU: IoU between predicted and ground-truth pixels, averaged over all categories
- Weighted IoU: IoU weighted by the total pixel ratio of each category

- Pixel accuracy: proportion of correctly classified pixels
- Mean accuracy: proportion of correctly classified pixels, averaged over all categories

Semantic Segmentation: Today's Topics

Problem

Applications

Datasets

Evaluation metric

Computer vision models: fully convolutional networks

Why Fully Convolutional Network?

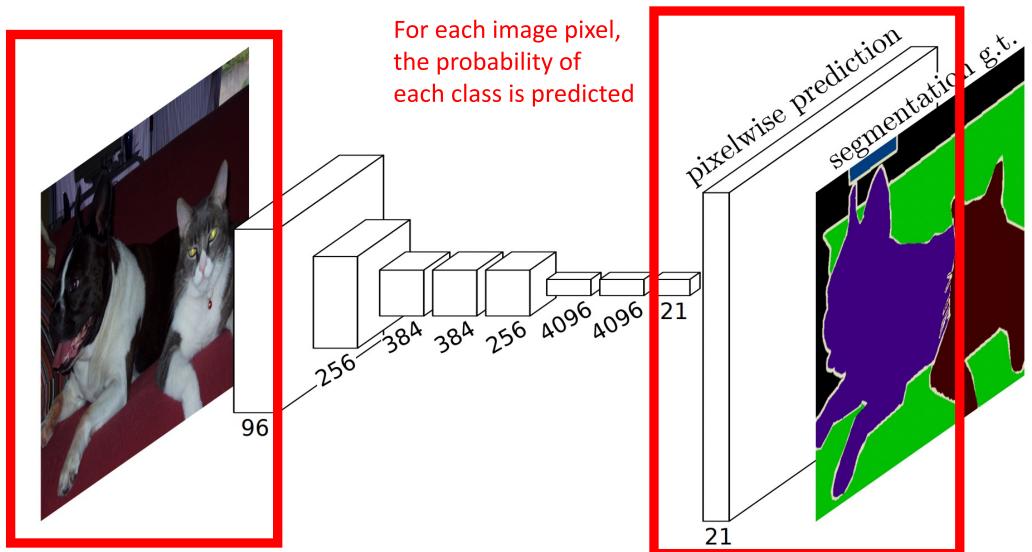
Named after the proposed technique that excludes fully connected layers:

Jonathon Long, Evan Shelhamer, and Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation." CVPR 2015.

Input: RGB image of ANY size

Output: Image of same size as input

Architecture

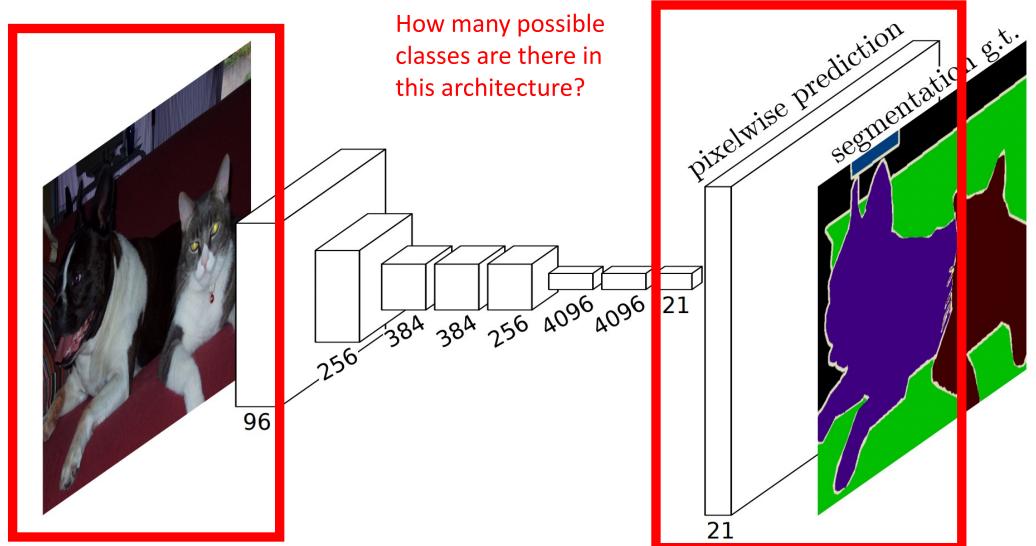


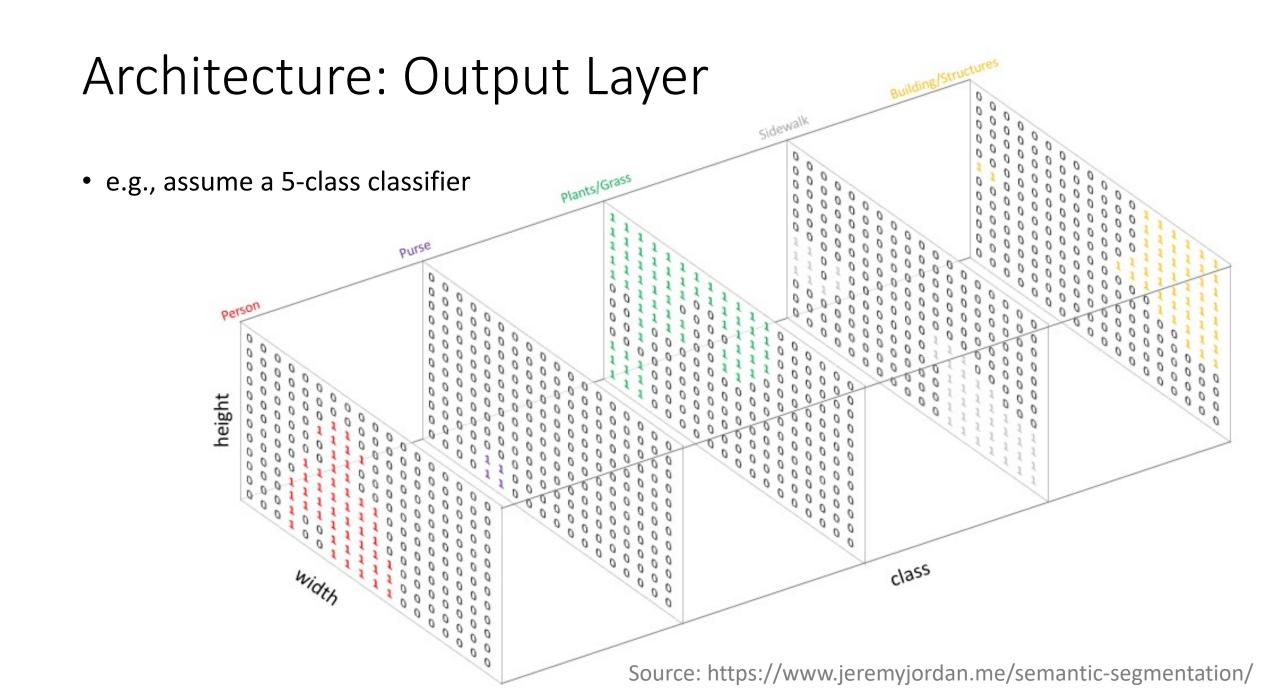
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Input: RGB image of ANY size

