Introduction to NLP and Word Embeddings

Danna Gurari

University of Colorado Boulder Fall 2022

Review

- Last week:
 - Machine learning for sequential data
 - Recurrent neural networks (RNNs)
 - Gated RNNs
 - Programming tutorial
- Assignments (Canvas):
 - Lab assignment 3 due in a week
- Questions?

Today's Topics

Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

Today's Topics

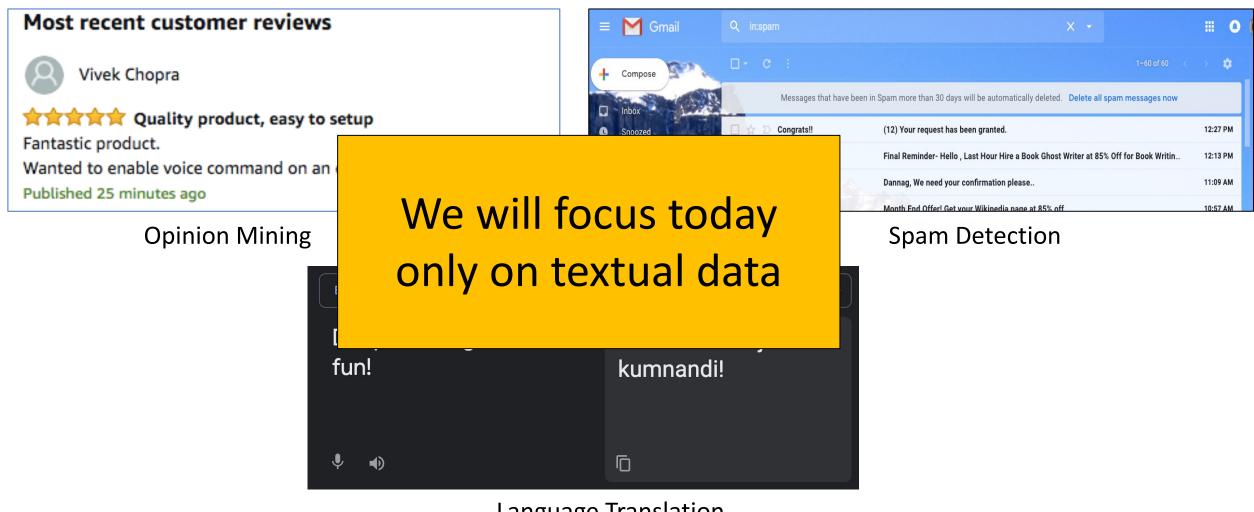
Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

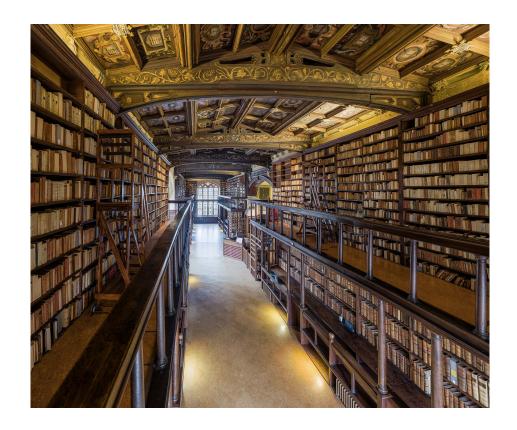
NLP: Computers that Can Understand (and So Also Communicate in) Human Language



Language Translation

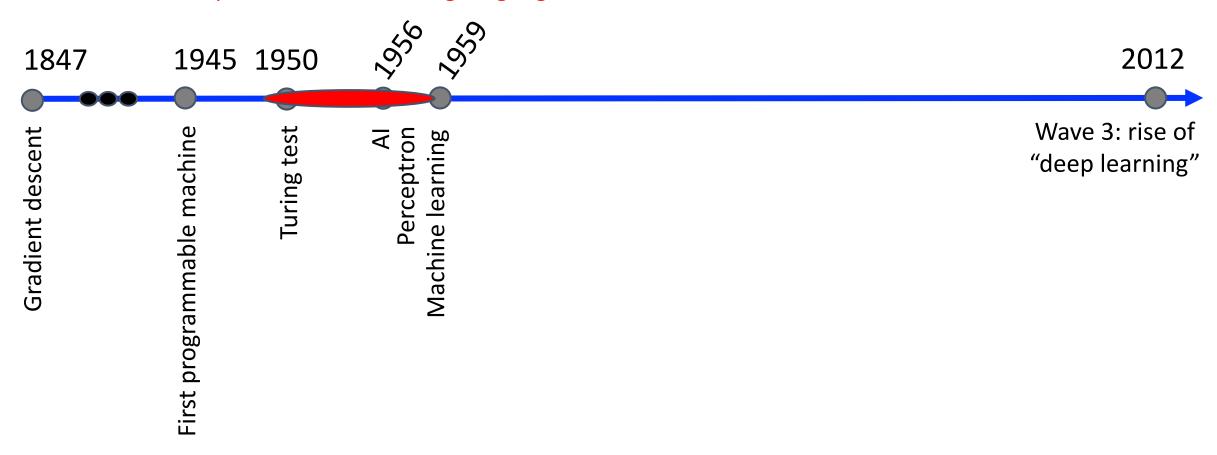
Why Discuss NLP With RNNs?

