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Review

* Last week:

* Motivation
Efficient learning: curriculum learning
Efficient learning: active learning
Efficient learning: other considerations
Faculty course questionnaire

* Assignments (Canvas):
* Final project presentations due today
* Final project report due next week

e Questions?



Today’s Topics

* Definition
* Motivation
* Background: “Markov decision processes” and “policies”

* Method: Policy Gradients for Pong



Today’s Topics

e Definition



Definition

Agent takes actions in an environment to maximize the total reward

reward

~

Environment

Figure Credit: https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12



Intuition: Learning to Walk by Trial-and Error




Reinforcement Learning in Context

Supervised
Learning

Deep
Learning

Reinforcement
Learning

Unsupervised
Learning

More information than
unsupervised learning via
rewards but less information
than supervised learning’s labels

http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf



Today’s Topics

* Motivation



Robotics: Learning to Walk

Learning to Walk in 20 Minutes

Russ Tedrake Teresa Weirui Zhang H. Sebastian Seung
Brain & Cognitive Sciences Mechanical Engineering Howard Hughes Medical Institute
Center for Bits and Atoms Department Brain & Cognitive Sciences
Massachusetts Inst. of Technology University of California, Berkeley Massachusetts Inst. of Technology
Cambridge, MA 02139 Berkeley, CA 94270 Cambridge, MA 02139

russt@csail.mit.edu resalberkeley.edu seung@mit .edu




Simulation: Learning to Walk

Demo: https://www.youtube.com/watch?v=gn4nRCCOTwWQ



Robotics: Learning to Drive

Autonomous reinforcement learning on raw visual
input data 1n a real world application

Sascha Lange, Martin Riedmiller Arne Voigtlander
Department of Computer Science Shoogee GmbH & Co. KG
Albert-Ludwigs-Universitédt Freiburg Krogerweg 16a
D-79110, Freiburg, Germany D-48155 Miinster, Germany
Email: [slange,riedmiller] @informatik.uni-freiburg.de Email: arne@shoogee.com

Fig. 1. The visual slot car racer task. The controller has to autonomously
learn to steer the racing car by raw visual input of camera images.



Robotics: Learning Dexterity

Demo: https://www.youtube.com/watch?v=jwSbzNHGfIM



Robotics: Learning to Flip Pancakes

Demo: https://www.youtube.com/watch?v=W _gxLKSsSIE&list=PL5nBAYUyJTrM48dViibyi68urttMIUv7e
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What are other possible reinforcement learning applications?



Today’s Topics

* Background: “Markov decision processes” and “policies”



Theoretical Foundation of RL:
Markov Decision Processes (MDP)

MDP consists of:

Markov processf Markov reward process + Actions



Markov Process (aka — Markov Chain)

* A set of states with transition probabilities defining system dynamics

e.g., 03

5

* How many states are in the above example?

4

0
0.6

* Markov property: only current state dictates future system dynamics

https://en.wikipedia.org/wiki/Markov_chain



Theoretical Foundation of RL:
Markov Decision Processes (MDP)

MDP consists of:

Markov process fMarkov reward processg Actions



Markov Reward Process

o

* Additional scalar number associated with each transition (“+” or

e.g., 03

5

e A discount factor between 0 and 1, gamma, indicates how far in the
future rewards are considered to estimate a state’s expected reward

4

0
0.6

Figure source: https://en.wikipedia.org/wiki/Markov_chain



Theoretical Foundation of RL:
Markov Decision Processes (MDP)

MDP consists of:

Markov process + Markov reward process 4 Actions



Third Ingredient of “Actions” Leads to a
Markov Decision Process

* At each time step, the chosen
action influences what will
become the next state

* Probability allows for
randomness (e.g., turn car wheel
to go right on icy patch but car
slips and continues straight)

https://en.wikipedia.org/wiki/Markov_decision_process



Policy

* Rules that dictate how an agent behaves

* Defined using a probability distribution over potential
actions so there is randomness in the agent’s behavior