Output: Image of same size as input

Architecture





Architecture: Output Layer

• e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

0: Background/Unknown

1: Person

2: Purse

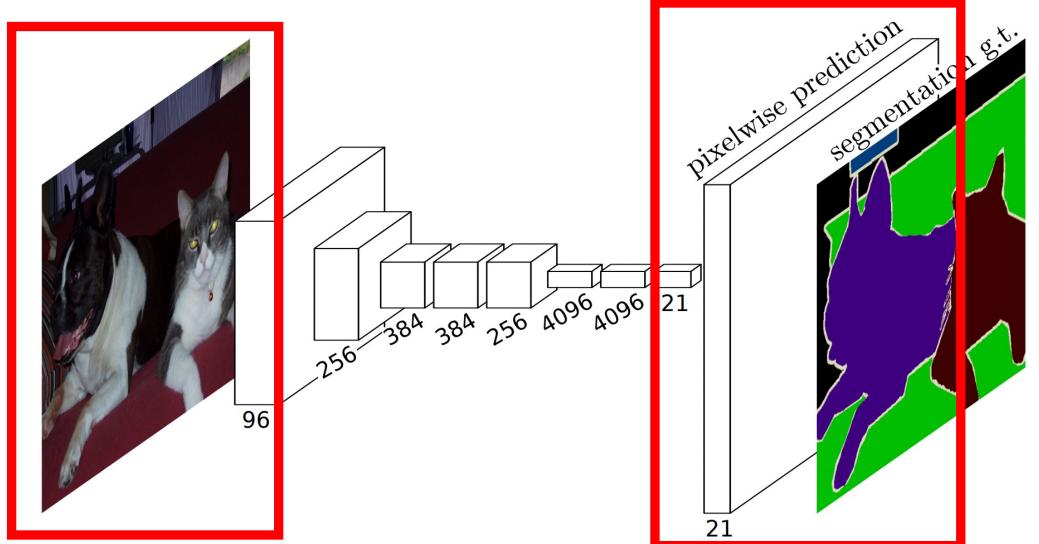
3: Plants/Grass

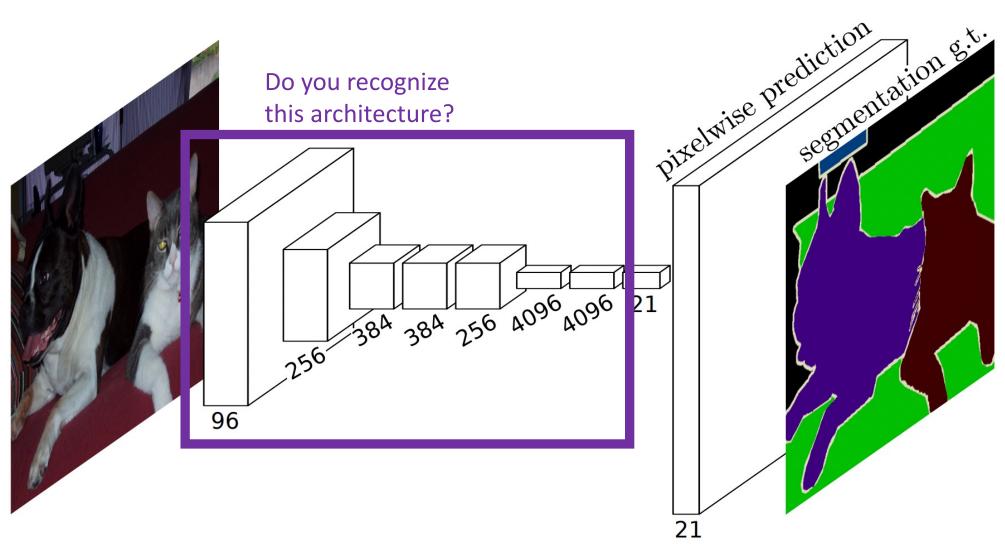
4: Sidewalk

5: Building/Structures

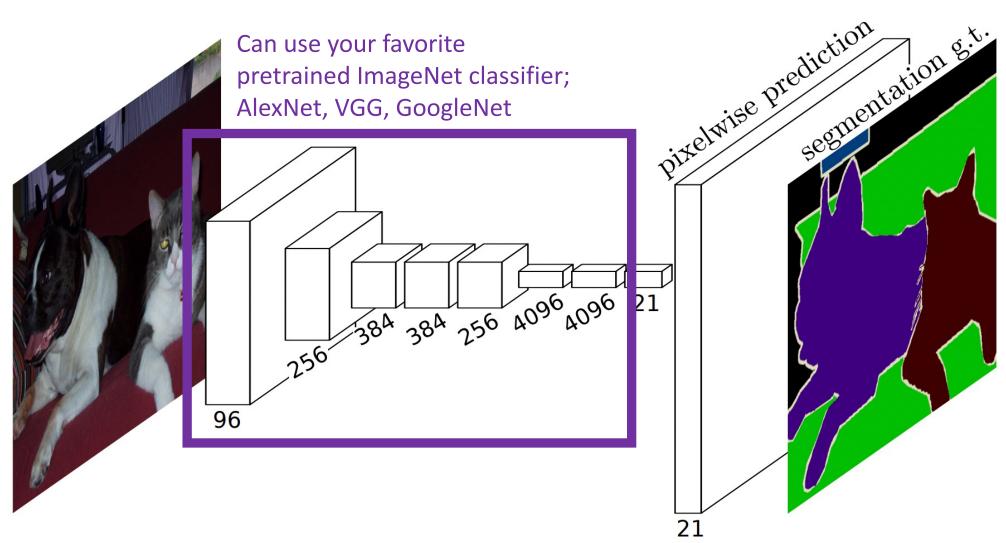
Output: Image of same size as input

Architecture