- RNNs have a strong track record for NLP problems
- Text data's representation (i.e., sequential data) is a natural match for RNNs

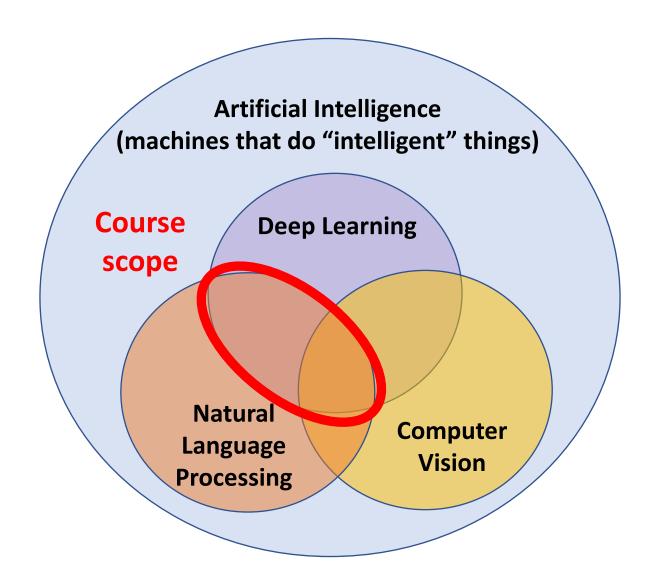


Historical Context: Origins of NLP

Research community emerged mostly on the problem of translating languages



NLP in Context

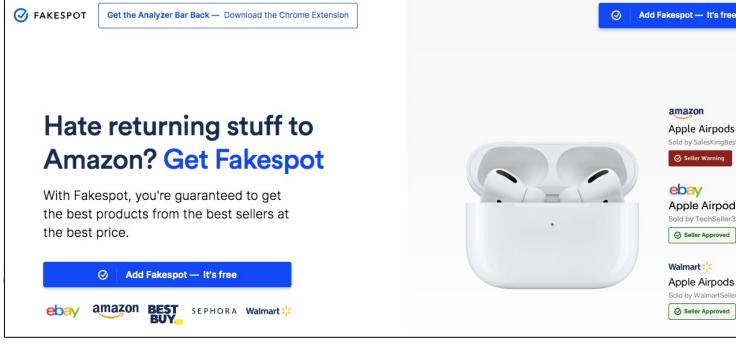


- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...

- Text classification
- Machine translation
- Question answering
- Automatic summariza

And more...

- Text classification
- Machine translation
- Question answering
- Automatic summariz



Apple Airpods Pro Sold by SalesKingBest9393

Apple Airpods Pro

Sold by TechSeller33

(2) Seller Approved

Apple Airpods Pro Sold by WalmartSeller95

Seller Approved

Walmart ::

ebay

And more...

- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...

