Object Recognition – Part 2

Danna Gurari

University of Colorado Boulder Fall 2021

https://home.cs.colorado.edu/~DrG/Courses/RecentAdvancesInComputerVision/AboutCourse.html

Review

• Last lecture:

- Object recognition problem
- Object recognition applications
- Object recognition datasets
- Object recognition evaluation metric
- Typical solution: convolutional neural network
- Assignments (Canvas)
 - Reading assignment was due today
 - New reading assignment out later today that is due next week
- Questions?

Object Recognition: Today's Topics

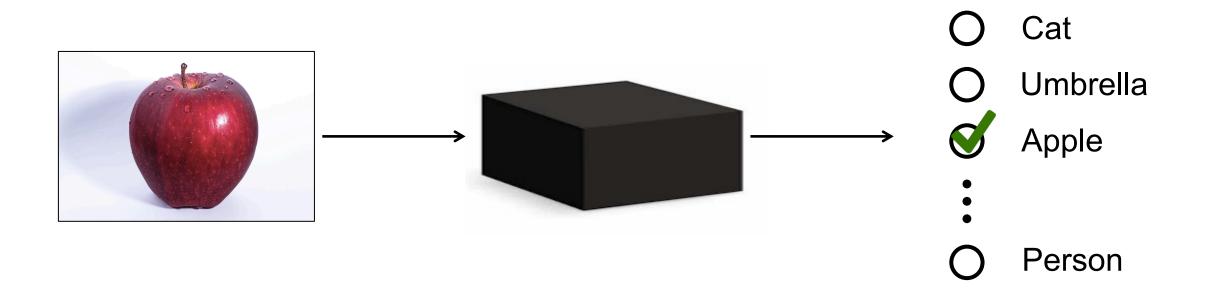
- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

Object Recognition: Today's Topics

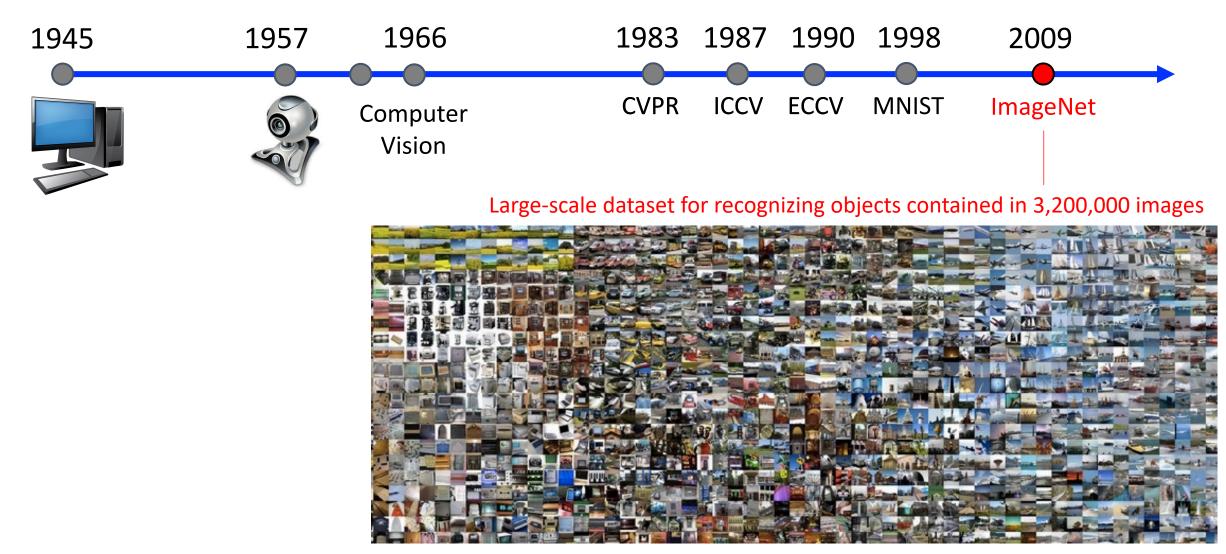
- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

Recall: Object Recognition Problem

• What object is in the image?



Recall: Catalyst for Computer Vision Revolution



J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. 2009.

Recall: Catalyst for Computer Vision Revolution

Progress of models on ImageNet (Top 5 Error)

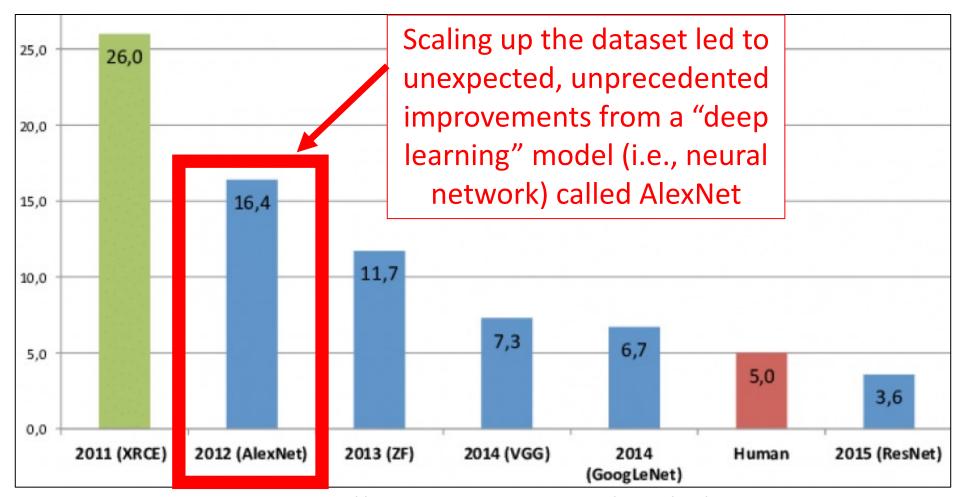
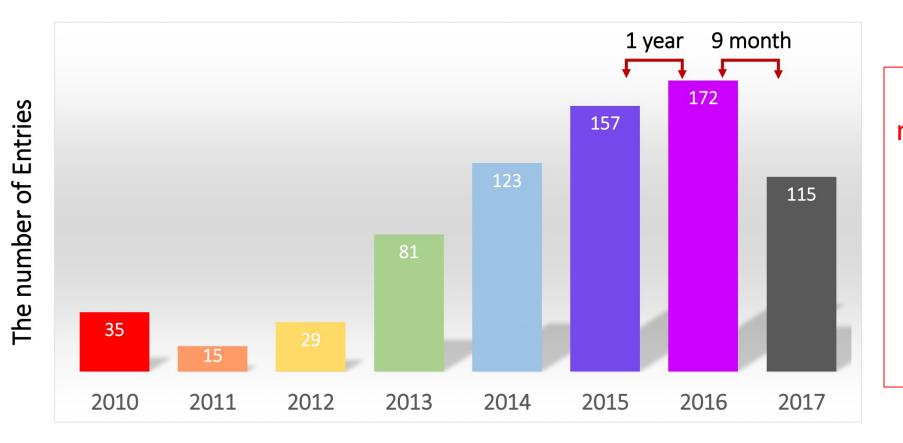


Figure Source: https://www.edge-ai-vision.com/2018/07/deep-learning-in-five-and-a-half-minutes/

Recall: ImageNet Challenge Submissions



Inspired by AlexNet, many more researchers in the computer vision community proposed neural networks and showed how to make further progress over the years!

Source: https://image-net.org/static_files/files/ILSVRC2017_overview.pdf

What Was The Secret Sauce To Be State-of-Art?

Progress of models on ImageNet (Top 5 Error)

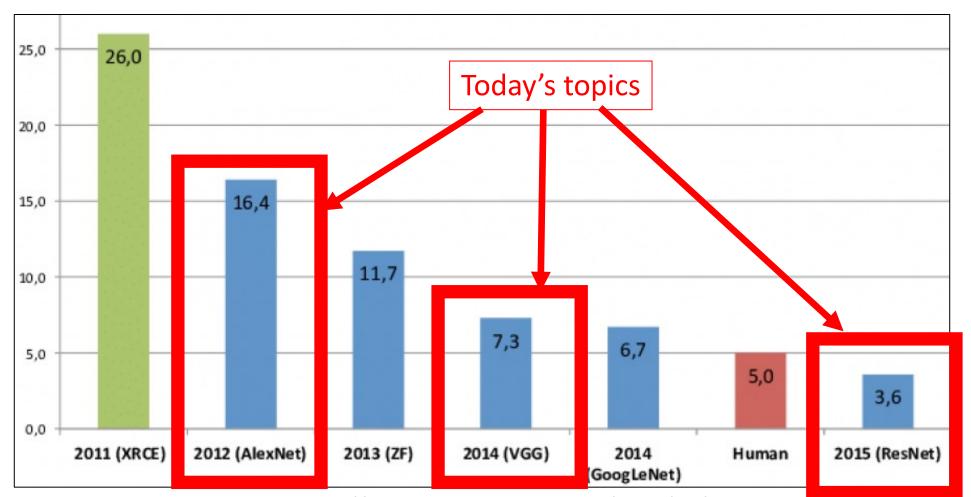


Figure Source: https://www.edge-ai-vision.com/2018/07/deep-learning-in-five-and-a-half-minutes/

Object Recognition: Today's Topics

- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

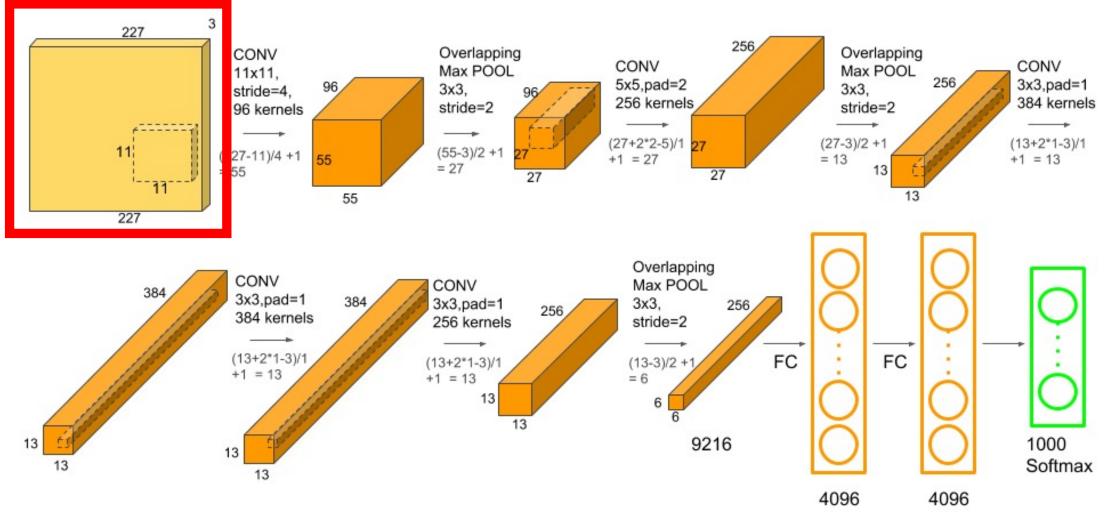
Why AlexNet?