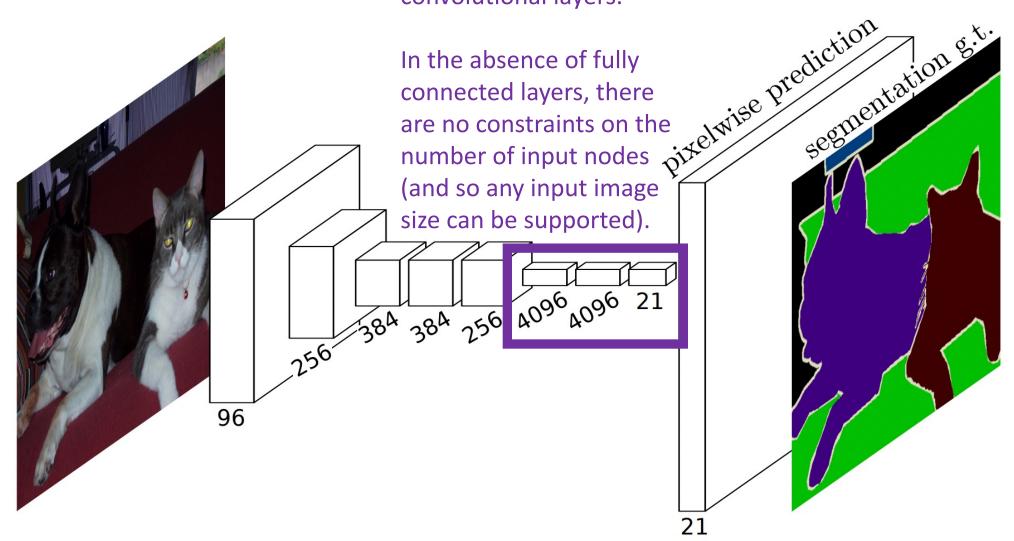


Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

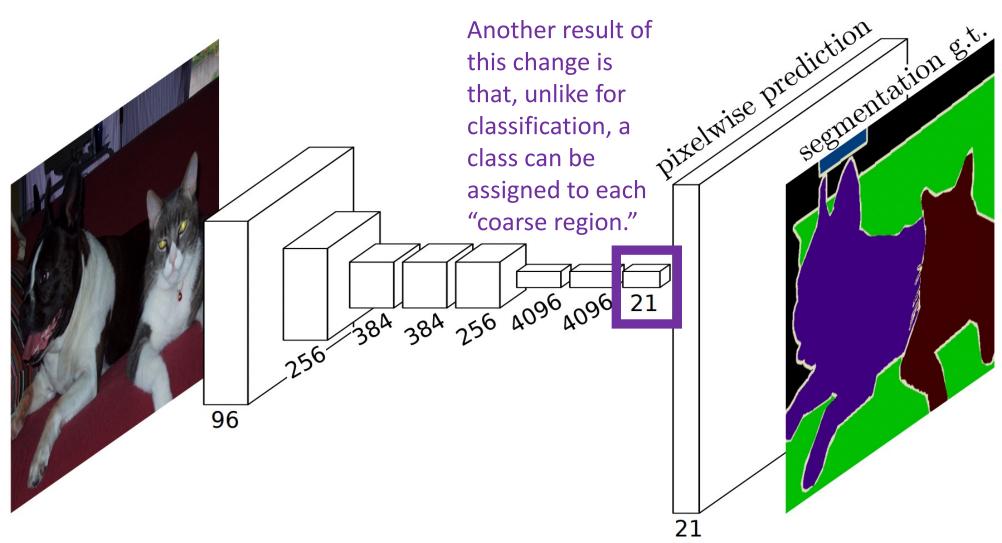


Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

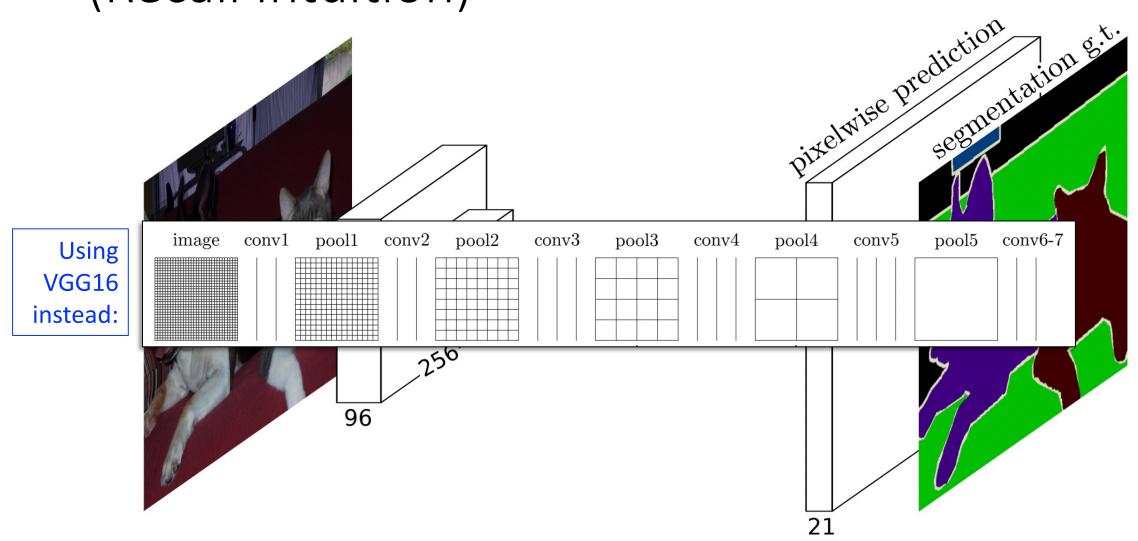
To make the architecture fully convolutional, fully connected layers are converted to convolutional layers.



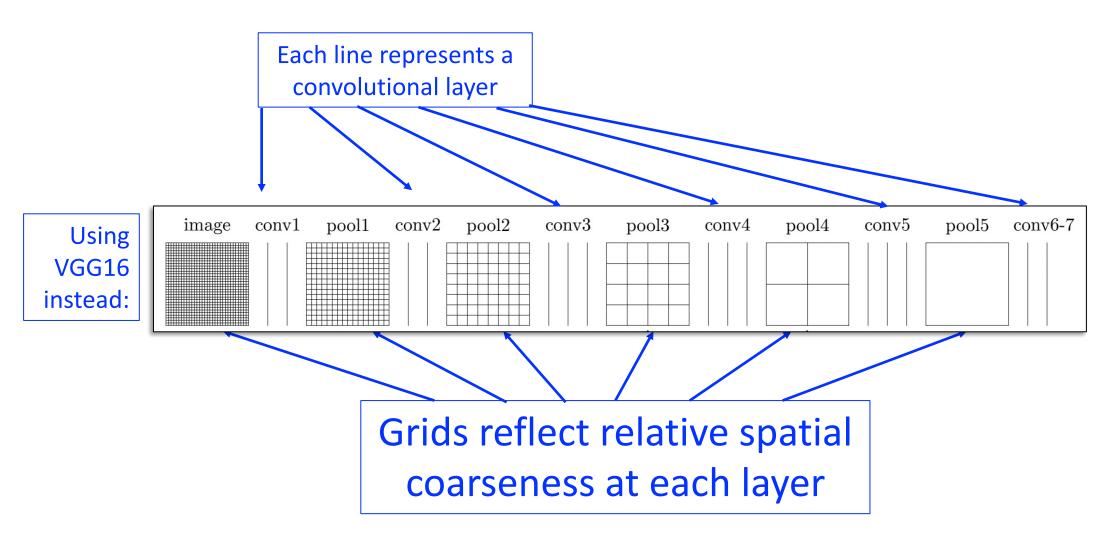
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.



