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Review

• Last lecture:
• Ways of seeing: image and video acquisition
• Evolution of computer vision (before versus after 2012)
• Background of machine learning and neural networks
• Training deep neural networks: hardware & software

• Assignments (Canvas)
• Reading assignment due this Wednesday

• Questions?



Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric 

• Typical Solution: Convolutional Neural Network
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Object Recognition: Image Classification Problem

• Assign an image a label from a set of categories (i.e., multiple choice)
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Object Recognition: Image Classification Problem

• Problem: What object is in the image?

Cat

Umbrella

Apple

Person



Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric 

• Typical Solution: Convolutional Neural Network



Shopping

Take a picture of an object and find where to buy it



Photo Organization

Demo: https://www.youtube.com/watch?v=aBqmWUalnho
(start video at 1:46)



Image Search



Assistive Technology

Seeing AI Demo: https://www.youtube.com/watch?v=R2mC-NUAmMk



Applications Gone Wrong

• Ethical mistake: people tagged as “gorillas”

• Security risk: people mis-recognized or invisible when wearing special designs

http://www.usatoday.com/story/te
ch/2015/07/01/google-apologizes-
after-photos-identify-black-people-
as-gorillas/29567465/

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://www.theverge.com/2019/4/23/18512472/fool-ai-
surveillance-adversarial-example-yolov2-person-detection



http://www.usatoday.com/story/te
ch/2015/07/01/google-apologizes-
after-photos-identify-black-people-
as-gorillas/29567465/

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://www.theverge.com/2019/4/23/18512472/fool-ai-
surveillance-adversarial-example-yolov2-person-detection

Applications Gone Wrong
1) Why are these mistakes occurring?

2) If you were the CEO providing 
these products, how would you 
respond to these issues?



Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric 

• Typical Solution: Convolutional Neural Network



Algorithm Dataset

Research Until Early 2000s: Typical Approach

Algorithm
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Research Since Early ~2000s: Public Datasets
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Image Source: http://larryzitnick.org/Talks/CVPR15_Dataset.pptx
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Research Since Early ~2000s: Public Datasets

2. Image Collection 3. Human Verification1. Category Selection

Typical steps for creating object recognition datasets:



Caltech-6

http://www.vision.caltech.edu/html-files/archive.html

(1) Six categories selected and 
then (2) students took pictures or 

collected images from the web

http://www.vision.caltech.edu/html-files/archive.html


Caltech-101

Flipped through a dictionary 
and chose 101 categories 
associated with a drawing

Li Fei Fei, Rob Fergus, & Pietro Perona. CVPR 2004.

1. Category Selection



Caltech-101

Flipped through a dictionary 
and chose 101 categories 
associated with a drawing

2. Image Collection

Search for each category

1. Category Selection

Li Fei Fei, Rob Fergus, & Pietro Perona. CVPR 2004.



Caltech-101
1. Category Selection

Flipped through a dictionary 
and chose 101 categories 
associated with a drawing

2. Image Collection

- 2 graduate students reviewed 
& discarded irrelevant images

- Result is  9,144 grayscale 
300x200 pixel images with 45-
400 images per category

3. Human Verification

Search for each category

Li Fei Fei, Rob Fergus, & Pietro Perona. CVPR 2004.



Caltech-101
Two random samples per category 

Dataset location: http://vision.caltech.edu



Caltech-101
Two random samples per category 

Dataset location: http://vision.caltech.edu

Was 15x Larger Than Existing Datasets



Caltech-101
Progress of algorithms charted

Li Fei Fei, Rob Fergus, & Pietro Perona. CVPR 2004.



ImageNet

After creating Caltech-101 and finishing her PhD, Fei-Fei Li 
began her career as an assistant professor creating ImageNet. 