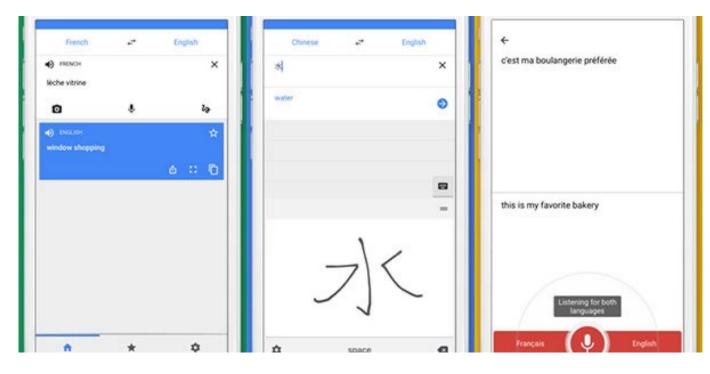
e.g., Microsoft translator



https://uncubed.com/daily/best-translation-apps-for-travel-in-2019/

- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...

e.g., Google translate



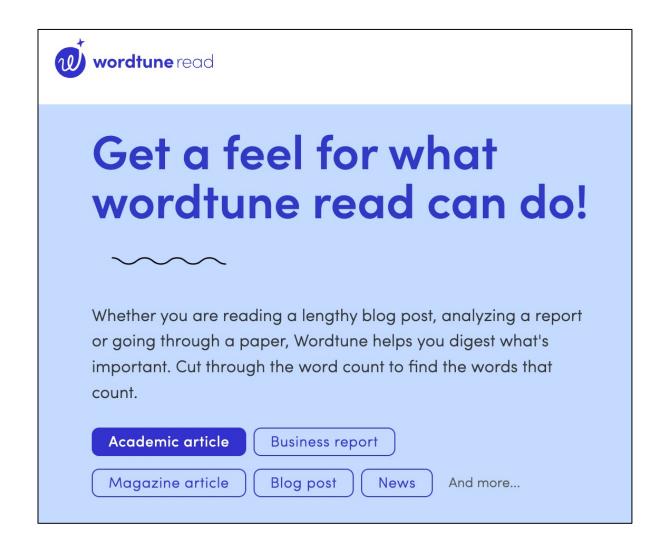
https://uncubed.com/daily/best-translation-apps-for-travel-in-2019/

- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...

e.g., IBM Watson question answering system (and Jeopardy winner)

https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html

- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...



- Text classification
- Machine translation
- Question answering
- Automatic summarization
- And more...

Other Key Challenges: Replicate Language Understanding for So Many Languages/Individuals!

 Need a computable characterization of all human languages that simultaneously captures nuances from individuals; e.g., 7000+ languages spoken around the world

https://ruder.io/nlp-beyond-english/

Today's Topics

Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

Input: String (Collection of Characters)

- Common terms
 - Corpus: dataset
 - Document: example

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal).

"Statistical learning" redirects here. For statistical learning in linguistics, see statistical learning in lang

Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to "learn" (e.g., progressively improve performance on a specific task) with data, without being explicitly programmed.^[2]

The name *machine learning* was coined in 1959 by Arthur Samuel.^[1] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data^[3] – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions,^{[4]:2} through building a model from sample inputs. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or infeasible; example applications include email filtering, detection of network intruders, and computer vision.

Input: Which "String" Feature Types Apply?

- Categorical data
 - Comes from a fixed list (e.g., education level)
- Structured string data
 - e.g., addresses, dates, telephone numbers,

Text data

How to Describe Text to a Computer?

Challenge: input often varies in length

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal).

"Statistical learning" redirects here. For statistical learning in linguistics, see statistical learning in lang

Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to "learn" (e.g., progressively improve performance on a specific task) with data, without being explicitly programmed.^[2]

The name *machine learning* was coined in 1959 by Arthur Samuel.^[1] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data^[3] – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions,^[4]:2 through building a model from sample inputs. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or infeasible; example applications include email filtering, detection of network intruders, and computer vision.

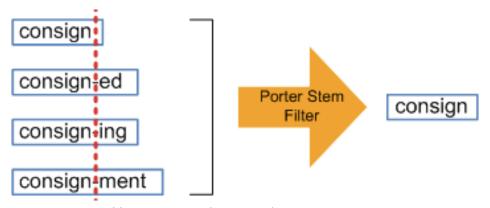
Solution: convert text to numeric format that DL algorithms can handle

Implementation Details – Possible Pre-processing

Lower case all letters

• Stemming: use each word's stem; e.g., singular to plural, resolve different verb forms

• e.g.,



https://dzone.com/articles/using-lucene-grails

Stop word removal: discard frequent words

- 1. Tokenize training data
- 2. Learn vocabulary
- 3. Encode data as vectors

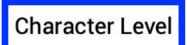
- 1. Tokenize training data; convert data into sequence of tokens (e.g., data ->"This is tokening")
- 2. Learn vocabulary
- 3. Encode data as vectors

Two common approaches:

[This] [is] [tokenizing] [.]