Alex is the name of the paper's author \bigcirc

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems (2012).*

Input: RGB image resized to fixed input size

Architecture



Architecture: Input Resizing

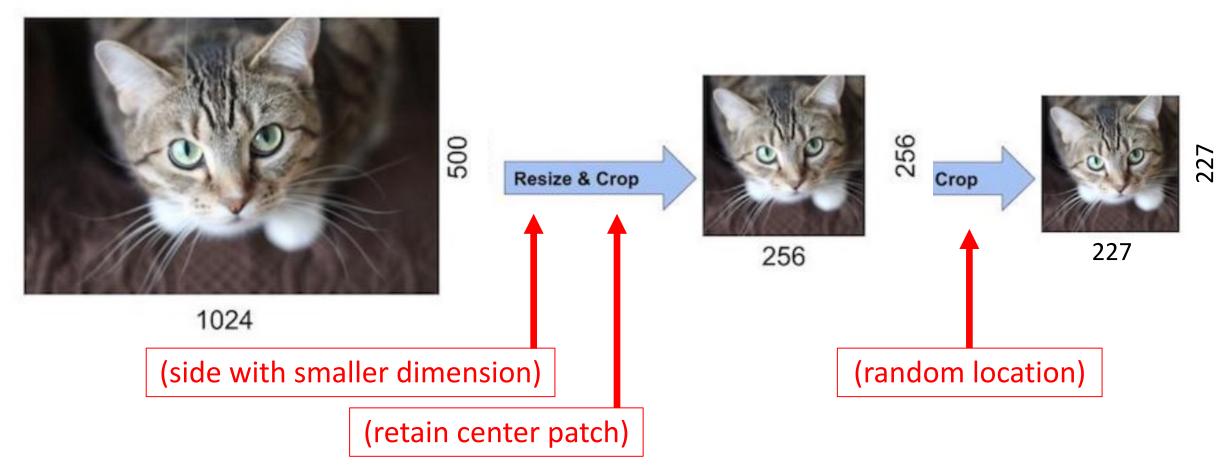
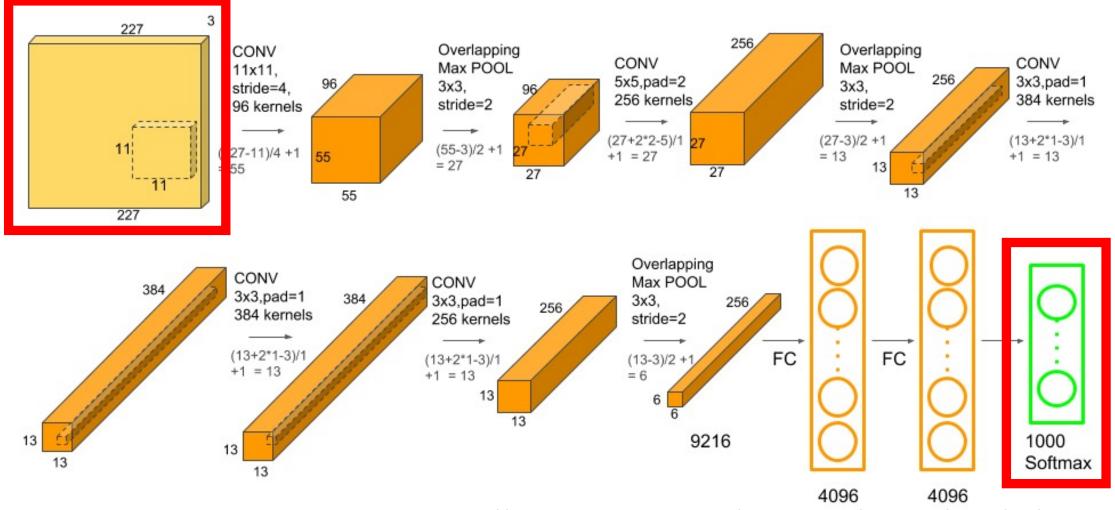


Image Source: https://learnopencv.com/understanding-alexnet/

Input: RGB image resized to fixed input size

Output: 1000 class probabilities (sums to 1)

Architecture



Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

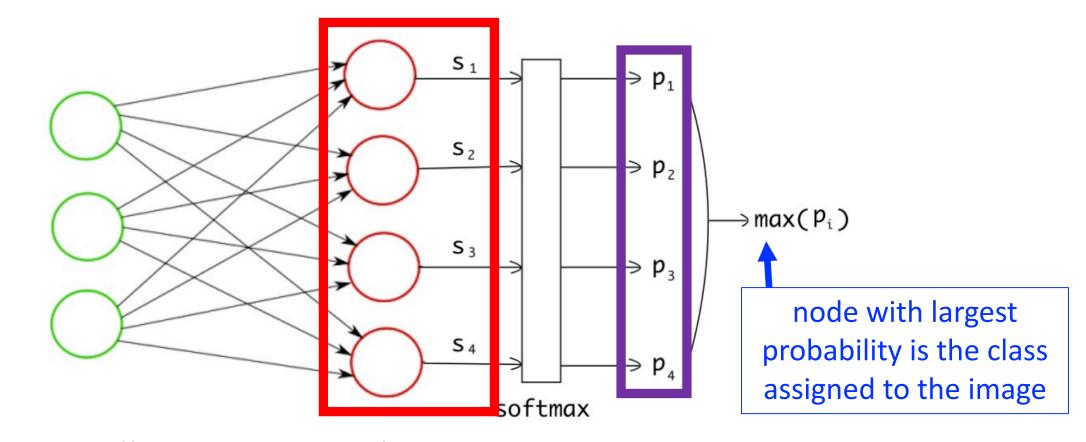


Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

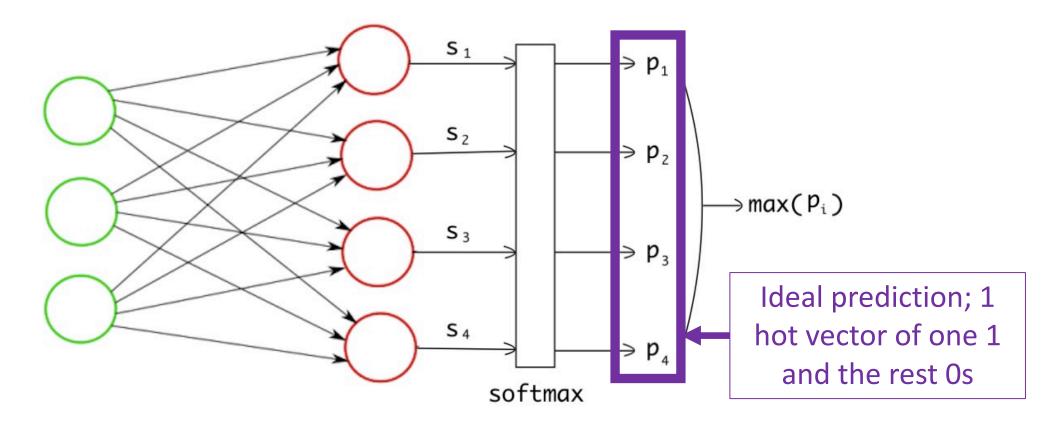
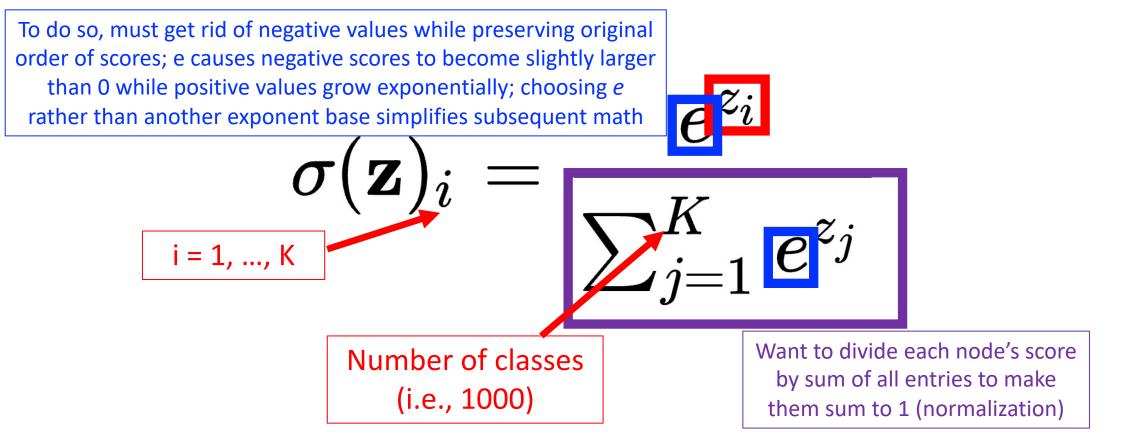


Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax: converts vector of scores into a probability distribution that sums to 1



Useful tutorial: https://towardsdatascience.com/exploring-the-softmax-function-578c8b0fb15