Hear her tell her story:

https://www.youtube.com/watch?v=40riCqvRoMs
(5:44 – 9:35)



ImageNet
1. Category Selection

~10% of concepts (synonym 
sets) in WordNet taxonomy

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, & Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.

e.g., two root-to-leaf branches of ImageNet 
with nine examples for each “synonym set”



ImageNet
1. Category Selection 2. Image Collection

Query expansion:
- Augment queries
- Translate queries to 
different languages

(& more search engines)~10% of concepts (synonym 
sets) in WordNet taxonomy

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, & Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.



ImageNet
1. Category Selection 2. Image Collection 3. Human Verification

Query expansion:
- Augment queries
- Translate queries to 
different languages

(& more search engines)~10% of concepts (synonym 
sets) in WordNet taxonomy

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, & Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.

- Humans verify if image 
contains queried object

- Use majority vote decision 
from multiple humans to 
support high quality results 

Key Insight: use 
crowdsourcing to recruit 

many people to verify images 



ImageNet Task

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, & Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.

Definition of the target synonym set with link to Wikipedia. 



ImageNet Workers

Image cleaning strategies
- Users verify if image contains 

object, regardless of 
occlusions, # of objects, & 
scene clutter) after shown set 
of candidate images and 
definition of the target synset
(with link to Wikipedia). 

- Label redundancy: collect 
labels from independent 
users until a pre-specified 
confidence threshold is 
reached

3. Human Verification

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, & Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009.



Research Since Early ~2000s: Public Datasets
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e.g., 

Trend: build bigger datasets



ImageNet Challenge

Winner: highest scoring method on the hidden test set 



ImageNet Challenge with Evaluation Server



ImageNet Challenge Community Engagement

Source: https://image-net.org/static_files/files/ILSVRC2017_overview.pdf

• 727 entries (plus an entry 
that famously was kicked 
out in 2015 for cheating 
from Baidu)

• Labor cost ~$110 million: 
assuming 3 people 
contribute to each entry 
and $50k cost per person



ImageNet Impact Recognized 

“Suddenly people started to pay attention, not just within the 
AI community but across the technology industry as a whole.”
- Economist

“From not working to neural networking". The Economist. 25 June 2016. Retrieved July 15, 2021.

https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not


ImageNet Impact Recognized 

https://syncedreview.com/2019/06/18/cvpr-2019-attracts-9k-
attendees-best-papers-announced-imagenet-honoured-10-years-later/
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ImageNet Impact Recognized 

“In 2009, ImageNet was not the most mainstream 
work, but all of us who did this project believed 
that it would have a big impact, so we put in a lot 
of efforts. One of the revelations it gives me is 
that you don’t have to do the most popular things, 
but do what you believe will have an impact.”

-First author, Jia Deng

https://syncedreview.com/2019/06/18/cvpr-2019-attracts-9k-
attendees-best-papers-announced-imagenet-honoured-10-years-later/

ImageNetComputer 
Vision 

2009
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Award
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40

Trend Started With ImageNet: Progress Charted 
by Progress on Community Shared Datasets



Trend Started With ImageNet: Progress Charted 
by Progress on Community Shared Datasets

Why have dataset challenges?

• Provide “fair” comparison between algorithms

• Create a community around a shared goal



Trend Started With ImageNet: Progress Charted 
by Progress on Community Shared Datasets

How dataset challenges often are designed:

1. Publicly-shared train (and validation) dataset with “ground truth” labels

2. Publicly-shared test dataset (“ground truth” labels are hidden)

3. Metrics for evaluating algorithm-generated results on the test set



Many Public Datasets Available; e.g.,

• Google Dataset Search
• Amazon’s AWS datasets
• Kaggle datasets
• Wikipedia’s list
• UC Irvine Machine Learning Repository
• Quora.com
• Reddit
• Dataportals.org
• Opendatamonitor.eu
• Quandl.com

https://toolbox.google.com/datasetsearch
https://registry.opendata.aws/
https://www.kaggle.com/datasets?utm_medium=paid&utm_source=google.com&utm_campaign=datasets+houseads&gclid=CjwKCAjw5ZPcBRBkEiwA-avvk6JRO6FPQD1IXBS64jDWm5JgItdhEgqg384y5koDY4CyGW-OX4ws1xoCXbwQAvD_BwE&dclid=CLfZq4WikN0CFRwCrQYdqY4HOQ
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research


Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric

• Typical Solution: Convolutional Neural Network



Prediction Model

Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

Apply model on “ ” to measure generalization error

? ? ?