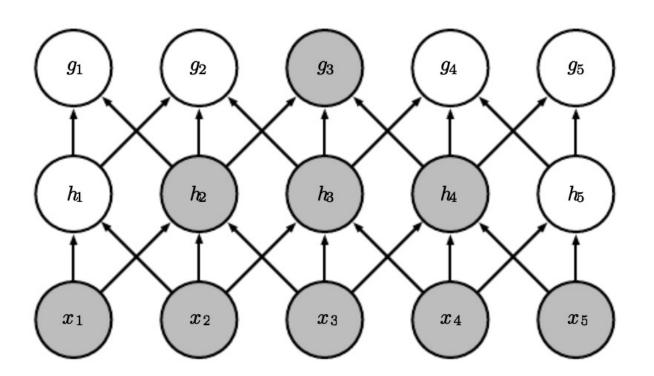
Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

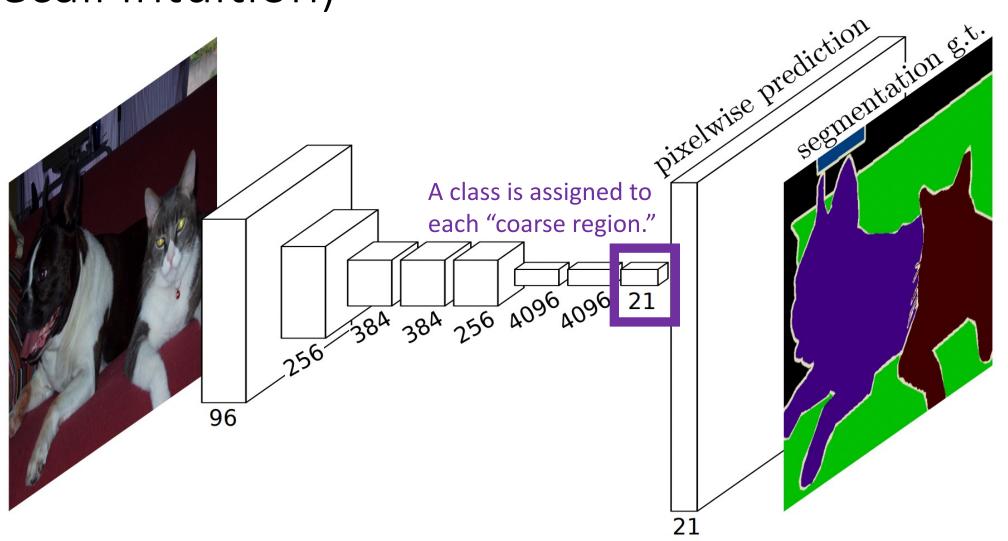


Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

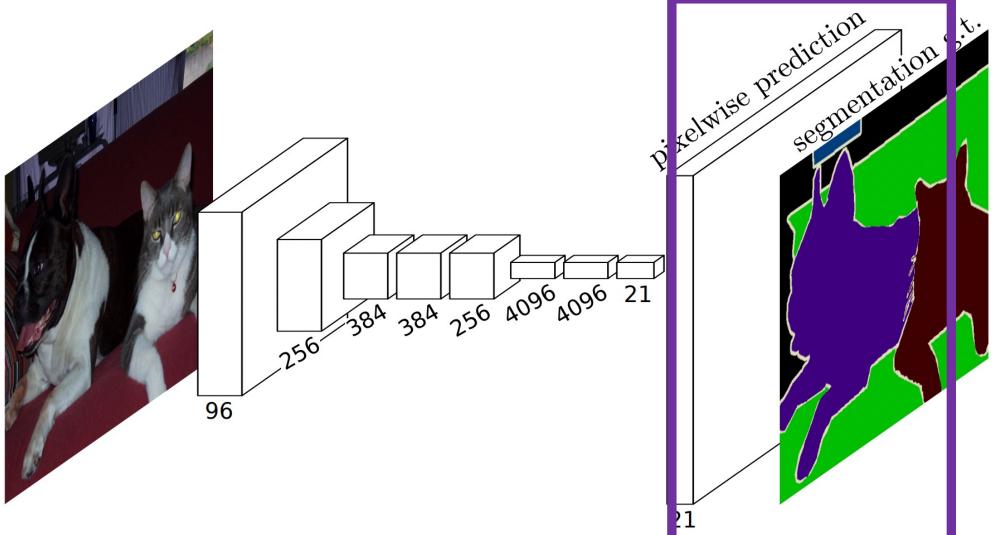


Stacking many convolutional layers leads to learning patterns in increasingly larger regions of the input (e.g., pixel) space.

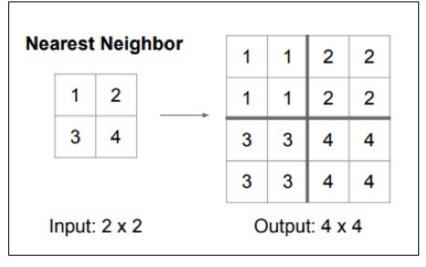


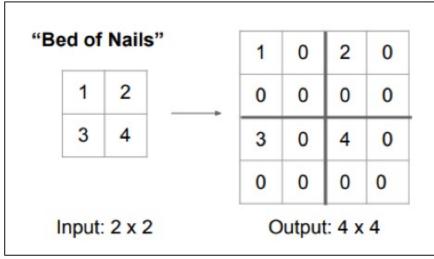


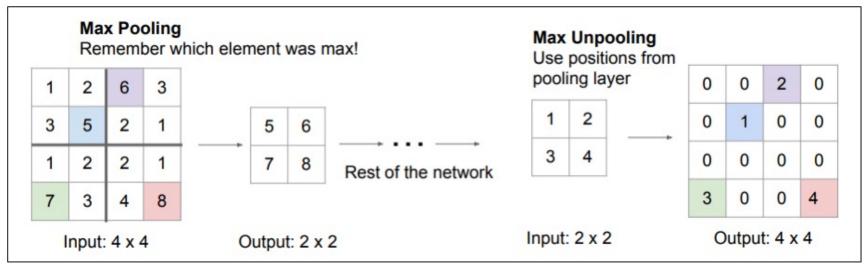
Challenge: how to decode from coarse region classifications to per pixel classification?