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

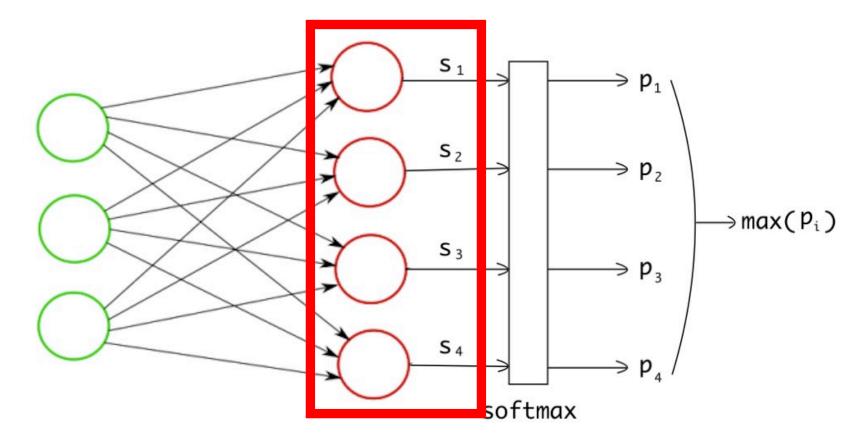


Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

	Scoring Function	
Dog	-3.44	
Cat	1.16	
Boat	-0.81	
Airplane	3.91	

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

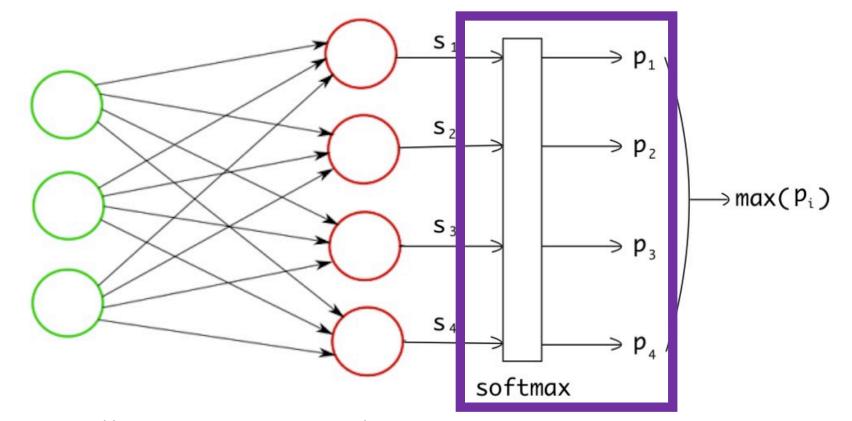


Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

 e^{z_i}

 e^{z_i}

 $\sum_{i=1}^{K} e^{z_j}$

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

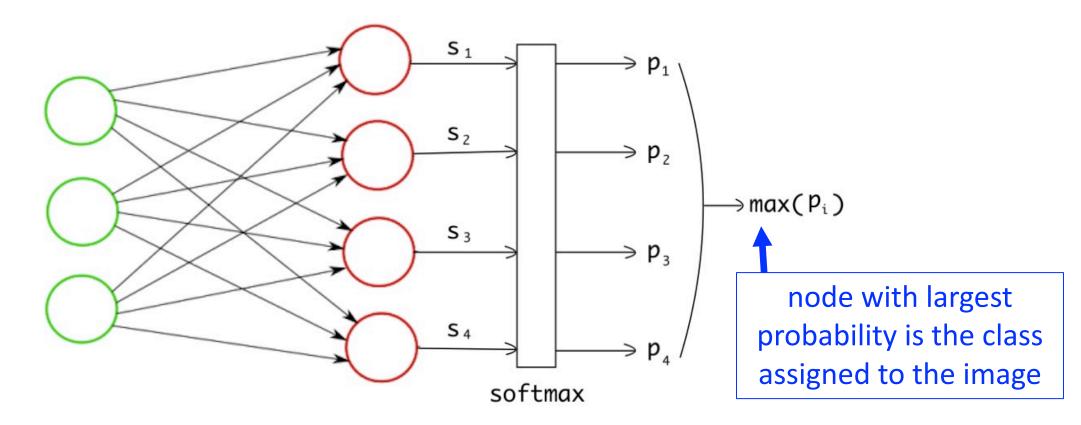


Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax: converts vector of scores into a probability distribution that sums to 1; e.g.,

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Architecture

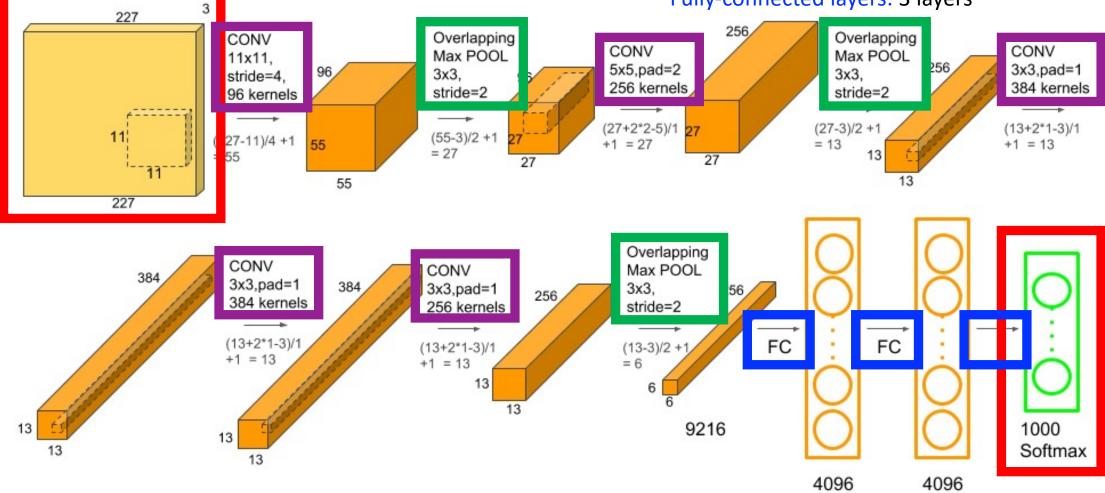
Input: RGB image resized to fixed input size

Output: 1000 class probabilities (sums to 1)

Convolutional layers: 5 layers

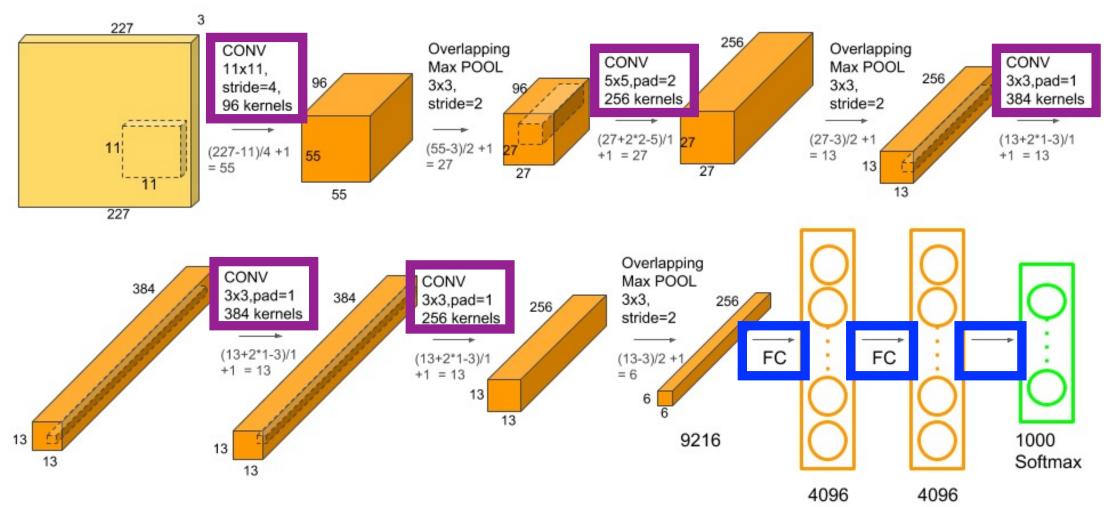
Pooling Layers: 3 layers

Fully-connected layers: 3 layers



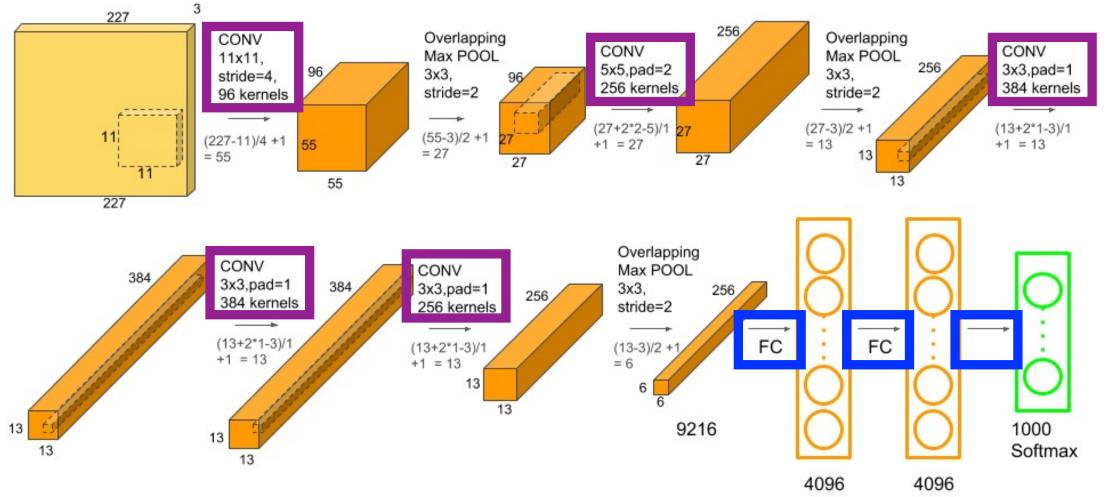
Architecture

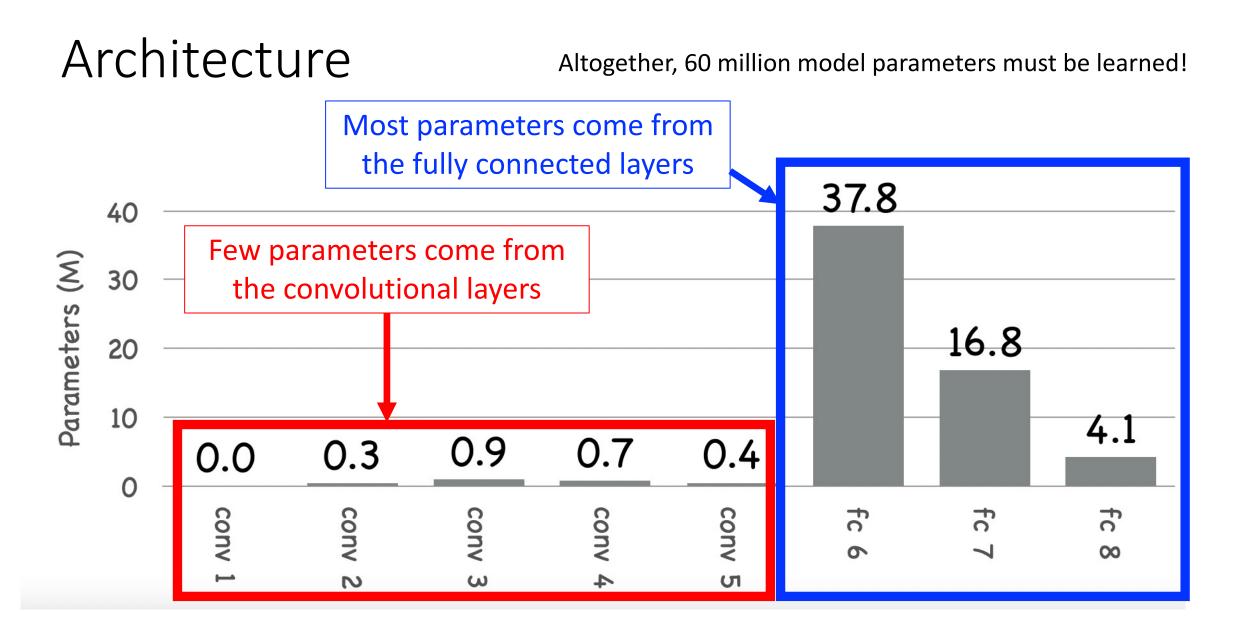
How many layers have model parameters that need to be learned?