* RL goal: find a good policy



Today’s Topics

* Method: Policy Gradients for Pong



Basic Ingredients for RL Methods

1. Observations of environment
2. Possible actions
3. Rewards



Basic Ingredients for RL Methods; e.g., Pong

1. Observations of environment:

2. Possible actions: “up” and “down” paddle movements

3. Rewards: -1 if missed the ball; +1 reward if ball goes past opponent;
0 otherwise

Goal: Maximize rewards computing optimal “up” and “down” paddle movements
http://karpathy.github.io/2016/05/31/rl/



Policy Gradients: Approach

- ) -

Policies (i.e., rules dictating how an agent behaves) are
represented using a probability for each possible action

e.g., Pong Actions




Policy Gradients: Approach

- ) -

Neural network trained to increase probability of actions leading to a good
total reward and decrease probability of actions leading to a bad total reward

e.g., Pong Actions




Policy Gradients: Approach

e.g., Pong Actions

- - up -
>

How does this approach support “exploration”?




e.g., Learning Pong
(2-layer NN with 200 hidden units)

Given game state (as image), decide if to move paddle up (vs down)

hidden layer

7/ probability of
. 4\.’,’!&‘ moving UP
| RIKDL
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http://karpathy.github.io/2016/05/31/rl/



e.g., Learning Pong
(2-layer NN with 200 hidden units)

How to capture motion in game state (i.e., image)?

raw pixels

Use difference image
(i.e., subtract frame current from last frame)

http://karpathy.github.io/2016/05/31/rl/



e.g., Learning Pong: Training Protocol

® UP >‘DOWN>' uP r® uP >‘DOWN>‘ DOWN>‘DOWN>‘ uP »® \WIN
PS DOWN». UP r® UP >.DOWN>‘ UP r® UP -® LOSE
P UP r® uP r® DOWN», DOWN».DOWN’. DOWN», UP r® LOSE
@ @ @ @ @ @ WIN

Assume 100 games played with 200 images/game
How many (action) decisions were made?

http://karpathy.github.io/2016/05/31/rl/



e.g., Learning Pong: Training Protocol

® uP »® DOWN DOWN>' DOWN>‘ uP »® \WIN
® * .o LOSE
e ) LOSE
e * .o WIN

Assume 100 games played with 200 images/game; 12 games won & 88 lost
* How many winning decisions were made?
* 2,400 (i.e., 12 x 200)

* How many losing decisions were made?
e 17,600 (i.e., 88 x200)

http://karpathy.github.io/2016/05/31/rl/



e.g., Learning Pong: Training Protocol

® UP >‘DOWN>‘ >‘ UP >‘DOWN>‘ DOWN>‘DOWN>‘ UP »® \WIN
e = LOSE
P UP r® UP r® DOWN>‘ DOWN*DOWN" DOWN», UP -® LOSE
PY DOWN>’ r® >' DOWN»‘ >‘ UP ~® WIN

&

H E R

After each set of 100 games, gradient updated to encourage actions that eventually
lead to good outcomes (i.e., 2,400 winning up/down actions) and discourage actions
that eventually lead to bad outcomes discouraged (17,600 losing up/down actions)

http://karpathy.github.io/2016/05/31/rl/



e.g., Pong Model: RL Model vs Pong’s Al Model

Demo: https://www.youtube.com/watch?time_continue=16&v=YOW8m2YGtRg



Why Reinforcement Learning is Difficult

* Agent must infer what it did wrong/right and so how performance
can be maintained/improved based on (delayed) rewards; e.g., chess

* Agent needs to strike the appropriate balance between exploration
and exploitation; e.g., order one’s favorite food vs something new



Want to Learn More?

EXPERT INSIGHT

N\ -

Deep

e CU Boulder course (currently

taught by Alessandro Roncone) Rei“force_mven‘t iy
Learning -

* SW dev environment: OpenAl Gym Hands-On

Apply modern RL methods to
practical problems of chatbots,

i H a n d S O n t I"a i n i n g: robotics, discrete optimization,

web automation, and more




Today’s Topics