- 1. Tokenize training data
- 2. Learn vocabulary by identifying all unique tokens in the training data
- 3. Encode data as vectors

Two common approaches:

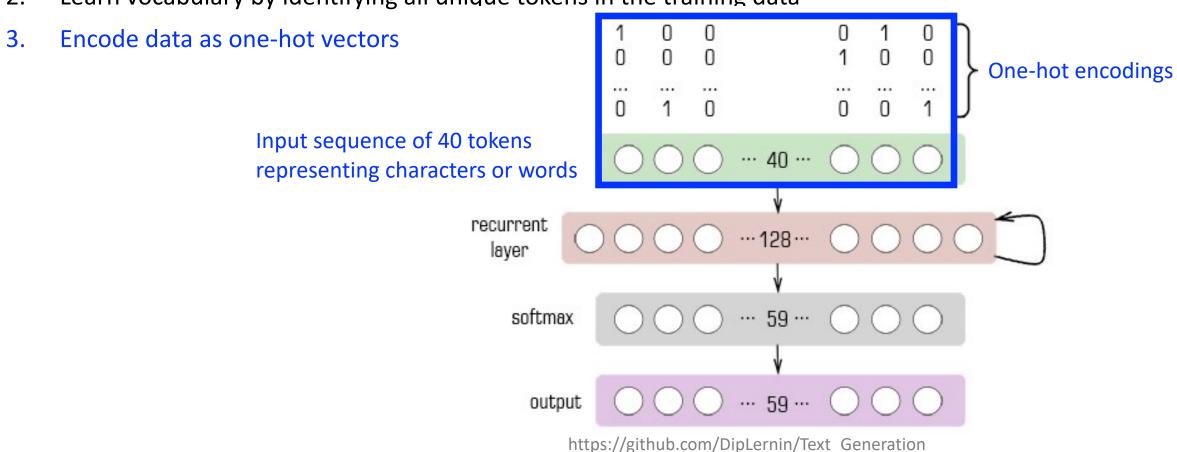


Token	а	b	С	***	0	1	***	!	@	***
Index	1	2	3	***	27	28	***	119	120	***

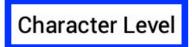
Token	а	an	at	***	bat	ball	***	zipper	zoo	***
Index	1	2	3	***	527	528	***	9,842	9,843	***

1. Tokenize training data

2. Learn vocabulary by identifying all unique tokens in the training data



What are the pros and cons for using word tokens instead of character tokens?



Token	а	b	С	***	0	1	***	!	@	***
Index	1	2	3	***	27	28	***	119	120	***

Token	а	an	at	***	bat	ball	***	zipper	zoo	***
Index	1	2	3	***	527	528	***	9,842	9,843	***

- Pros: length of input/output sequences is shorter, simplifies learning semantics
- Cons: "UNK" word token needed for out of vocabulary words; vocabulary can be large

Character Level

Token	a	b	С	***	0	1	***	!	@	***
Index	1	2	3	***	27	28	***	119	120	***

Word Level

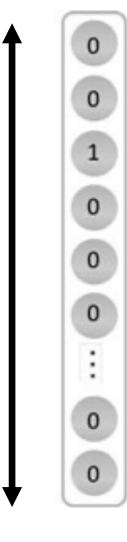
Token	а	an	at	***	bat	ball	***	zipper	ZOO	***
Index	1	2	3	***	527	528	***	9,842	9,843	***

Word level representations are more commonly used

Problems with One-Hot Encoding Words?

Dimensionality = vocabulary size

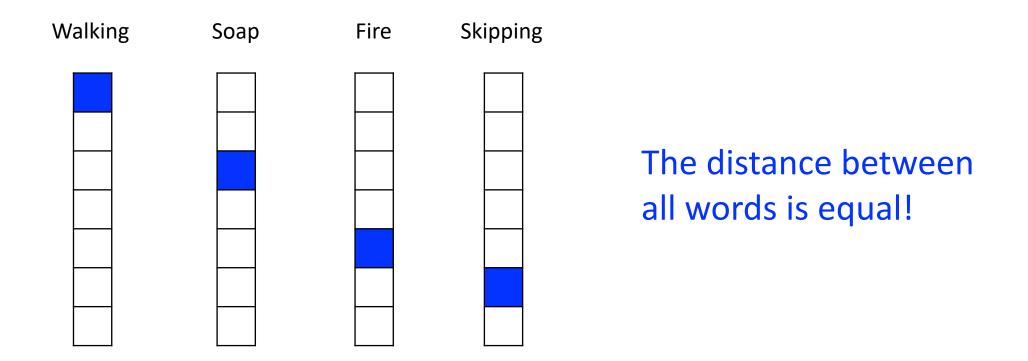
e.g., English has ~170,000 words with ~10,000 commonly used words



- Huge memory burden
- Computationally expensive

Limitation of One-Hot Encoding Words

- No notion of which words are similar, yet such understanding can improve generalization
 - e.g., "walking", "running", and "skipping" are all suitable for "He was _____ to school."