Architecture

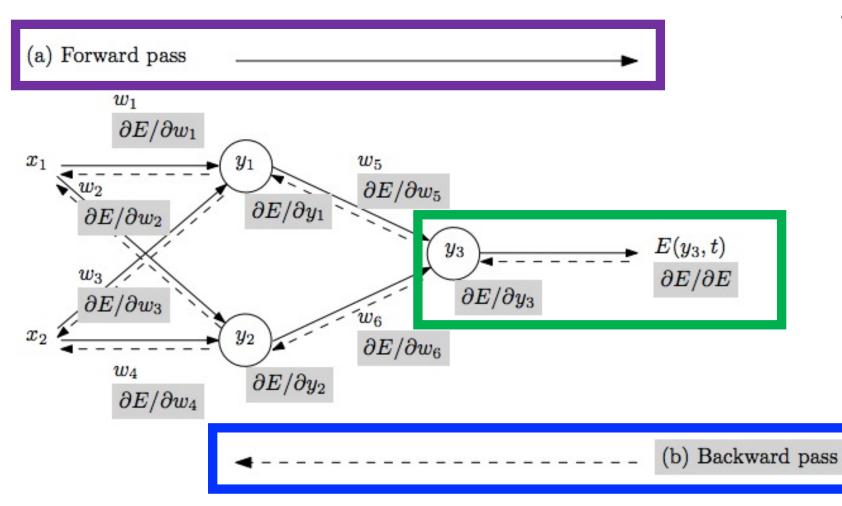
Altogether, 60 million model parameters must be learned!





Source: http://www.philkr.net/cs342/lectures/computer_vision/02.pdf

Algorithm Training: Recall How NNs Learn



- Repeat until stopping criterion met:
 - 1. Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - 4. Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Algorithm Training

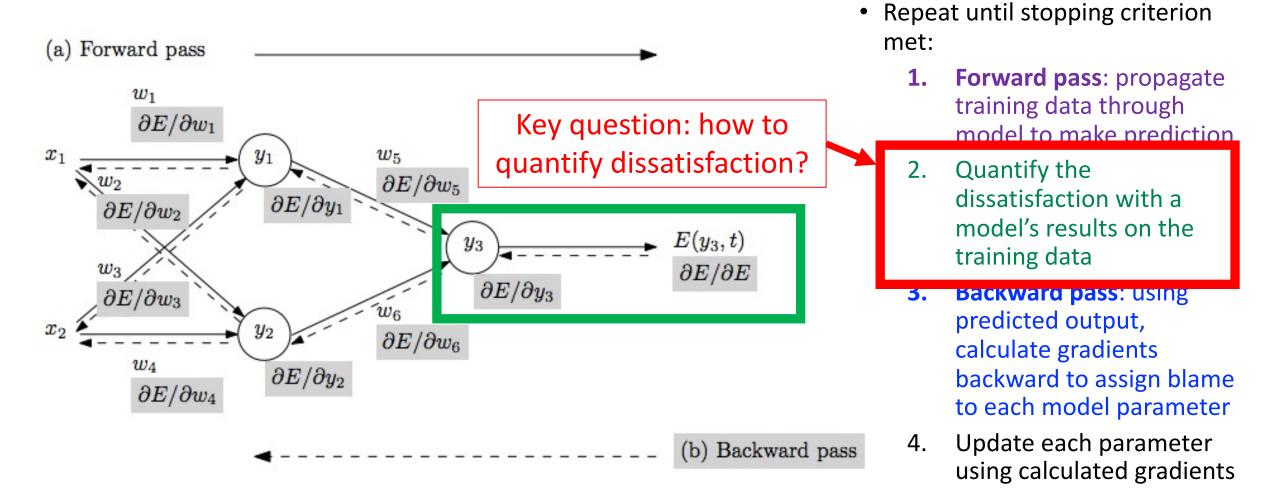


Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Measure distance between predicted and true class distribution for each example

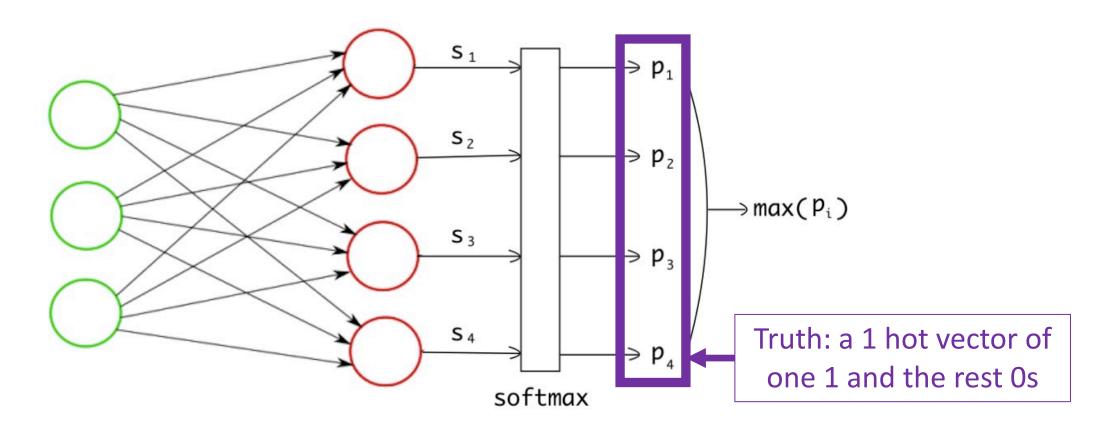
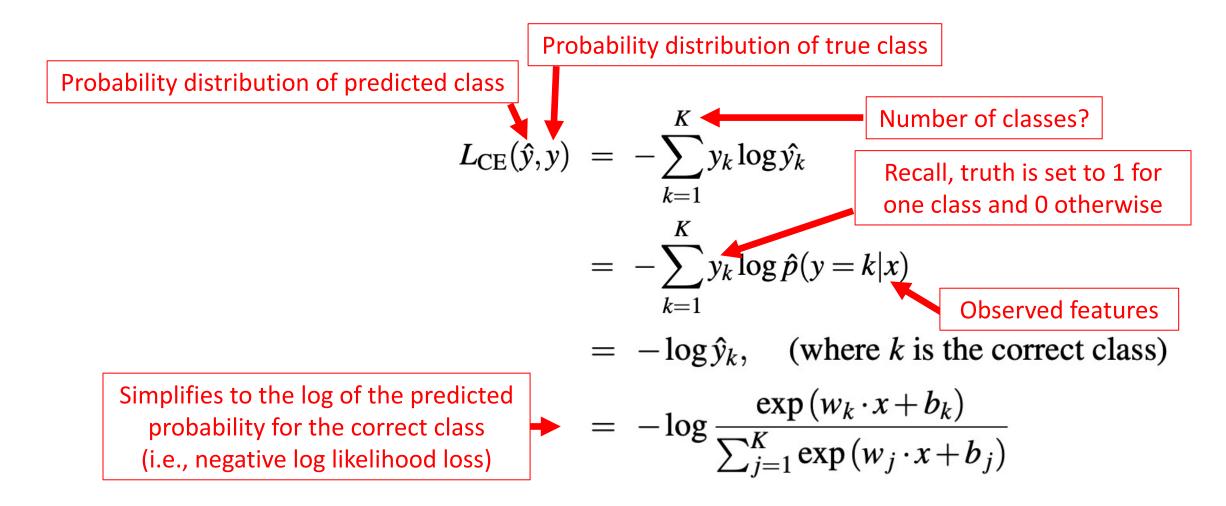
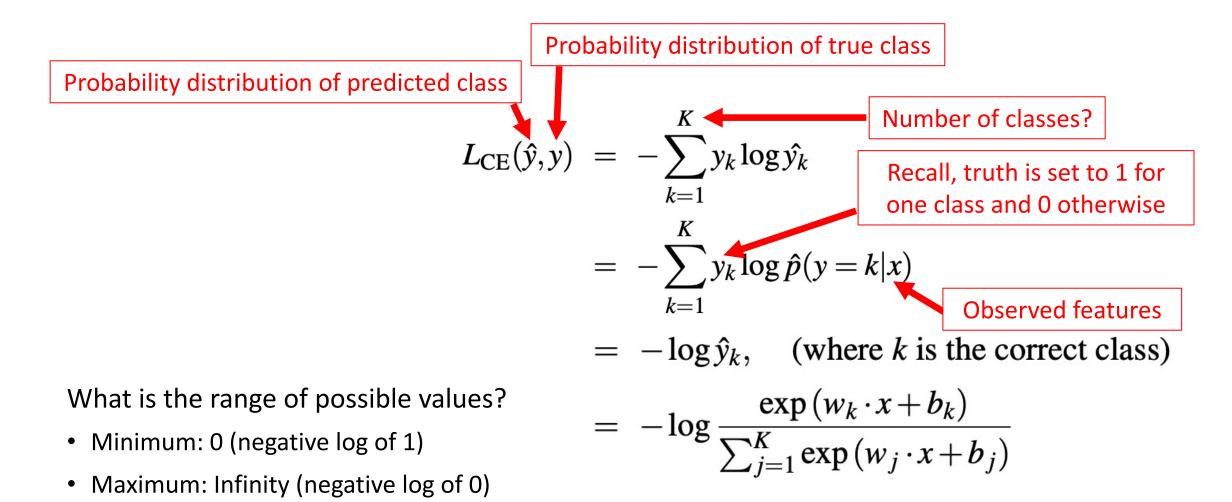


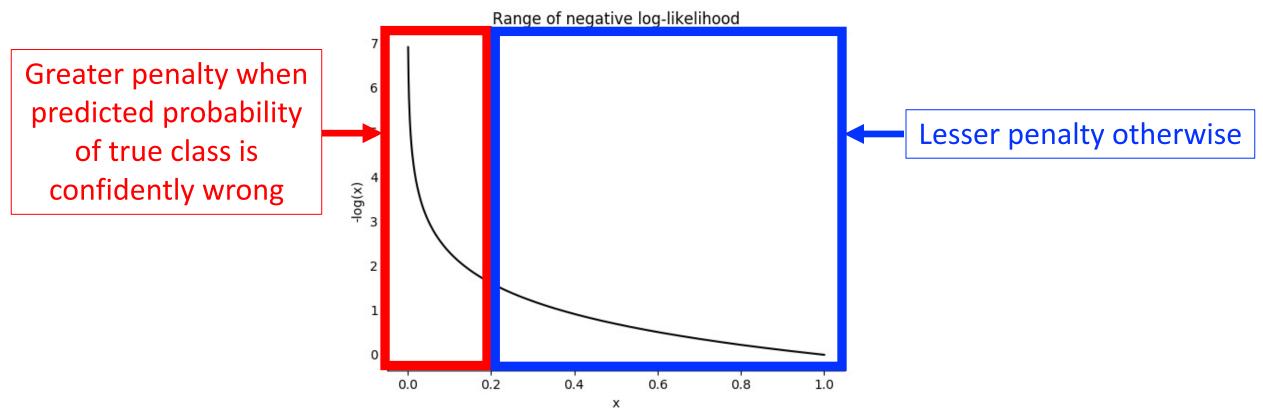
Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede



Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf



Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf



What is the range of possible values?

