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Review

• Last week:
• Motivation: machine neural translation for long sentences
• Decoder: attention
• Encoder
• Performance evaluation
• Programming tutorial

• Assignments (Canvas):
• Lab assignment 3 due earlier today
• Problem set 3 due in 1 week

• Questions?
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• Pioneering transformer: machine translation 
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Goal: Model Sequential Data (Recall RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Each hidden state is a function of the previous hidden state



Problem: RNNs Use Sequential Computation

Seemingly hard for RNNs to carry information through hidden 
states across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Idea: Model Sequential Data Without Recurrence

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Replace sequential hidden states for capturing knowledge of other inputs with a new 
representation of each input that shows its relationship to all other inputs (i.e., self-attention)



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Arrow thickness is indicative of attention weight

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A large attention score means the other word will 
strongly inform the new representation of the word

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?



Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?
- new word representation disambiguates meaning by identifying other relevant words 
(e.g., high attention score with “river”)

vs



Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words



Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words



Transformer: A Suggested Definition

“Any architecture designed to process a connected 
set of units—such as the tokens in a sequence or 
the pixels in an image—where the only interaction 
between units is through self-attention.”

http://peterbloem.nl/blog/transformers
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Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

https://towardsdatascience.com/self-attention-5b95ea164f61
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Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

And so on for remaining words…



Self-Attention: Disambiguates Word Meanings

A better representation of “she” would 
encode information about “Rashonda”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic



Self-Attention: Disambiguates Word Meanings

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Recall: a better representation of “bank” 
would encode information about “river”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river



Self-Attention vs General Attention

Input Target

General attention 
Relates tokens from different sources

Self-attention 
Relates tokens from the same source

t=1



Computing Self-Attention: Similar Approach 
to How We Compute General Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Key difference 1: input for self-attention

Key difference 2: attention 
score multiplied with a value 
derived from the input



Weighted sum of values

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

New representation of each input token to 
reflect each one’s relationship to all tokens

Input tokens

Computing Self-Attention: Example



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

- How many inputs are in this example?
- What is each input’s dimensionality?



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Three vectors are derived for 
each input by multiplying 
with three weight matrices 
(learned during training): 
query, key, and value

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., key weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., value weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., query weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

How many weight matrices 
are learned in this example?

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

What is the purpose of the 
three weight matrices?

For each input, 2 of the 
derived vectors are used to 
compute attention weights 
(query and key) and the 3rd is 
information passed on for the 
new representation (value)



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

We now will examine how to 
find the new representation 
for the first input.



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 0
1
1

x = ?

Attention score: dot product 
of query with all keys to 
identify relevant tokens; e.g.,



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 4
4
0

x = ?

Attention score: dot product 
of query with all keys to 
identify relevant tokens; e.g.,



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 2
3
1

x = ?

Attention score: dot product 
of query with all keys to 
identify relevant tokens; e.g.,



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Why dot product? Indicates 
similarity of two vectors
- Match = 1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

https://towardsdatascience.com/
self-attention-5b95ea164f61



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Can use similarity 
measures other than 
the dot product



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

= softmax([2, 4, 4])

= [0.0, 0.5, 0.5])

Attention weights: softmax
scores for all inputs to quantify 
each token’s relevance; e.g.,

0.0 0.5 0.5

To which input(s) is input 1 
least related?

To which input(s) is input 1 
most related?

Note:	softmax doesn’t	return	0,	
but	can	arise	from	rounding



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects 
entire input: 

1. Attention weights x Values

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects 
entire input: 

1. Attention weights x Values

2. Sum all weighted vectors

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify 
input representations (values)
that we want to pay attention 
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify 
input representations (values)
that we want to pay attention 
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for 
each remaining input token



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

0.0 1.0 0.0

To which input(s) is input 2 
most related?



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

2. Compute weighted sum of 
values using attention scores

0.0 1.0 0.0

0.0 0.0 0.0 2.0 8.0 0.0 0.0 0.0 0.0

2.0 8.0 0.0



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for 
each remaining input token



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 3:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

0.0 0.9 0.1

To which input(s) is input 3 
most related?



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

0.0 0.9 0.1

0.0 0.0 0.0 1.8 7.2 0.0 0.2 0.6 0.3

2.0 7.8 0.3

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

2. Compute weighted sum of 
values using attention scores



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0



http://jalammar.github.io/illustrated-transformer/

Each row is an 
input token:

Step 1

Efficient Computation for Self-Attention

Each row is a query

Each row is a key

Each row is a value



http://jalammar.github.io/illustrated-transformer/

Step 2Step 1

Implementation detail: scaling 
down the size helps preserve 
gradients needed for training; k is 
dimensionality of the key vector

Efficient Computation for Self-Attention



Self-Attention vs RNN: Propagates Information 
About Other Inputs Without Recurrent Units

http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/ https://towardsdatascience.com/self-attention-5b95ea164f61



Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation 

• Programming tutorial



Multi-head Attention

• Goal: enable each token to relate 
to other tokens in multiple ways

• Key idea: multiple self-attention 
mechanisms, each with their own 
key, value and query matrices

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19_seq2seq_rnn-transformers__slides.pdf



Multi-head Attention

http://jalammar.github.io/illustrated-transformer/

1) Create query, key, and value
vectors for all attentions heads

2) Compute new 
input representations

3) Condense all representations 
into a single representation by 
concatenating z-s and 
multiplying by a weight matrix



Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows two columns of attention weights 
for the first two attention heads
- Darker values signify larger attention scores

What does “it” focus on most in the first 
attention head?
- The animal (e.g., represents what is “it”)

What does “it” focus on most in the second 
attention head?
- tired (e.g., represents how “it” feels)



Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows five columns of attention weights 
for five attention heads
- Darker values signify larger attention scores

Attention weights may be hard to interpret
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http://peterbloem.nl/blog/transformers

Typical Transformer Block

Architectures often chain together multiple 
transformer blocks, like that shown here



http://peterbloem.nl/blog/transformers

Typical Transformer Block

Layer normalization and residual connections 
improve training (i.e., faster and better results)



http://peterbloem.nl/blog/transformers

Typical Transformer Block

Feedforward layer per input



http://peterbloem.nl/blog/transformers

Typical Transformer Block

Where are non-linearities introduced in this block?



http://peterbloem.nl/blog/transformers

Typical Transformer Block

Non-linearities introduced in the softmax of self-
attention, activation functions in MLP, and layer norms



http://peterbloem.nl/blog/transformers

Challenge: Transformers Lack Sensitivity 
to the Order of the Input Tokens

Input observed as a set and so shuffling the order of input 
tokens results in the same outputs except in the same 
shuffled order (i.e. self-attention is permutation equivariant)



Solution: Add Position as Input to Transformer

• Options:
• Position embeddings: created by training with sequences of every length during training
• Position encodings: a function mapping positions to vectors that the network learns to 

interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/
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Target Application: Machine Translation

https://jalammar.github.io/illustrated-transformer/



Architecture

• Key Ingredient 
• Self-Attention in the encoder and decoder

• Other ingredients
• Positional encoding
• Layer normalization 
• Residual connections
• Feed forward layers

• Nx = 6 chained blocks (encoder & decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017.



Architecture

The decoder performs multi-head 
attention on the encoder output 

Vaswani et al. Attention Is All You Need. Neurips 2017.



Next Lecture: Transformers Without the 
Baggage of an Encoder-Decoder Architecture
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