Today's Topics

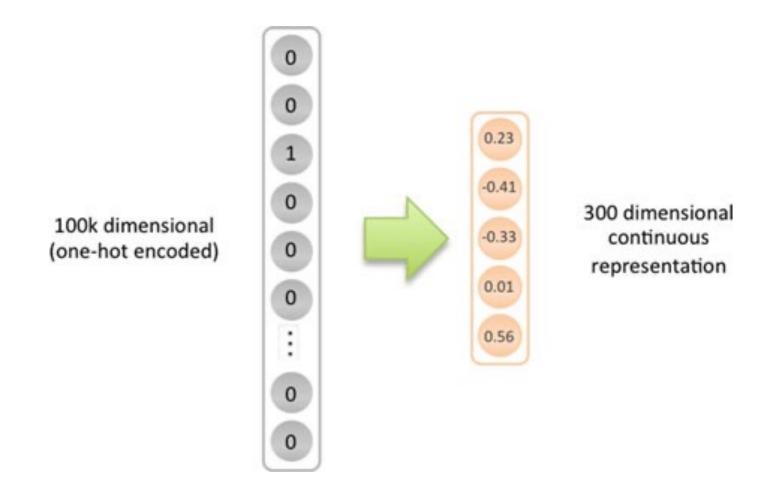
Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

Idea: Represent Each Word Compactly in a Space Where Vector Distance Indicates Word Similarity



Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

"The distributional hypothesis says that the meaning of a word is derived from the context in which it is used, and words with similar meaning are used in similar contexts."

- Origins: Harris in 1954 and Firth in 1957

"The distributional hypothesis says that the meaning of a word is derived from the context in which it is used, and words with similar meaning are used in similar contexts."

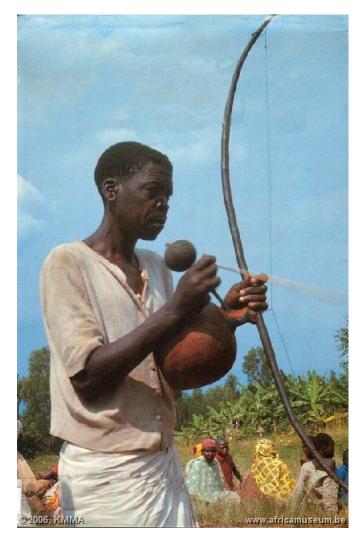
What is the meaning of berimbau based on context?

Background music from a berimbau offers a beautiful escape.

Many people danced around the berimbau player.

I practiced for many years to learn how to play the berimbau.

• Idea: context makes it easier to understand a word's meaning

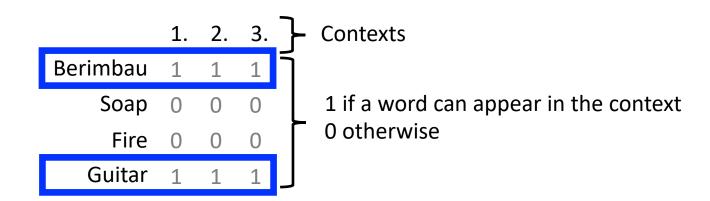


"The distributional hypothesis says that the meaning of a word is derived from the context in which it is used, and words with similar meaning are used in similar contexts."

Inspiration: Distributional Semantics

- What other words could fit into these context?
 - Background music from a ______ offers a beautiful escape.
 - 2. Many people danced around the _____ player.
 - 3. I practiced for many years to learn how to play the ______.