- Minimum: 0 (negative log of 1)
- Maximum: Infinity (negative log of 0)

 $= -\log \frac{\exp(w_k \cdot x + b_k)}{\sum_{j=1}^{K} \exp(w_j \cdot x + b_j)}$

Figure source: https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

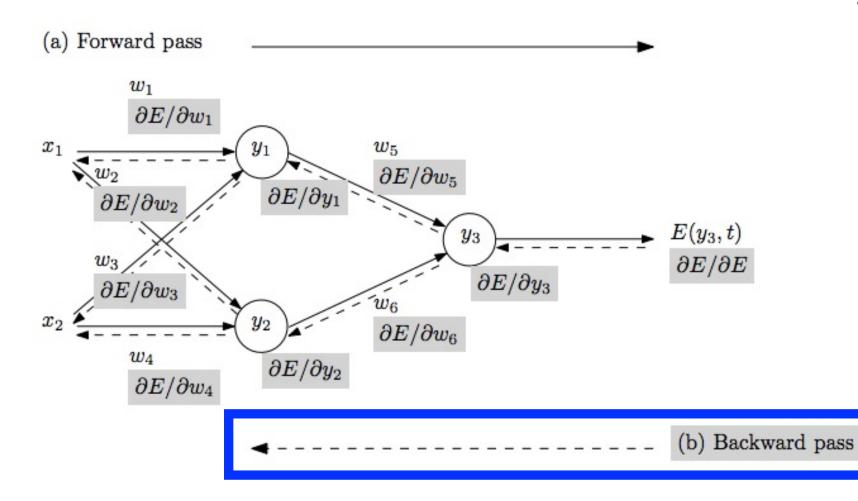
e.g., What would be the loss for this example if the true class label is cat?

 $= -\log \hat{y}_k$, (where k is the correct class)

 $= -\log(0.0596) = 2.82$

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Algorithm Training: Challenge



- Repeat until stopping criterion met:
 - Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - 4. Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Algorithm Training: Challenge Is Overfitting

• Idea: which is a better model to separate blue from red: the green or black line?

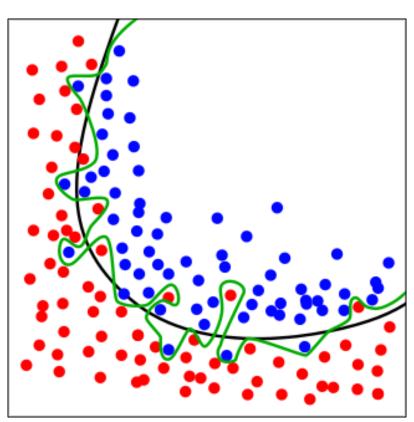
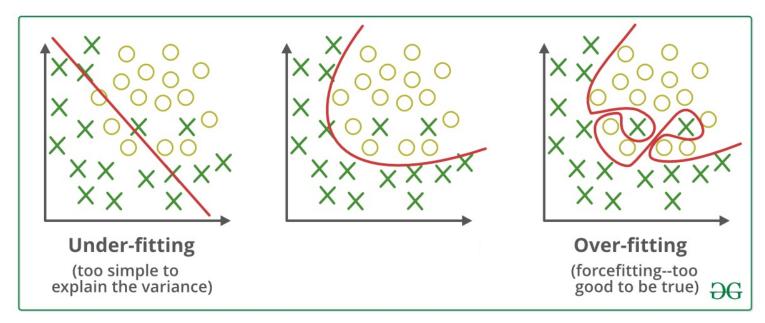


Figure source: https://towardsdatascience.com/underfitting-andoverfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

Algorithm Training: Challenge Is Overfitting

• Overfitting is risk for models with larger representational capacity (i.e., # of parameters); AlexNet has 60 million parameters!

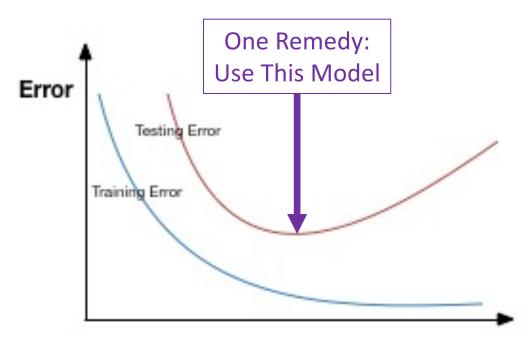


• Model learns to model **noise!** What would cause noise in a dataset?

Figure source: https://towardsdatascience.com/underfitting-andoverfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

Algorithm Training: Challenge Is Overfitting

- Overfitting is risk for models with larger representational capacity (i.e., # of parameters); AlexNet has 60 million parameters!
- How to detect overfitting: plot error/loss for models tested on training data and test data
 - What happens to training data error as number of training steps increases?
 - Error shrinks
 - What happens to test data error as number of training steps increases?
 - Error shrinks and then grows
 - Why does train error *shrink* and test error *grow*?
 - The model is learning to model *noise* in the training data (i.e., "overfit")! Models capturing noise perform well on training data while generalizing poorly to new test data

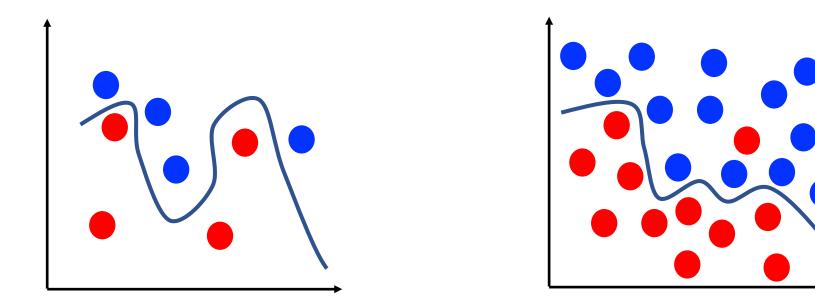


Training steps

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

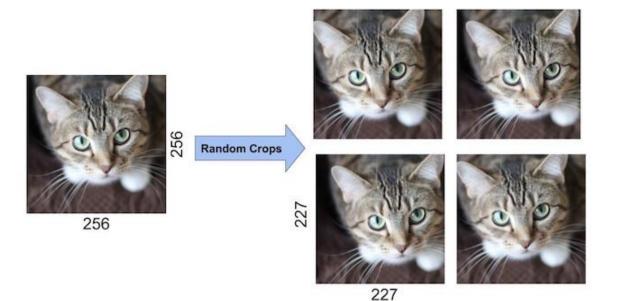
AlexNet Remedies for Overfitting

- Overfitting is risk for models with larger representational capacity (i.e., # of parameters); AlexNet has 60 million parameters!
 - 1. Data augmentation: add more training data; e.g., intuitively,



AlexNet Remedies for Overfitting

- Overfitting is risk for models with larger representational capacity (i.e., # of parameters); AlexNet has 60 million parameters!
 - 1. Data augmentation
 - 1. Random patches and their mirror images (2048x more data)
 - 2. Adjust RGB channels (using PCA to add multiples of principal components)



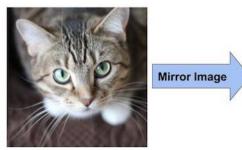


Figure Source: https://learnopencv.com/understanding-alexnet/

AlexNet Remedies for Overfitting

- Overfitting is risk for models with larger representational capacity (i.e., # of parameters); AlexNet has 60 million parameters!
 - 1. Data augmentation
 - 1. Random patches and their mirror images (2048x more data)
 - 2. Adjust RGB channels (using PCA to add multiples of principal components)
 - 2. Dropout (50% of nodes for first two fully connected layers); mimics ensembles by learning to solve same problem with different subnetworks

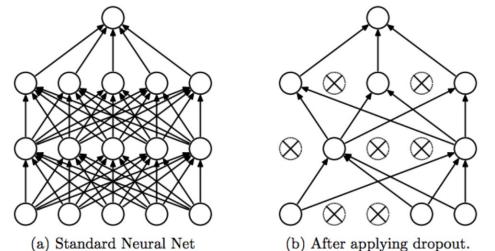
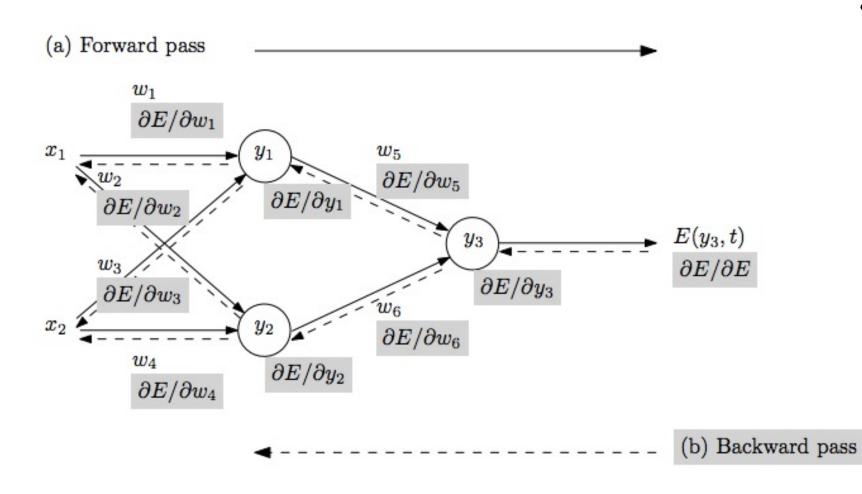


Figure Source: Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. "Dropout: a simple way to prevent neural networks from overfitting." JMLR, 2014.

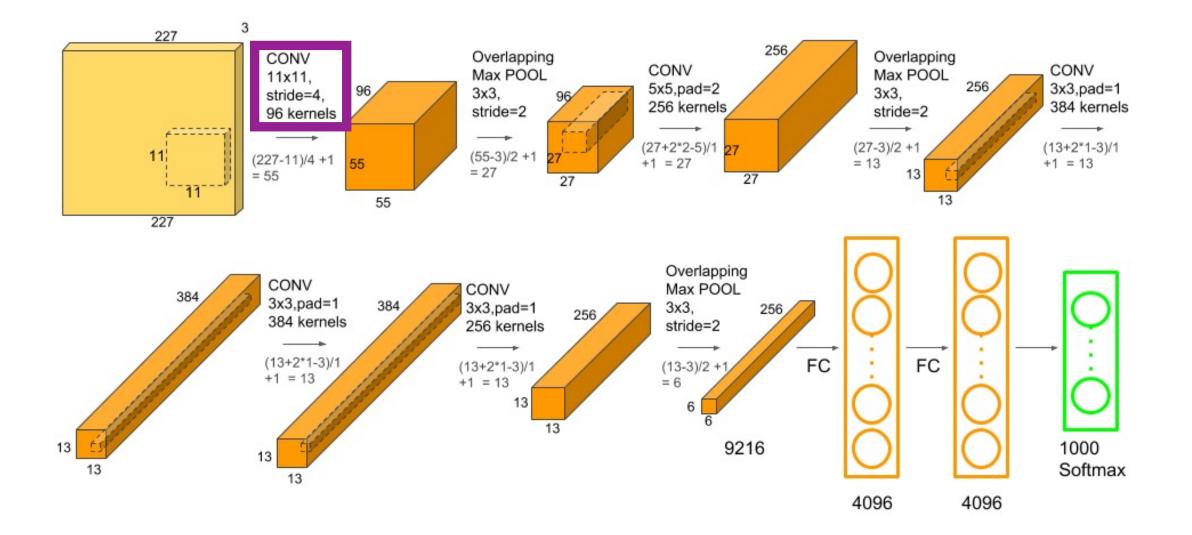
Algorithm Training: 90 Epochs on ImageNet



