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Review

• Last lecture:
• Overview of object detection algorithms
• Baseline Model: R-CNN
• Fast R-CNN
• Faster R-CNN
• YOLO

• Assignments (Canvas)
• Reading assignment due earlier today
• Reading assignments out that are due tomorrow and next week

• Questions?



Semantic Segmentation: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric 

• Computer vision models: fully convolutional networks
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Definition

• Locate all pixels that belong to a particular category; e.g., 

Image Source: Jeong, Yoon, and Park. Sensors 2018.

Note: instances of the same 
class are NOT separated



Object Segmentation vs Detection

• Why choose object “segmentation” over “detection”? 

http://mmcheng.net/msra10k/
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Remodeling Inspiration

Bell et al; SIGGRAPH; 2013



Rotoscoping (many examples on Wikipedia)

https://www.starnow.co.uk/ahmedmohamm
ed1/photos/4650871/before-and-after-

rotoscopinggreen-screening



Disease Diagnosis; e.g.,

Figure Source: https://pathology.jhu.edu/brain-tumor/grading-classification



Face Makeover

Demo: https://www.maybelline.com/virtual-try-on-makeup-tools



Self-Driving Vehicles

Figure Source: https://www.inc.com/kevin-j-ryan/self-driving-cars-powered-by-people-playing-games-mighty-ai.html



Can you think of any other 
potential applications?
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VOC

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

1. Image Collection

- A subset of 
images from the 
VOC detection 
dataset were 
used

2. Image Annotation
- Annotation party annually

- Annotation guidelines & real-time assistance –
refine detections into segmentations

- Post-hoc correction/feedback about the number 
and kind of errors made

- Annotations for each of the 20 object classes were 
merged into class-specific segmentation regions 
and 1 more class was added for background 



Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

VOC: Recall Categories Included (Leaf Nodes)



VOC: Boundary Accuracy Heuristic 

“To give high accuracy but to keep the annotation time short enough to 
provide a large image set, a border area of 5 pixels width was allowed around 
each object where the pixels were labelled neither object nor background.”

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.



VOC: “Difficult” Objects Excluded

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

Objects that are challenging to recognize are discarded (i.e., dashed regions):  
flagged for reasons of “small size, illumination, image quality or the need to use 
significant contextual information… no penalty is incurred for detecting them. 
The aim of this annotation is to maintain a reasonable level of difficulty…”



VOC Annual Workshop

http://host.robots.ox.ac.uk/pascal/VOC/



What is a Limitation of Datasets Built Around 
Specific Categories (e.g., Objects)?

No knowledge that anything else is in the scene, such as a house, trees or flowers! 
A further consequence is that the majority of pixels are labeled as `background’.

Mark Everingham et al. The PASCAL Visual Object Classes Challenge: A Retrospective. IJCV 2015.
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ADE20K
1. Image Collection

- 25,210 images 
collected from 
existing datasets 
(SUN, Places, 
and LabelMe)

- Selected to 
capture all scene 
categories 
defined in SUN

2. Region Localization and Category Assignment 

- A single person annotated all images 
into three types and kept adding new 
categories as they were observed: (1) 
objects, (2) object parts, and (3) 
attributes (e.g., occluded)



ADE20K: User Annotation Tool



ADE20K: User Annotation Tool

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017.



ADE20K

• Includes:
- “things”: objects that can easily 
be labeled; e.g., person, chair
- “stuff”: objects with no clear 
boundaries; e.g., sky, grass

Bolei Zhou et al. Scene Parsing through ADE20K Dataset. CVPR 2017.



Datasets

1945 1957 1966 1983

CVPR

1987

ICCV

1990

ECCV

1966 2009

VOC ADE20k

2017

e.g., 

# Categories:

# Images:

21

1112 train/val 25,210

Trend: build bigger datasets

3169
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Evaluation Metric

Score

Ground Truth:

Algorithm:

Evaluation 
Measure



Recall: IoU Metric

Score

Ground Truth:

Algorithm:



Recall: IoU Metric

Ground Truth:

Algorithm:

?



Recall: IoU Metric

Ground Truth:

Algorithm:

19

27



Semantic Segmentation 

• Mean IoU: IoU between predicted and ground-truth pixels, averaged 
over all categories

• Weighted IoU: IoU weighted by the total pixel ratio of each category

• Pixel accuracy: proportion of correctly classified pixels

• Mean accuracy: proportion of correctly classified pixels, averaged 
over all categories

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, & 
Antonio Torralba. Scene Parsing through ADE20K Dataset. ICCV 2017.
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Why Fully Convolutional Network?