Hypothesis is that words with similar row values have similar meanings

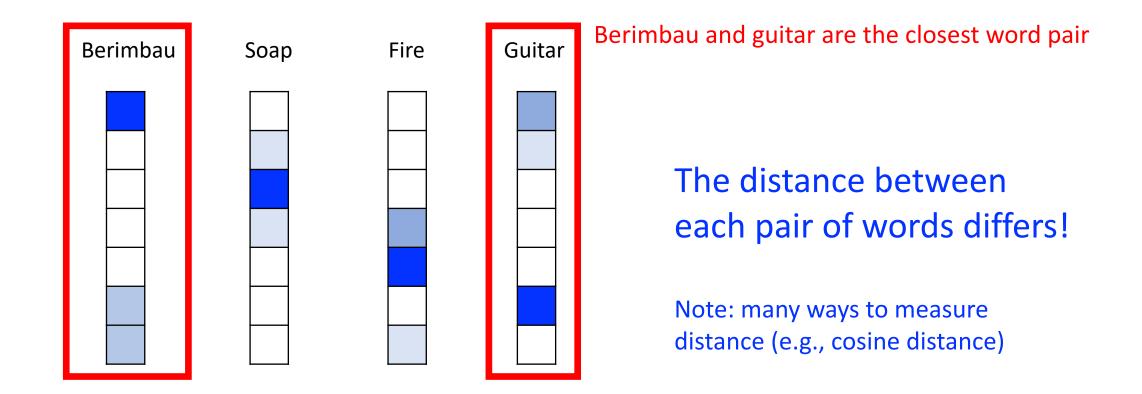


Inspiration: Distributional Semantics

"The distributional hypothesis says that the meaning of a word is derived from the context in which it is used, and words with similar meaning are used in similar contexts."

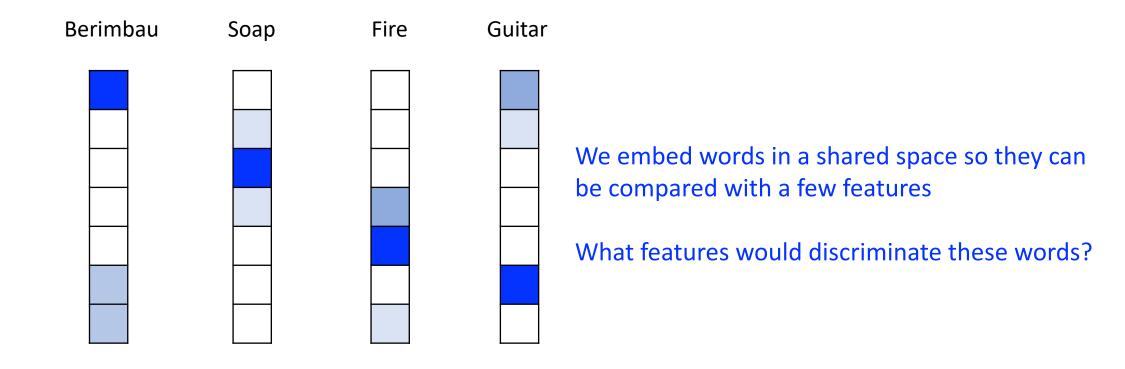
Approach

 Learn a dense (lower-dimensional) vector for each word by characterizing its context, which inherently will reflect similarity/differences to other words



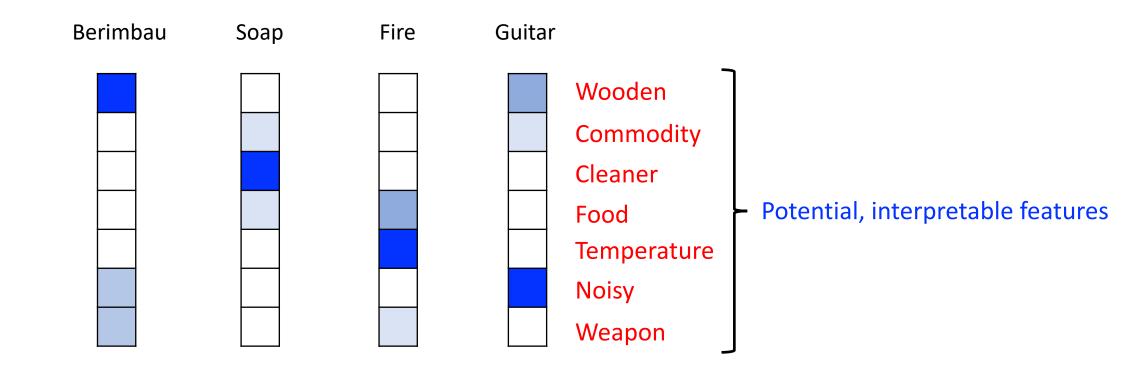
Approach

 Learn a dense (lower-dimensional) vector for each word by characterizing its context, which inherently will reflect similarity/differences to other words