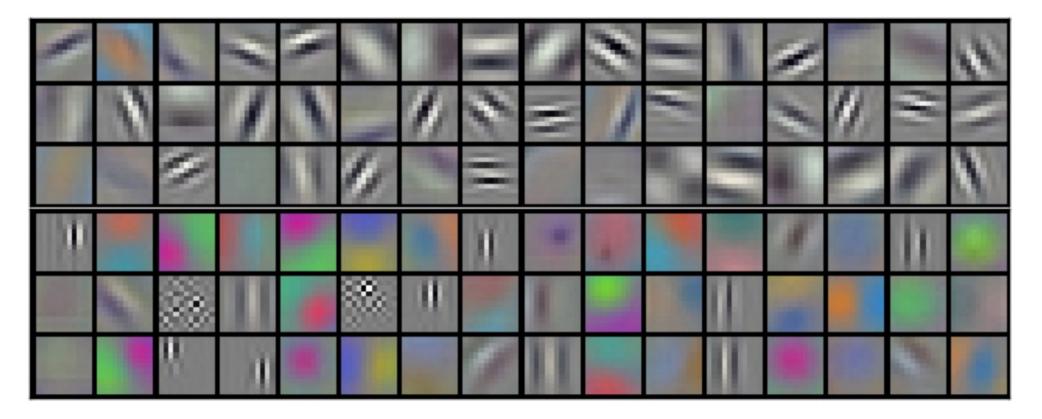
- Repeat until stopping criterion met:
 - Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - 3. Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - 4. Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

AlexNet: Inspecting What It Learned



AlexNet: Inspecting What It Learned (96 Filters)



Model learned filters that select based on frequency, orientation, and color!

Object Recognition: Today's Topics

- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

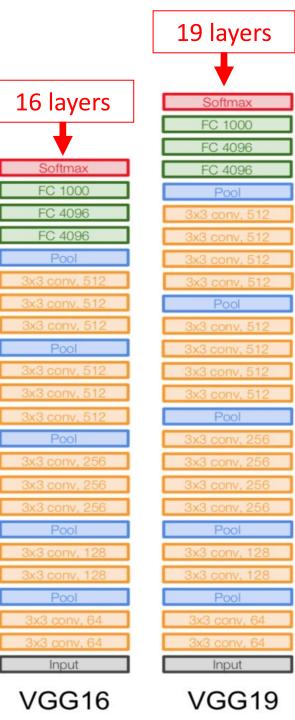
Why VGGNet?

VGG stands for the **Visual Geometry Group (VGG)** at University of Oxford where the authors were based \bigcirc

Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." International Conference on Learning Representations (ICLR), 2015.

Key Novelty: Deeper Does Better

* Number of layers with learnable model parameters between input and output layer (i.e., excludes pooling layers)



Key Novelty: Deeper Does Better



	7.3% top-5		
7.7% top-5	error		
error	Softmax		
	FC 1000		
•	FC 1000		
Softmax	FC 4096		
FC 1000	Pool		
FC 4096	3x3 conv, 512		
FC 4096	3x3 conv, 512		
Pool	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	Pool		
3x3 conv, 512	3x3 conv, 512		
Pool	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	Pool		
Pool	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
Pool	Pool		
3x3 conv, 128	3x3 conv, 128		
3x3 conv, 128	3x3 conv, 128		
Pool	Pool		
3x3 conv, 64	3x3 conv, 64		
3x3 conv, 64	3x3 conv, 64		
Input	Input		

VGG19

VGG16

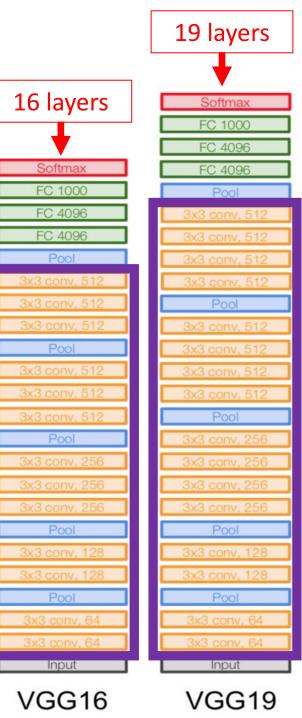
Key Novelty: Deeper Does Better

* Number of layers with learnable model parameters between input and output layer (i.e., exclude pooling layers)

Layers with differences

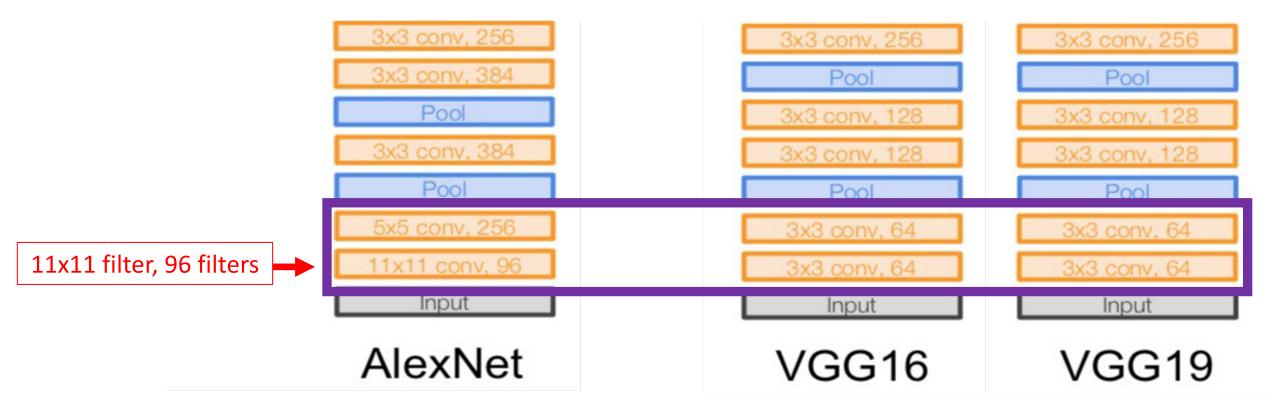
8 layers Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Input

AlexNet



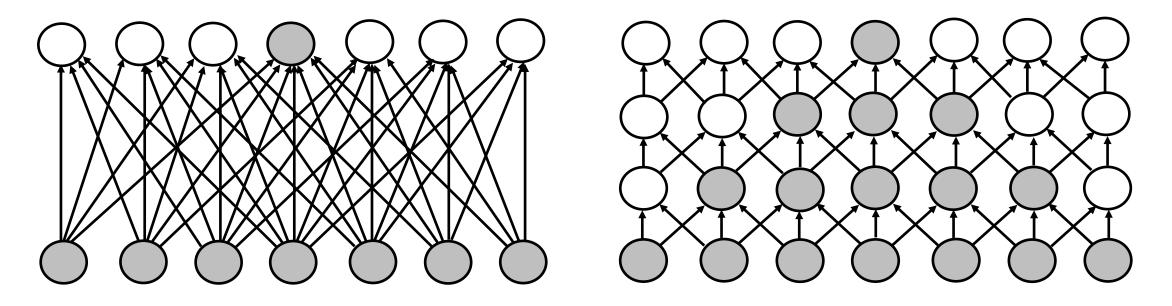
Key Idea: Smaller Convolutional Filters

• Replace larger filter with stack of smaller filters



Key Idea: Smaller Convolutional Filters

• Replace larger filter with stack of smaller filters; e.g., replace 7x7 with three 3x3s



- Benefits:
 - More discriminative classifier since more non-linear rectifications: 3 vs 1
 - Reduces # of parameters: multiple of 27 (3 x 3²) parameters vs 49 (7 x 7) parameters

https://www.deeplearningbook.org/contents/convnets.html

Algorithm Training (follows AlexNet)

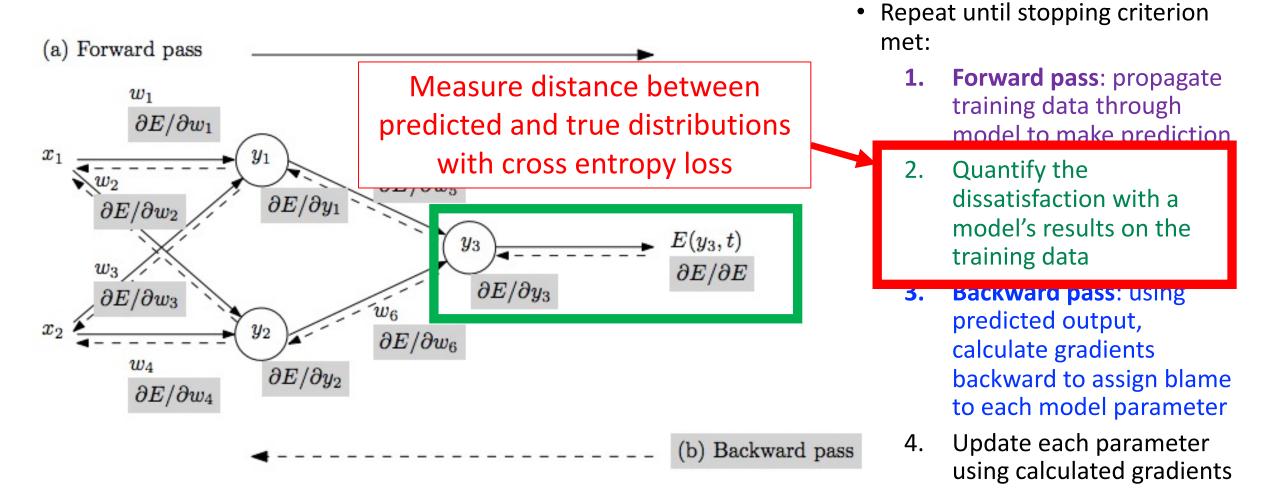
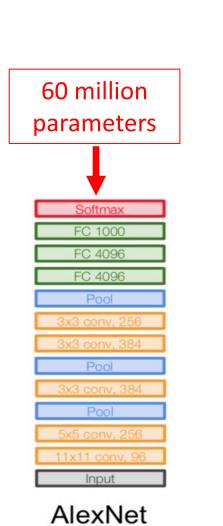


Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Algorithm Training (follows AlexNet)

- Strategies to mitigate overfitting
 - 1. Data augmentation
 - 1. Random patches and their mirror images (2048x more data)
 - 2. Adjust RGB channels (using PCA to add multiples of principal components)
 - 2. Dropout (50% of nodes for first two fully connected layers); mimics ensembles by learning to solve same problem with different subnetworks

VGG Limitation: Models Are Large!