Input:

Label:



Evaluation Metric for ImageNet Challenge
Assumption: 1 ground truth label per image

Error is average over all test images using this rule per image:
* 0 if any predictions match the ground truth
* 1 otherwise

e.g., top 5 error

Source: https://image-net.org/static_files/files/ILSVRC2017_overview.pdf



Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric

• Typical Solution: Convolutional Neural Network



Rise of Convolutional Neural Networks (CNNs)



Fully-Connected Neural Networks vs CNNs

Rather than have each node provide 
input to each node in the next layer… 

each node receives input only from a 
small neighborhood in previous layer 
(and there is parameter sharing)

Figure Source: https://qph.fs.quoracdn.net/main-qimg-2e1f0071ca9878f7719ed0ea8aeb386d

Fully-connected:

Convolutional:



Fully-Connected Neural Networks vs CNNs

CNNs dramatically reduce 
number of model parameters!

Figure Source: https://qph.fs.quoracdn.net/main-qimg-2e1f0071ca9878f7719ed0ea8aeb386d

Fully-connected:

Convolutional:



CNN Origins
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understand how mammalian 
vision system works



Inspiration: Biology

Insights come from Nobel Prize winning work by Hubel & Weisel to 
understand how mammalian vision system works

Key Observation: cells are 
organized as a hierarchy of feature 
detectors, with higher level 
features responding to patterns of 
activation in lower level cells

Source: https://bruceoutdoors.files.wordpress.com/2017/08/hubel.jpg



LeNet: Core Components of Modern CNNs

Figure Credit: https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf
Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998

How many outputs?

Multi-layer Perceptron (MLP)

Extracts useful features to pass to a MLP using: 
• Convolutional layers 
• Pooling Layers



CNN: Convolutional Layers

Figure Credit: https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf
Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998



Convolutional Layer: Applies Linear Filter

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Input Filter 
(aka – Kernel)

Feature 
Map

Way to Interpret 
Neural Network



Image Filtering

• A filter specifies the function for how to combine neighbors’ values

• Applying a filter to an image means computing a function of the local 
neighborhood for each pixel in the image



Image Filtering

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

Image:

Slides filter over the image and computes dot products

Filtered 
Result:
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Image Filtering

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

Image:

Slides filter over the image and computes dot products

Filtered 
Result:



Image Filtering: Toy Example

? ? ?
? ? ?
? ? ?

Image Feature MapFilter

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

Dot Product = 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*1 + 0*0 + 0*0 + 1*1
Dot Product = 4



1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

Image Filtering: Toy Example

Image Feature MapFilter

4 3 ?
? ? ?
? ? ?
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Image Filtering: Toy Example

Image Feature MapFilter

4 3 4
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Image Filtering: Toy Example

Image Feature MapFilter

4 3 4
2 ? ?
? ? ?
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Image Filtering: Toy Example

Image Feature MapFilter
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1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

Image Filtering: Toy Example

Image Feature MapFilter

4 3 4
2 4 3
2 3 4



Image Filter: What Does It Do? (Where’s Waldo?)

Filter



Image Filter: What Does It Do?

• e.g.,

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Filter Visualization of Filter



Image Filter: What Does It Do?

• e.g.,
Filter Overlaid on Image

Image Filter

Weighted Sum = ?

Weighted Sum = (50x30) + (20x30) +
(50x30) + (50x3) + (50x30)

Weighted Sum = 6600 (Large Number!!)

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Image Filter: What Does It Do?

• e.g.,
Filter Overlaid on Image

Weighted Sum = ?

Weighted Sum = 0 (Small Number!!)

Image Filter

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Image Filter: What Does It Do?