Named after the proposed technique that excludes fully connected layers:

Jonathon Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks for 
Semantic Segmentation.” CVPR 2015.



Architecture
Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

For each image pixel, 
the probability of 
each class is predicted



Architecture
Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

How many possible 
classes are there in 
this architecture?



Architecture: Output Layer

• e.g., assume a 5-class classifier

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Output Layer

• e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture
Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Do you recognize 
this architecture?



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Can use your favorite 
pretrained ImageNet classifier; 
AlexNet, VGG, GoogleNet



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

To make the architecture 
fully convolutional, fully 
connected layers are 
converted to 
convolutional layers.

In the absence of fully 
connected layers, there 
are no constraints on the 
number of input nodes 
(and so any input image 
size can be supported).



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Another result of 
this change is 
that, unlike for 
classification, a 
class can be 
assigned to each 
“coarse region.”



Architecture: Coarse Region Classification 
(Recall Intuition)

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Using 
VGG16 

instead:



Architecture: Coarse Region Classification 
(Recall Intuition)

Grids reflect relative spatial 
coarseness at each layer

Each line represents a 
convolutional layer

Using 
VGG16 

instead:



Architecture: Coarse Region Classification 
(Recall Intuition)
Stacking many convolutional layers leads to learning patterns in increasingly larger 
regions of the input (e.g., pixel) space.



Architecture: Coarse Region Classification 
(Recall Intuition)

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

A class is assigned to 
each “coarse region.”



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Challenge: how to decode from 
coarse region classifications to 

per pixel classification?



Architecture: Upsampling (Many Approaches)

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



Architecture: Upsampling
(Transposed Convolutional Layer)
• Prior approaches used a convolutional layer to clean-up/refine the hard-coded upsampling

approaches
• Idea: learn filters to refine the subsampled image while upsampling
• Implementation: looks like convolution in that the number of filters and kernel size of each filter 

must be specified; stride differs though by appearing like a fractional input, e.g. with a stride of 
f=1/2 insert rows and columns of 0.0 to achieve the desired stride.

• Also called “fractional convolutional layer” and, incorrectly, ”deconvolution layer”

Image Source: 
https://www.researchgate.net/publication/324783775_Text_t
o_Image_Synthesis_Using_Generative_Adversarial_Networks



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Results

Figure source: https://www.jeremyjordan.me/semantic-segmentation/

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Update to Use Skip Connections

FCN16: Fuses class predictions of lower-
level, more fine-grained features with 
the predictions at the coarser features

FCN8: Fuses predictions of even lower-
level, more fine-grained features with 

both predictions at the coarser features



Architecture: Results

Figure source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Upsampling + Skip Connections

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Seems complicated… why not instead preserve the 
image size and solve for per-pixel classification? 
- would result in unreasonable computational 
burden due to many model parameters



Architecture: Encoder Decoder Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Then, the feature 
map is decoded 
(upsampled) into a 
full-resolution 
segmentation map.

For efficiency, the image is encoded 
(downsampled) into a lower-resolution 
feature map that effectively 
discriminates between classes…



Architecture: Algorithm Training

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.



Algorithm Training: Recall How NNs Learn
• Repeat until stopping criterion 

met:
1. Forward pass: propagate 

training data through 
model to make prediction

2. Quantify the 
dissatisfaction with a 
model’s results on the 
training data

3. Backward pass: using 
predicted output, 
calculate gradients 
backward to assign blame 
to each model parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Algorithm Training: CNN
• Repeat until stopping criterion 

met:
1. Forward pass: propagate 

training data through 
model to make prediction

2. Quantify the 
dissatisfaction with a 
model’s results on the 
training data

3. Backward pass: using 
predicted output, 
calculate gradients 
backward to assign blame 
to each model parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Measure distance between 
predicted and true distributions with 

cross entropy loss for each pixel



Algorithm Training: Multinomial Logistic Loss 
(i.e., Cross Entropy Loss)
• e.g., assume a 5-class classifier
• Distance between predicted 

and true distributions per pixel 
with cross entropy loss



Architecture: Algorithm Training

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Training updates weights of 
pretrained network (aka, fine-tuning)



Improved Architecture: U-Net 

Image Source: https://theaisummer.com/skip-connections/

Long

Passes information lost in the 
encoder to the decoder from 
each downsampling layer in 
the encoder to its 
corresponding upsampling
layer in the decoder, while also 
keeping the computation low.



U-Net
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