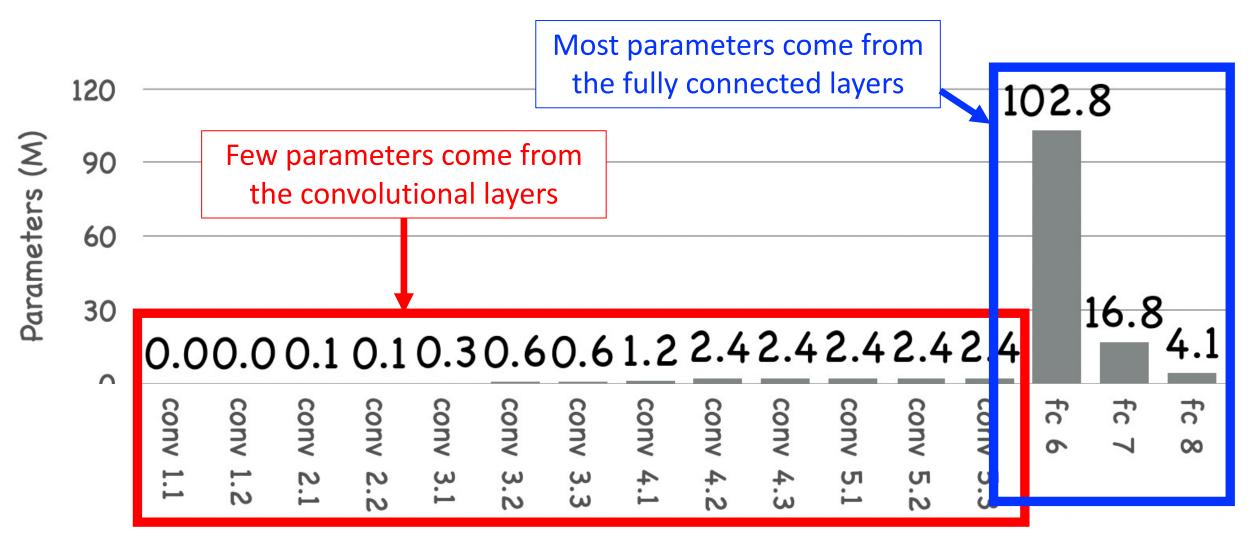


	144 million		
138 million	parameters		
oarameters	Softmax		
	FC 1000		
Orthonor	FC 4096		
Softmax	FC 4096		
FC 1000	Pool		
FC 4096	3x3 conv, 512		
FC 4096	3x3 conv, 512		
Pool	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	Pool		
3x3 conv, 512	3x3 conv, 512		
Pool	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	3x3 conv, 512		
3x3 conv, 512	Pool		
Pool	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
3x3 conv, 256	3x3 conv, 256		
Pool	Pool		
3x3 conv, 128	3x3 conv, 128		
3x3 conv, 128	3x3 conv, 128		
Pool	Pool		
3x3 conv, 64	3x3 conv, 64		
3x3 conv, 64	3x3 conv, 64		
Input	Input		

VGG19

VGG16

VGG Limitation: Models Are Large (e.g., VGG16)



Source: http://www.philkr.net/cs342/lectures/computer_vision/03.pdf

Object Recognition: Today's Topics

- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

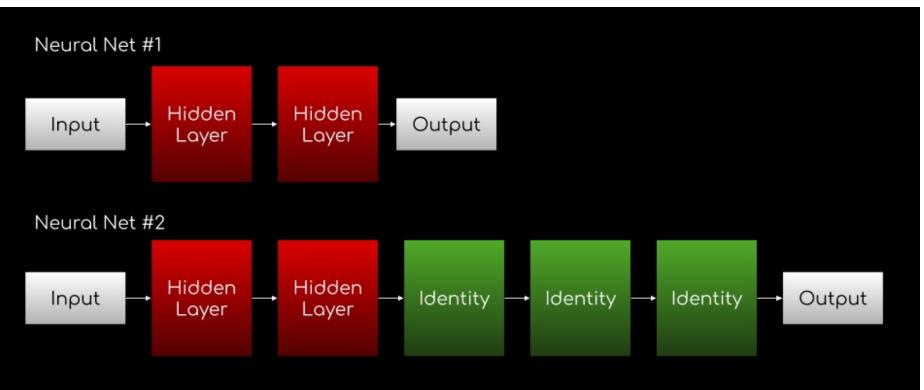
Why ResNet?

"Res" stands for residuals, which is the key novel idea in the proposed algorithm.

Motivating Observation

Idea: a deeper network should perform as good if not better than shallower networks since they can learn the shallower function by simply learning "identity" functions for later layers Observation: adding more layers leads to WORSE results!

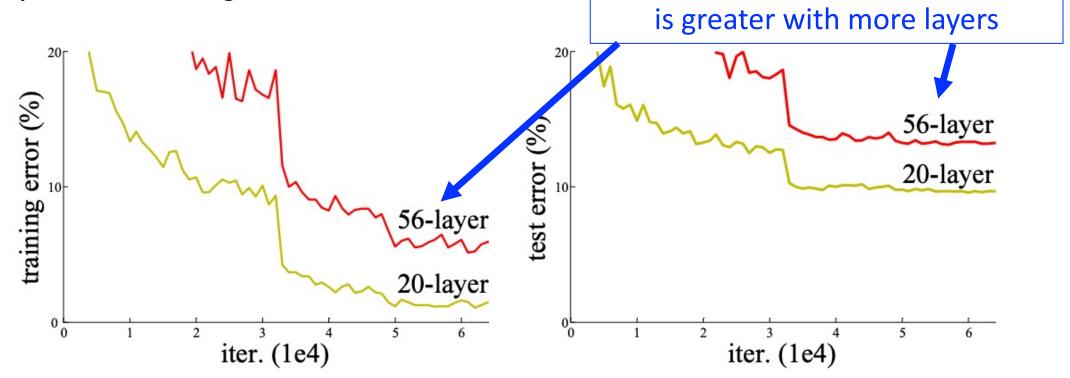
Is the problem overfitting?



Source: https://medium.com/@realmichaelye/intuition-for-resnet-deep-residual-learning-for-image-recognition-39d24d173e78

Motivating Observation

Idea: a deeper network should perform as good if not better than shallower networks since they can learn the shallower function by simply learning "identity" functions for later layers Observation: adding more layers leads to WORSE results! Is the problem overfitting? NO Is the problem overfitting? NO



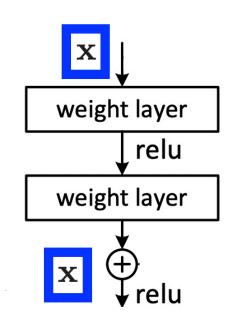
Motivating Observation

Idea: a deeper network should perform as good if not better than shallower networks since they can learn the shallower function by simply learning "identity" functions for later layers Observation: adding more layers leads to WORSE results! Is the problem overfitting? NO

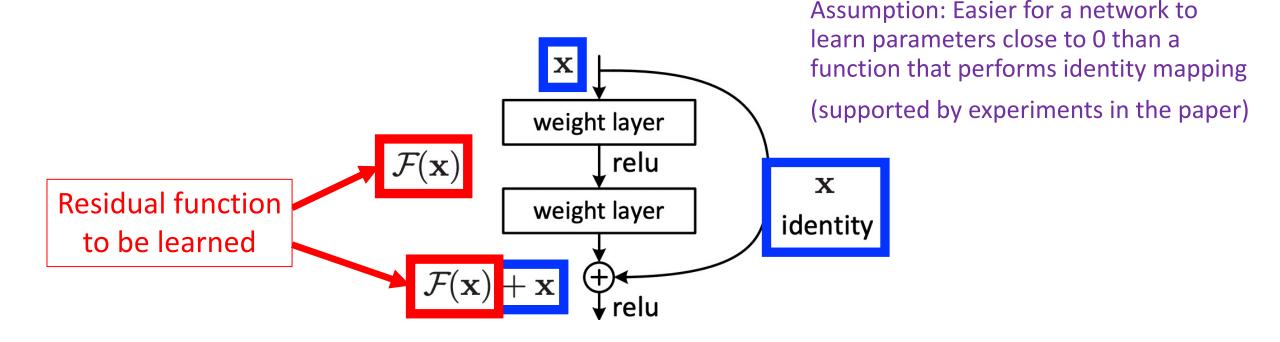
Problem: It is difficult to learn for the algorithm to learn layers of identity mappings

Problem: Difficult to Perform Identity Mapping

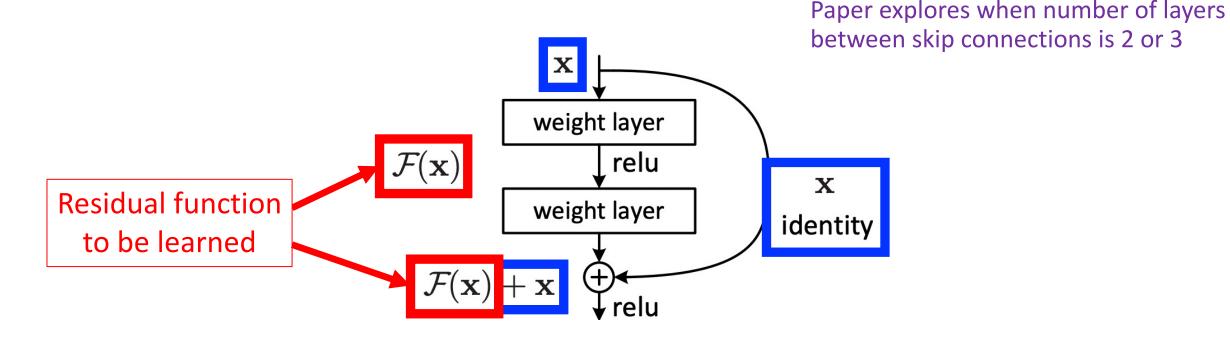
e.g.,



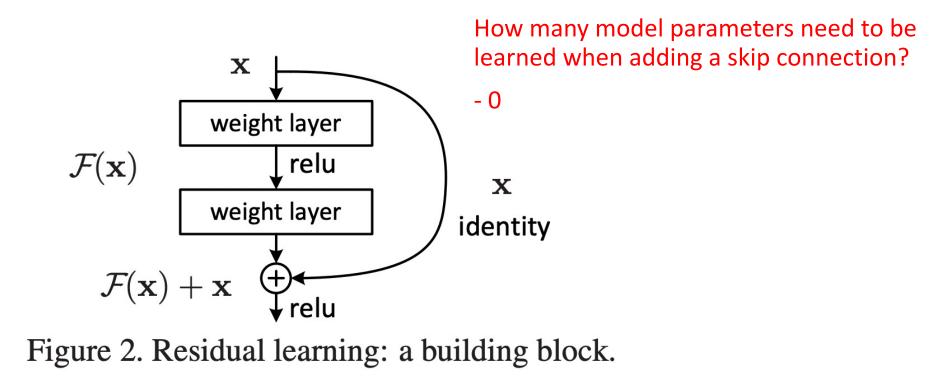
Key Idea: Skip Connections that Perform Identity Mapping



Key Idea: Skip Connections that Perform Identity Mapping

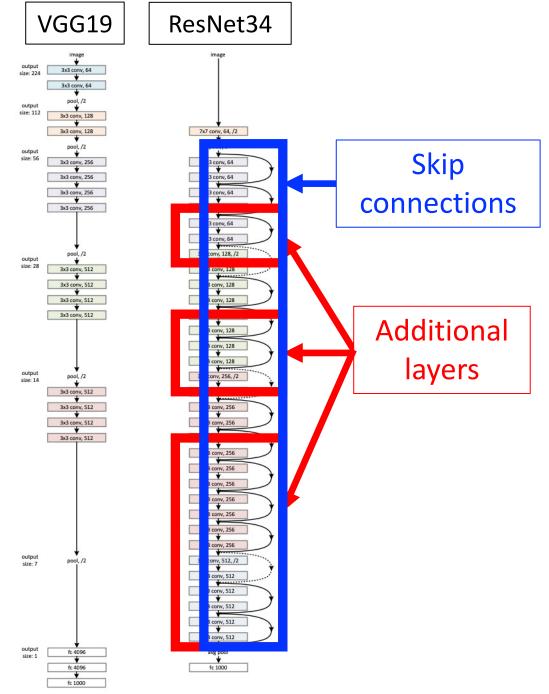


Key Idea: Skip Connections that Perform Identity Mapping



Key Contribution

Deep residual learning framework using skip connections obtains state-of-art performance for the ImageNet object recognition challenge and other challenges by learning deeper models than prior work (18, 34, 50, 101, & 152 layers!)