Architecture: Upsampling (Many Approaches)







Architecture: Upsampling (Transposed Convolutional Layer)

- Prior approaches used a convolutional layer to clean-up/refine the hard-coded upsampling approaches
- Idea: learn filters to refine the subsampled image while upsampling
- Implementation: looks like convolution in that the number of filters and kernel size of each filter
 must be specified; stride differs though by appearing like a fractional input, e.g. with a stride of
 f=1/2 insert rows and columns of 0.0 to achieve the desired stride.
- Also called "fractional convolutional layer" and, incorrectly, "deconvolution layer"

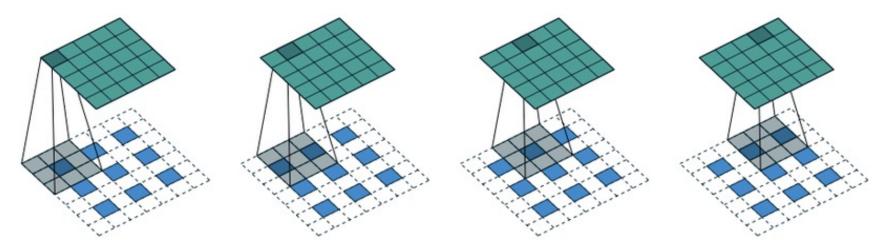
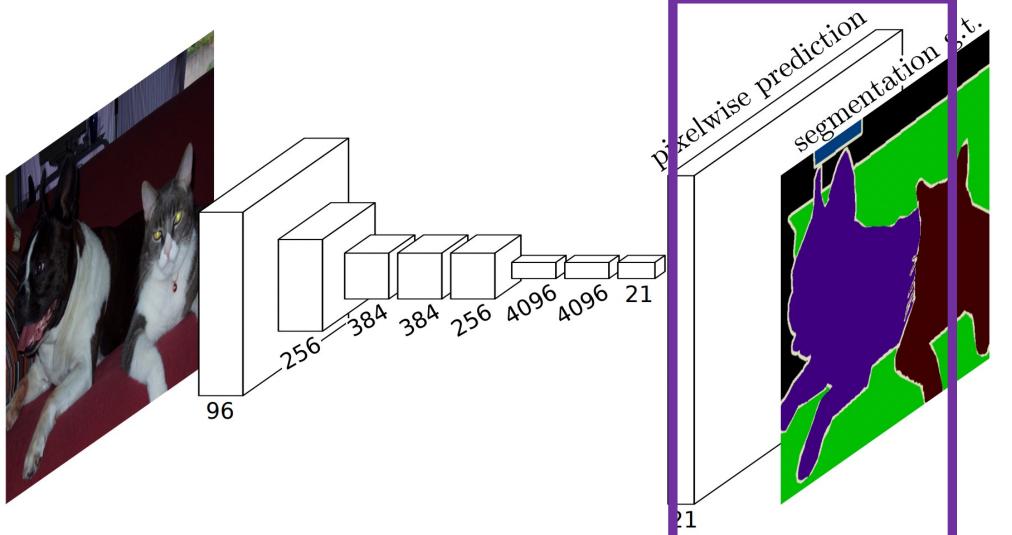


Image Source:

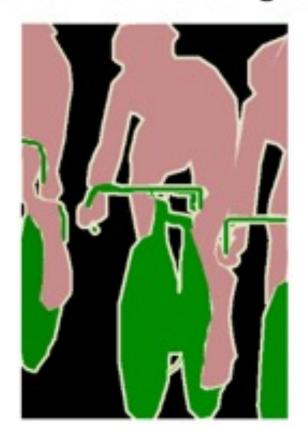
https://www.researchgate.net/publication/324783775_Text_t o_Image_Synthesis_Using_Generative_Adversarial_Networks

Next challenge: how to decode a **highly detailed** per pixel classification from the coarse region classifications?



Architecture: Results

Ground truth target



Next challenge: how to decode a **highly detailed** per pixel classification from the coarse region classifications?

Predicted segmentation

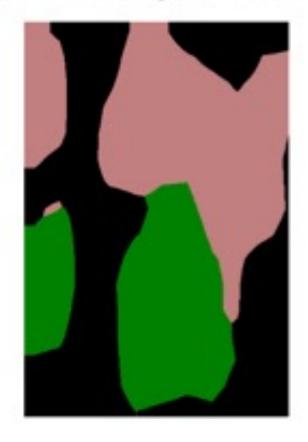
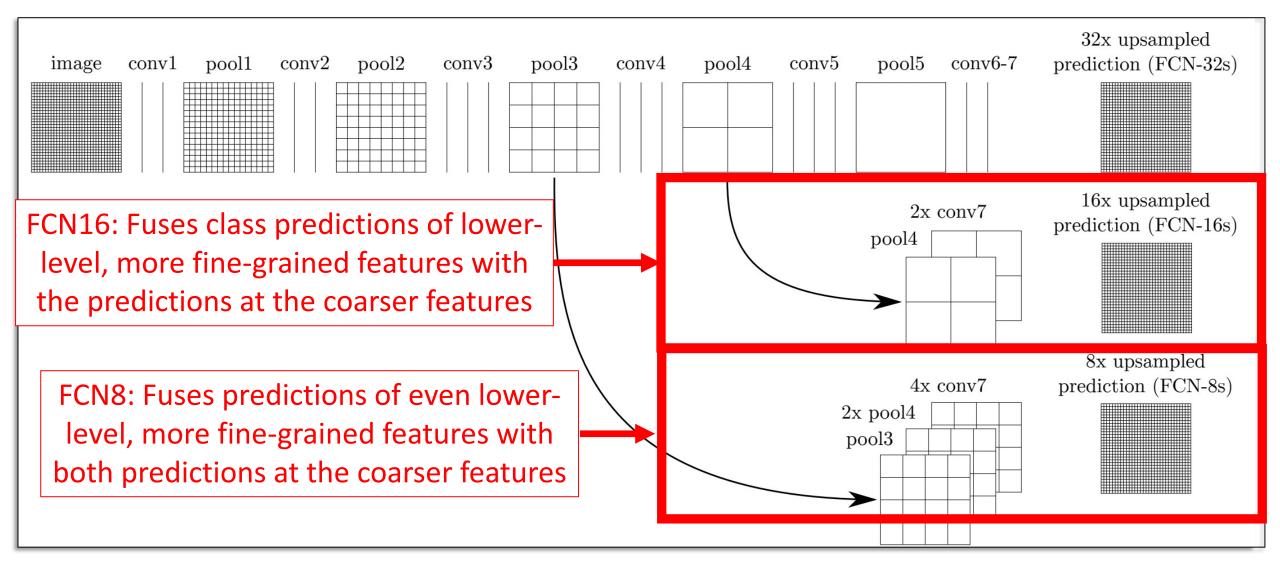