• e.g.,

Filter Overlaid on Image (Small Response!)Filter Overlaid on Image (Big Response!)

This Filter is a Curve Detector!

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Different Filters Detect Different Features
Filter Feature Map Filter Feature Map

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/



Different Filters Detect Different Features

Demo: http://beej.us/blog/data/convolution-image-processing/



Convolutional Layer: Applies Linear Filter

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Input Filter 
(aka – Kernel)

Feature 
Map

• Note, previous examples show the “cross-correlation” function
• Many neural network libraries use “cross correlation” interchangeably 

with “convolution”; for mathematicians, these are technically different

Way to Interpret 
Neural Network



Convolutional Layer: Applies Linear Filter

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Input Filter 
(aka – Kernel)

Feature 
Map

Way to Interpret 
Neural Network



• For shown example, how many weights must be learned?
• 4 (red, blue, yellow, and green values)

• If we instead used a fully connected layer, how many   
weights would need to be learned?

• 36 (9 turquoise nodes x 4 magenta nodes)

• For shown example, how many parameters must be learned?
• 5 (4 weights + 1 bias)

• If we instead used a fully connected layer, how many 
parameters would need to be learned?

• 40 (36 weights + 4 bias)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Convolutional Layer: Parameters to Learn



Convolutional Layer: Parameters to Learn

• Parameter sharing significantly reduces 
number of weights to learn and so 
storage requirements

• Sparse (rather than full) connectivity 
also significantly reduces the number of 
computational operations required

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Convolutional Layer: Implementation Details

• Padding: add values at the image boundaries to preserve image size

Image Credit: https://software.intel.com/en-us/node/586159



Convolutional Layer: Implementation Details

• Stride: how many steps taken spatially before applying a filter
• e.g., 2x2

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Image Filter Feature Map

4 4

2 4



Convolutional Layer: Implementation Details

• Demo:
• https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html


Convolutional Layer: Introduce Non-Linearity

Apply activation function to number

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf



Convolutional Layer

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf



Convolutional Layer

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf



Convolutional Layer

We stack these 
up to get a 
“new image” of 
size 28x28x6!

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf



Convolutional Layer: Parameters to Learn
Parameters: bank of filters and biases used to create the activation maps (aka – feature maps)

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf



Convolutional Neural Networks (CNNs)

Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf

Can then stack a sequence of convolution layers, interspersed with activation functions:

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf


Slide Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf

Convolutional Neural Networks (CNNs)
Can then stack a sequence of convolution layers, interspersed with activation functions:

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf


Convolutional Neural Networks (CNNs)
Can then stack a sequence of convolution layers, interspersed with activation functions:

Stacking many convolutional layers leads to learning patterns in increasingly larger 
regions of the input (e.g., pixel) space.

https://www.deeplearningbook.org/contents/convnets.html



CNN: Pooling Layers

Figure Credit: https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf
Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

http://cs231n.github.io/convolutional-networks/#pool

? ?
? ?
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• Max-pooling: partitions input into a set of non-overlapping rectangles 
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Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

http://cs231n.github.io/convolutional-networks/#pool

?



Pooling Layer: Summarizes Neighborhood
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and outputs the maximum value for each chunk
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Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

http://cs231n.github.io/convolutional-networks/#pool



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk
• Average-pooling: partitions input into a set of non-overlapping 

rectangles and outputs the average value for each chunk

http://cs231n.github.io/convolutional-networks/#pool

? ?

? ?

Avg



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk
• Average-pooling: partitions input into a set of non-overlapping 

rectangles and outputs the average value for each chunk

http://cs231n.github.io/convolutional-networks/#pool

3.25 5.25

2 2

Avg



Pooling Layer: Benefits

• How many parameters must be learned?
• None

• Benefits?
• Reduces memory requirements
• Reduces computational requirements



Core Components of Modern CNNs

Figure Credit: https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf
Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998



Object Recognition: Today’s Topics

• Problem

• Applications

• Datasets

• Evaluation metric

• Typical Solution: Convolutional Neural Network