Algorithm Training (follows AlexNet)

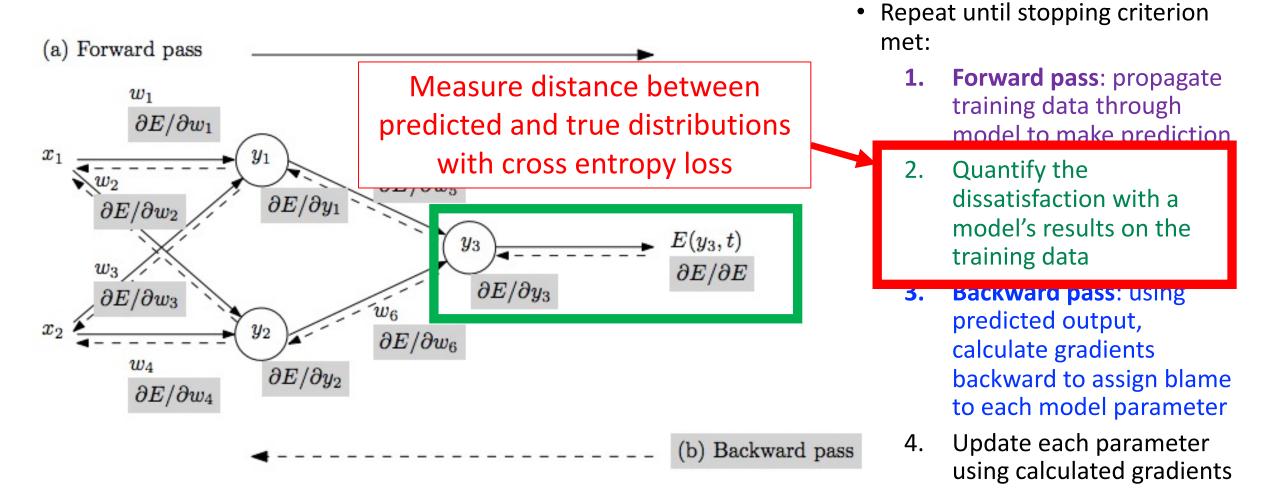


Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Algorithm Training (follows AlexNet)

- Strategy to mitigate overfitting
 - 1. Data augmentation
 - 1. Random patches and their mirror images (2048x more data)
 - 2. Adjust RGB channels (using PCA to add multiples of principal components)

Experimental Results on Validation Set

model	top-1 err.	top-5 err.	
VGG-16 [40]	28.07	9.33	Performance
GoogLeNet [43]	-	9.15	improves with
PReLU-net [12]	24.27	7.38	more layers
ResNet-50	22.85	6.71	
ResNet-101	21.75	6.05	
ResNet-152	21.43	5.71	

ResNet models outperform prior state-of-art models!

Object Recognition: Today's Topics

- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- Discussion

State-of-Art Model Exceeds Human Performance!

Progress of models on ImageNet (Top 5 Error)

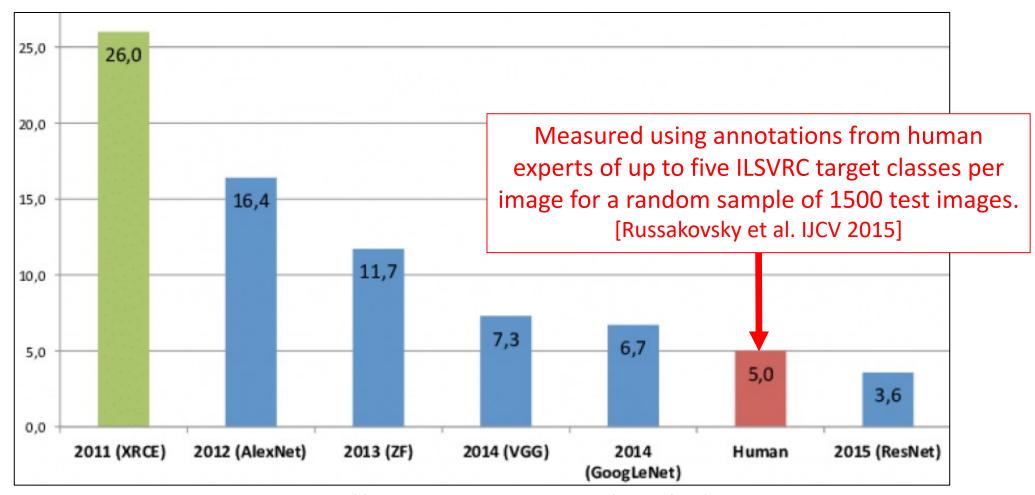


Figure Source: https://www.edge-ai-vision.com/2018/07/deep-learning-in-five-and-a-half-minutes/

State-of-Art? Design Models That Go "Deeper"

Progress of models on ImageNet (Top 5 Error)

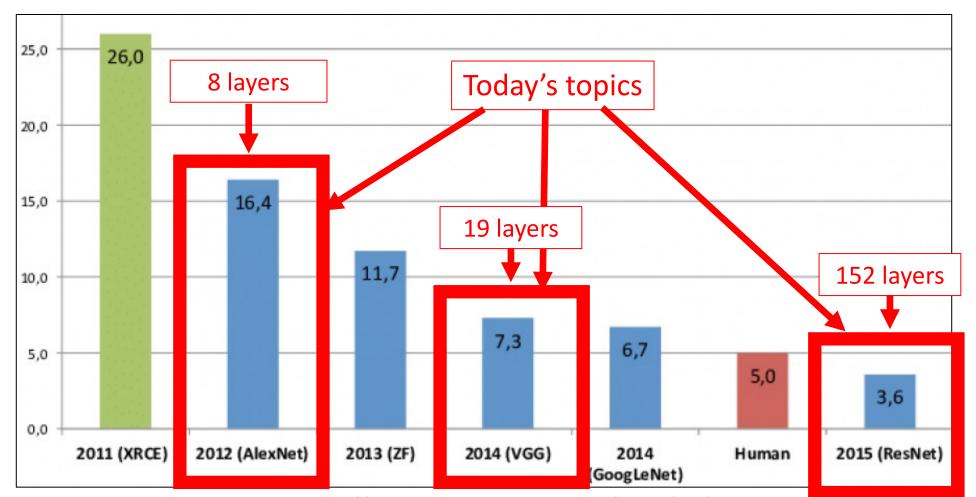
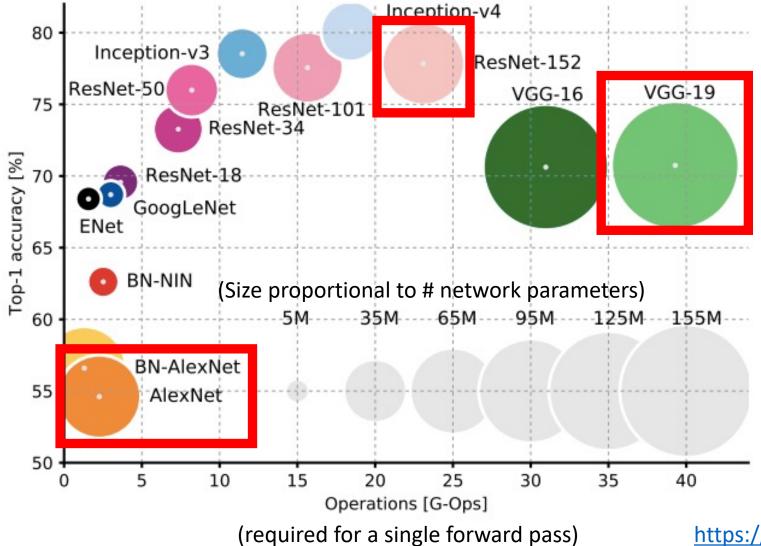


Figure Source: https://www.edge-ai-vision.com/2018/07/deep-learning-in-five-and-a-half-minutes/

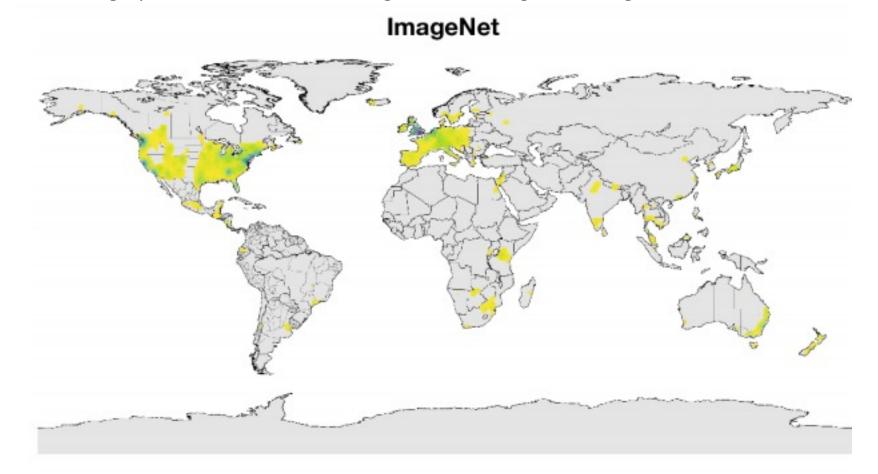
CNN Architectures: Great Start...



https://arxiv.org/pdf/1605.07678.pdf

ImageNet: Great Start...

Geographical distribution of images in the ImageNet using Flickr metadata:



Jieyu Zhao et al. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. 2017.

Group Discussion

• Vote for today's topics in the Google form

Object Recognition: Today's Topics

- ImageNet Challenge Top Performers
- Baseline Model: AlexNet
- VGG
- ResNet
- ResNext
- Discussion