Figure source: https://www.jeremyjordan.me/semantic-segmentation/

Architecture: Update to Use Skip Connections



Architecture: Results

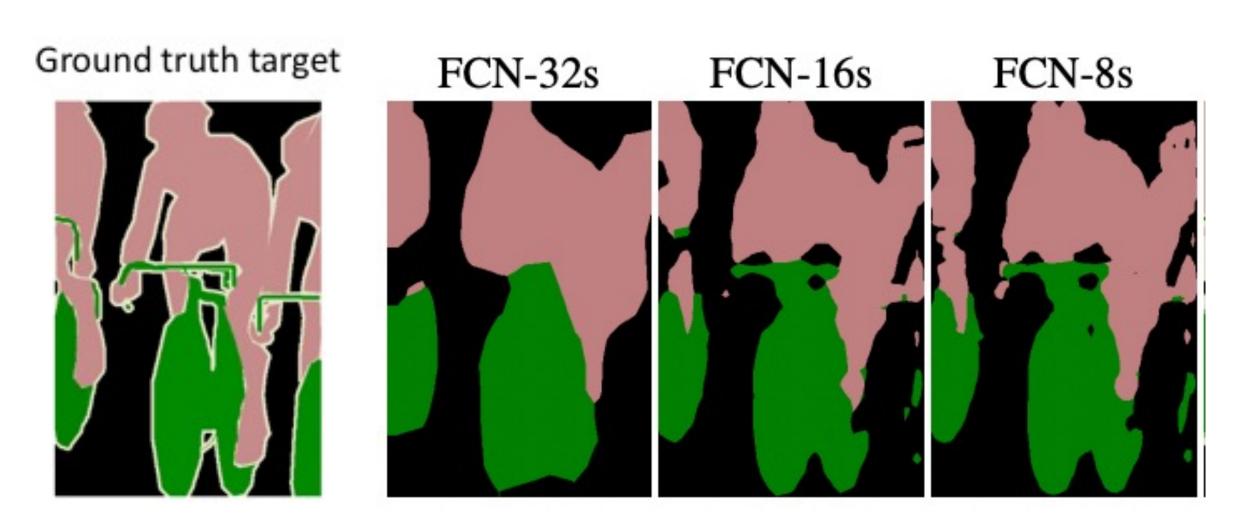
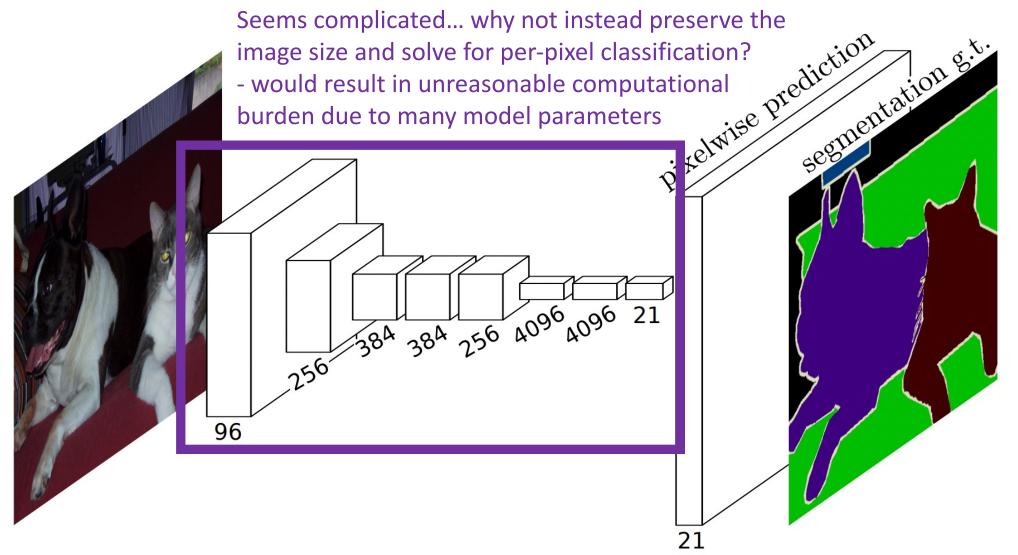
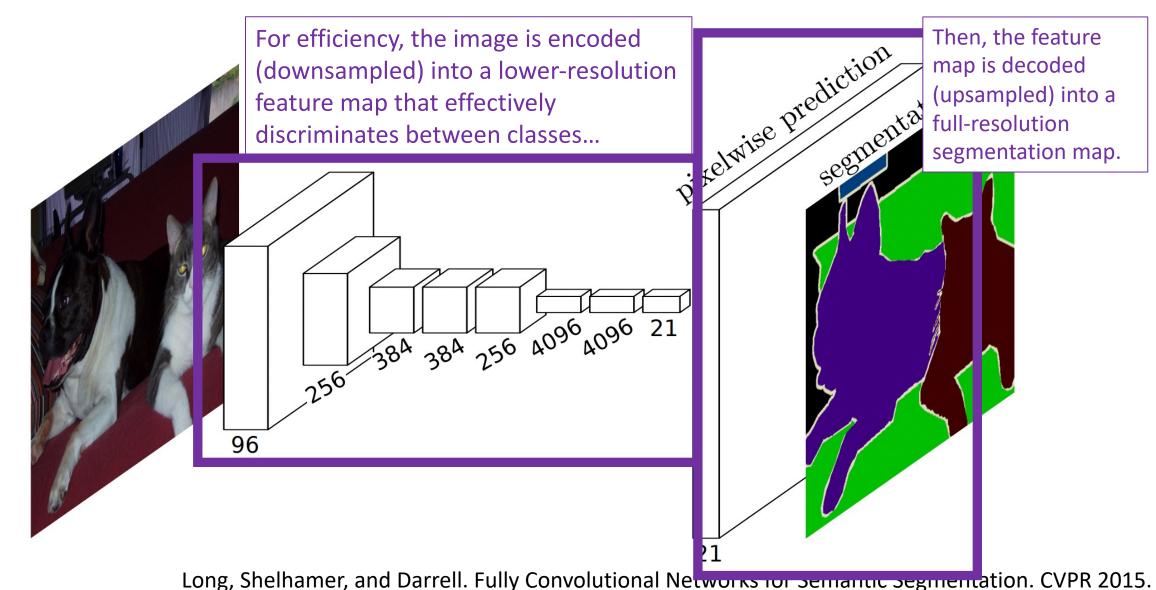


