
Transformers

Danna Gurari
University of Colorado Boulder

Fall 2022

https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/AboutCourse.html

Review

• Last week:
• Motivation: machine neural translation for long sentences
• Decoder: attention
• Encoder
• Performance evaluation
• Programming tutorial

• Assignments (Canvas):
• Lab assignment 3 due earlier today
• Problem set 3 due in 1 week

• Questions?

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Goal: Model Sequential Data (Recall RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Each hidden state is a function of the previous hidden state

Problem: RNNs Use Sequential Computation

Seemingly hard for RNNs to carry information through hidden
states across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Idea: Model Sequential Data Without Recurrence

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Replace sequential hidden states for capturing knowledge of other inputs with a new
representation of each input that shows its relationship to all other inputs (i.e., self-attention)

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Arrow thickness is indicative of attention weight

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A large attention score means the other word will
strongly inform the new representation of the word

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?
- new word representation disambiguates meaning by identifying other relevant words
(e.g., high attention score with “river”)

vs

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer: A Suggested Definition

“Any architecture designed to process a connected
set of units—such as the tokens in a sequence or
the pixels in an image—where the only interaction
between units is through self-attention.”

http://peterbloem.nl/blog/transformers

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

https://towardsdatascience.com/self-attention-5b95ea164f61

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

And so on for remaining words…

Self-Attention: Disambiguates Word Meanings

A better representation of “she” would
encode information about “Rashonda”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Disambiguates Word Meanings

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Recall: a better representation of “bank”
would encode information about “river”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river

Self-Attention vs General Attention

Input Target

General attention
Relates tokens from different sources

Self-attention
Relates tokens from the same source

t=1

Computing Self-Attention: Similar Approach
to How We Compute General Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Key difference 1: input for self-attention

Key difference 2: attention
score multiplied with a value
derived from the input

Weighted sum of values

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

New representation of each input token to
reflect each one’s relationship to all tokens

Input tokens

Computing Self-Attention: Example

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

- How many inputs are in this example?
- What is each input’s dimensionality?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Three vectors are derived for
each input by multiplying
with three weight matrices
(learned during training):
query, key, and value

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., key weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., value weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., query weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

How many weight matrices
are learned in this example?

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

What is the purpose of the
three weight matrices?

For each input, 2 of the
derived vectors are used to
compute attention weights
(query and key) and the 3rd is
information passed on for the
new representation (value)

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

We now will examine how to
find the new representation
for the first input.

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 0
1
1

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 4
4
0

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 2
3
1

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Why dot product? Indicates
similarity of two vectors
- Match = 1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

https://towardsdatascience.com/
self-attention-5b95ea164f61

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Can use similarity
measures other than
the dot product

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

= softmax([2, 4, 4])

= [0.0, 0.5, 0.5])

Attention weights: softmax
scores for all inputs to quantify
each token’s relevance; e.g.,

0.0 0.5 0.5

To which input(s) is input 1
least related?

To which input(s) is input 1
most related?

Note:	softmax doesn’t	return	0,	
but	can	arise	from	rounding

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

2. Sum all weighted vectors

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify
input representations (values)
that we want to pay attention
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify
input representations (values)
that we want to pay attention
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 1.0 0.0

To which input(s) is input 2
most related?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores

0.0 1.0 0.0

0.0 0.0 0.0 2.0 8.0 0.0 0.0 0.0 0.0

2.0 8.0 0.0

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 3:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 0.9 0.1

To which input(s) is input 3
most related?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

0.0 0.9 0.1

0.0 0.0 0.0 1.8 7.2 0.0 0.2 0.6 0.3

2.0 7.8 0.3

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0

http://jalammar.github.io/illustrated-transformer/

Each row is an
input token:

Step 1

Efficient Computation for Self-Attention

Each row is a query

Each row is a key

Each row is a value

http://jalammar.github.io/illustrated-transformer/

Step 2Step 1

Implementation detail: scaling
down the size helps preserve
gradients needed for training; k is
dimensionality of the key vector

Efficient Computation for Self-Attention

Self-Attention vs RNN: Propagates Information
About Other Inputs Without Recurrent Units

http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/ https://towardsdatascience.com/self-attention-5b95ea164f61

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Multi-head Attention

• Goal: enable each token to relate
to other tokens in multiple ways

• Key idea: multiple self-attention
mechanisms, each with their own
key, value and query matrices

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19_seq2seq_rnn-transformers__slides.pdf

Multi-head Attention

http://jalammar.github.io/illustrated-transformer/

1) Create query, key, and value
vectors for all attentions heads

2) Compute new
input representations

3) Condense all representations
into a single representation by
concatenating z-s and
multiplying by a weight matrix

Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows two columns of attention weights
for the first two attention heads
- Darker values signify larger attention scores

What does “it” focus on most in the first
attention head?
- The animal (e.g., represents what is “it”)

What does “it” focus on most in the second
attention head?
- tired (e.g., represents how “it” feels)

Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows five columns of attention weights
for five attention heads
- Darker values signify larger attention scores

Attention weights may be hard to interpret

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Architectures often chain together multiple
transformer blocks, like that shown here

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Layer normalization and residual connections
improve training (i.e., faster and better results)

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Feedforward layer per input

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Where are non-linearities introduced in this block?

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Non-linearities introduced in the softmax of self-
attention, activation functions in MLP, and layer norms

http://peterbloem.nl/blog/transformers

Challenge: Transformers Lack Sensitivity
to the Order of the Input Tokens

Input observed as a set and so shuffling the order of input
tokens results in the same outputs except in the same
shuffled order (i.e. self-attention is permutation equivariant)

Solution: Add Position as Input to Transformer

• Options:
• Position embeddings: created by training with sequences of every length during training
• Position encodings: a function mapping positions to vectors that the network learns to

interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Target Application: Machine Translation

https://jalammar.github.io/illustrated-transformer/

Architecture

• Key Ingredient
• Self-Attention in the encoder and decoder

• Other ingredients
• Positional encoding
• Layer normalization
• Residual connections
• Feed forward layers

• Nx = 6 chained blocks (encoder & decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017.

Architecture

The decoder performs multi-head
attention on the encoder output

Vaswani et al. Attention Is All You Need. Neurips 2017.

Next Lecture: Transformers Without the
Baggage of an Encoder-Decoder Architecture

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