Figure source: https://www.jeremyjordan.me/semantic-segmentation/

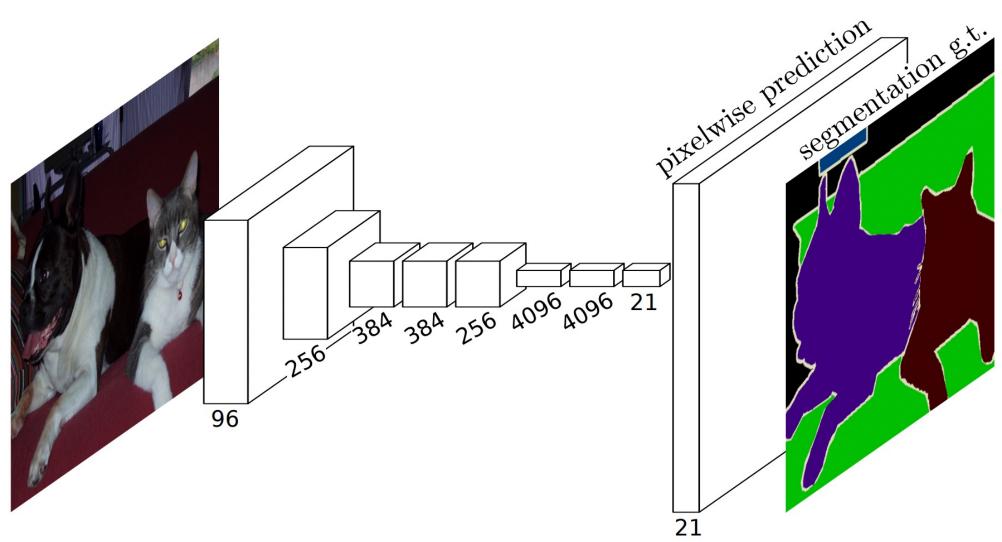
Architecture: Upsampling + Skip Connections



Architecture: Encoder Decoder Architecture

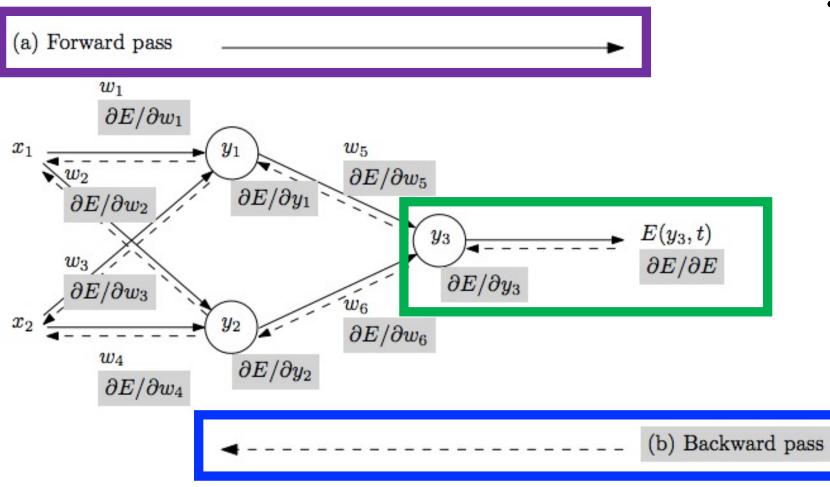


Architecture: Algorithm Training



Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

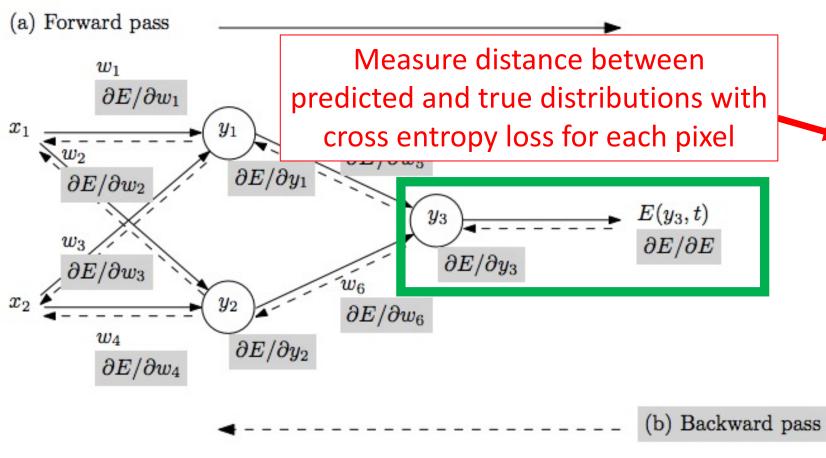
Algorithm Training: Recall How NNs Learn



- Repeat until stopping criterion met:
 - Forward pass: propagate training data through model to make prediction
 - Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - 4. Update each parameter using calculated gradients

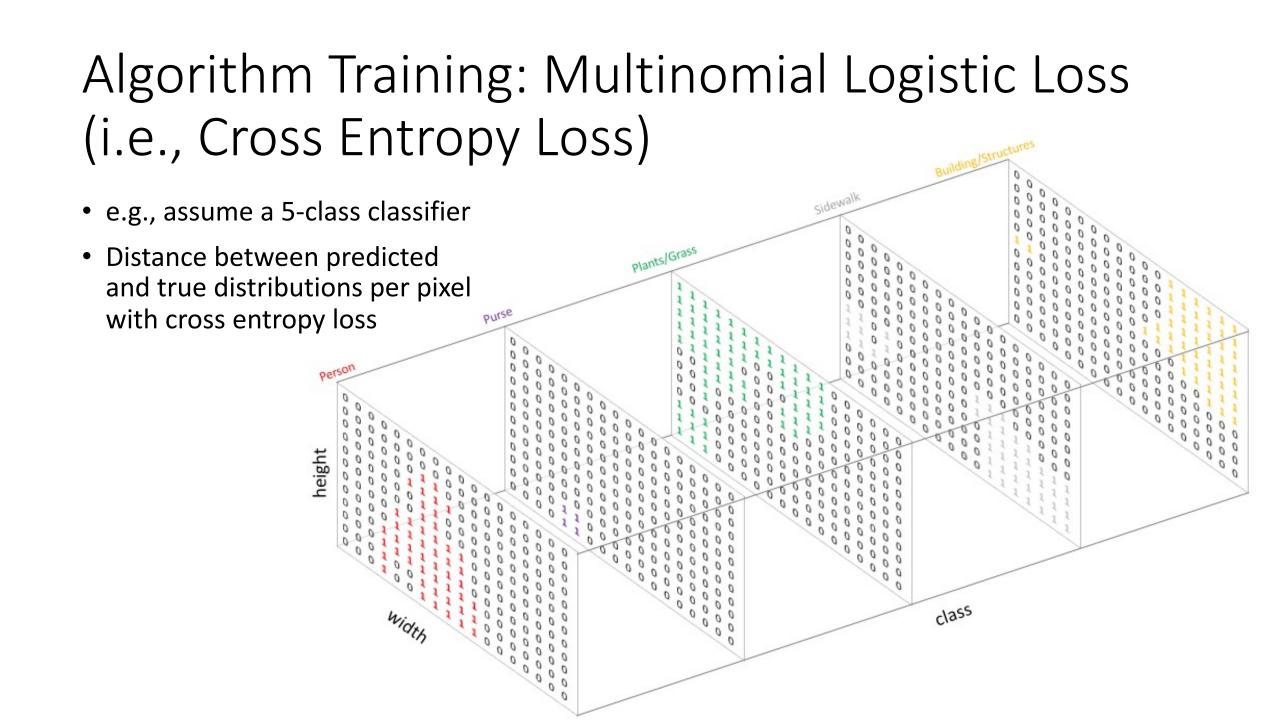
Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Algorithm Training: CNN

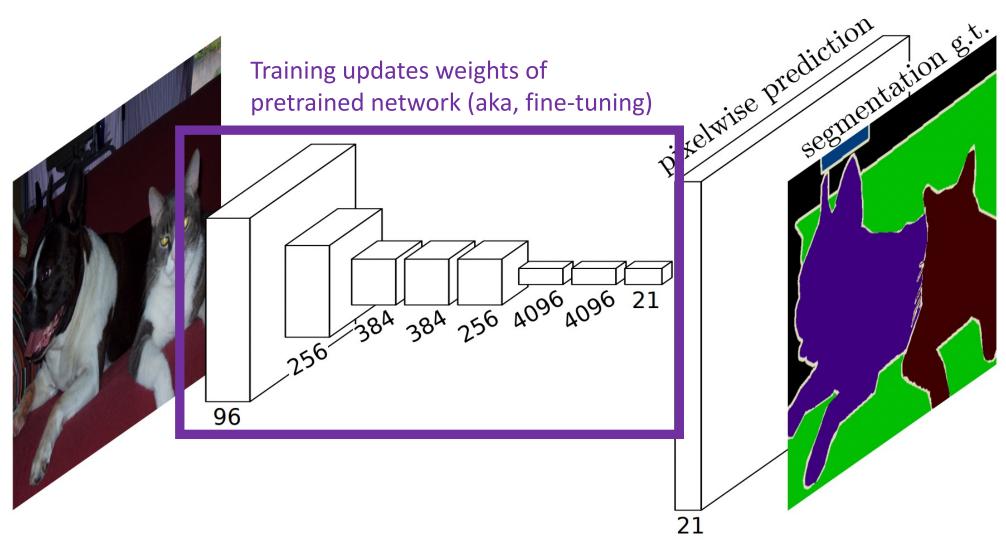


- Repeat until stopping criterion met:
 - 1. Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - predicted output,
 calculate gradients
 backward to assign blame
 to each model parameter
 - 4. Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Architecture: Algorithm Training



Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Improved Architecture: U-Net

Passes information lost in the encoder to the decoder from each downsampling layer in the encoder to its corresponding upsampling layer in the decoder, while also keeping the computation low.

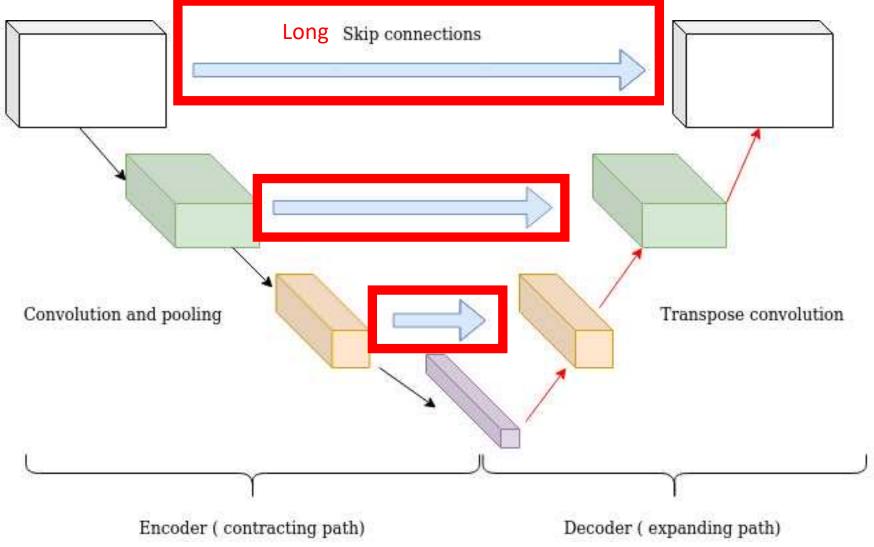
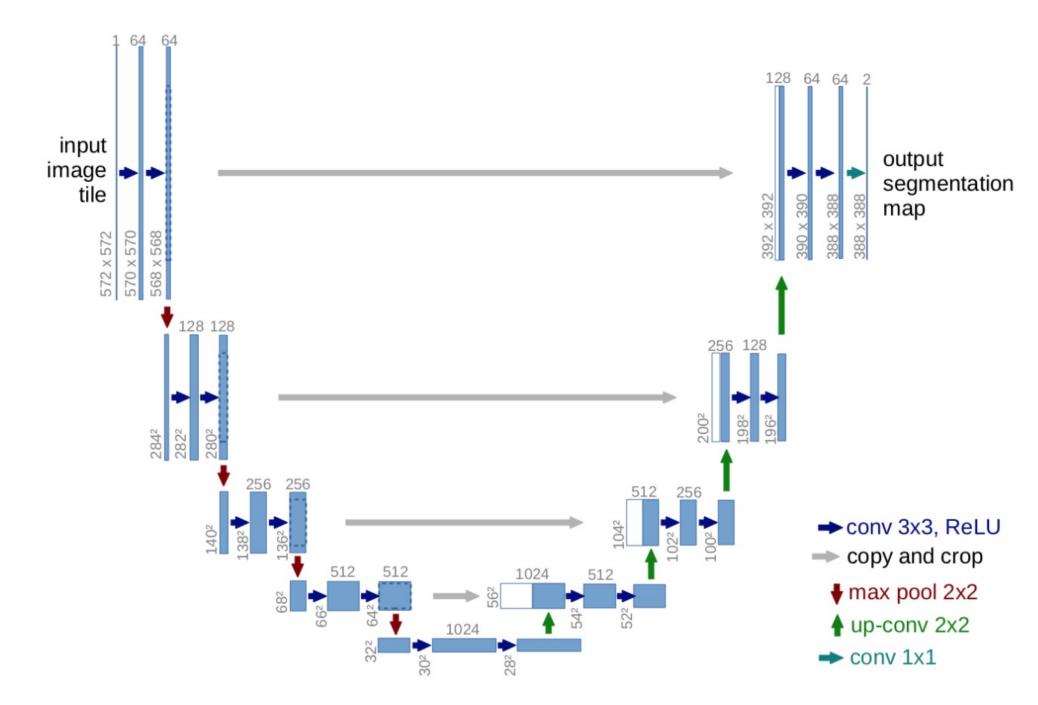


Image Source: https://theaisummer.com/skip-connections/



Semantic Segmentation: Today's Topics

Problem

Applications

Datasets

Evaluation metric

Computer vision models: fully convolutional networks

The End