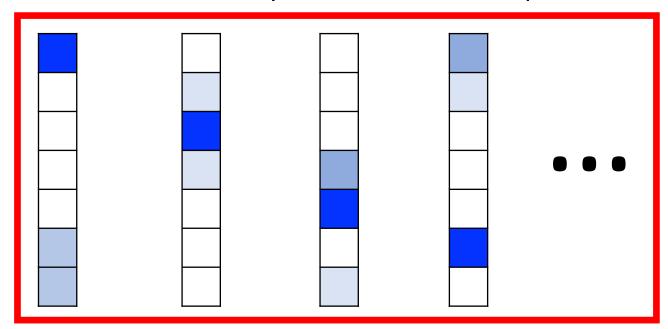
Approach

 Learn a dense (lower-dimensional) vector for each word by characterizing its context, which inherently will reflect similarity/differences to other words



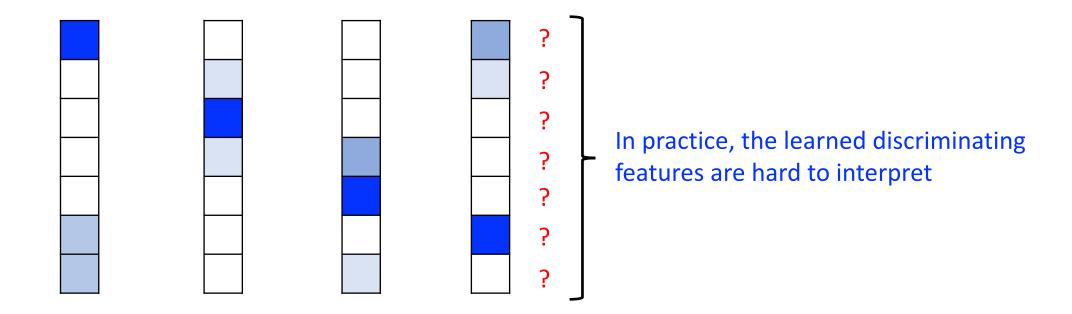
Approach: Learn Word Embedding Space

- An embedding space represents a finite number of words, decided in training
- A word embedding is represented as a vector indicating its context
- The dimensionality of all word embeddings in an embedding space match
 - What is the dimensionality for the shown example?



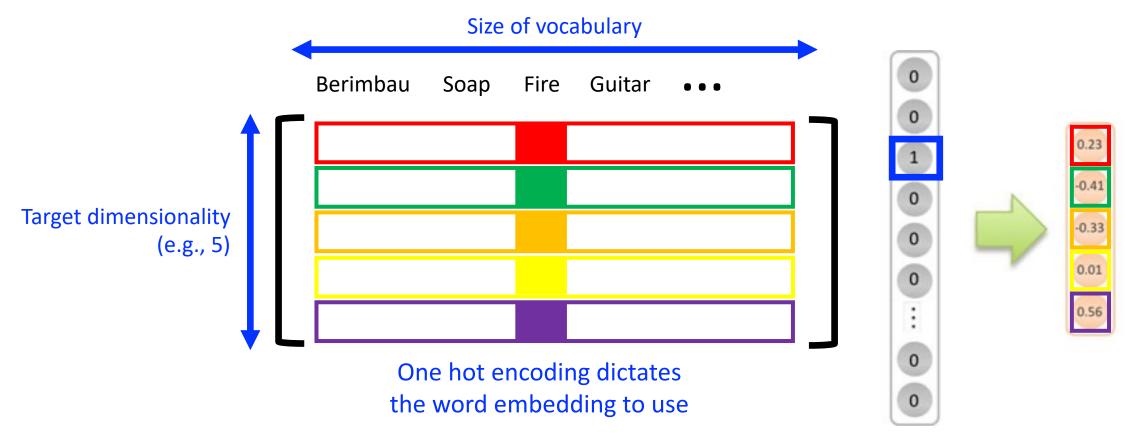
Approach: Learn Word Embedding Space

- An embedding space represents a finite number of words, defined in training
- A word embedding is represented as a vector indicating its context
- The dimensionality of all word embeddings in an embedding space match



Embedding Matrix

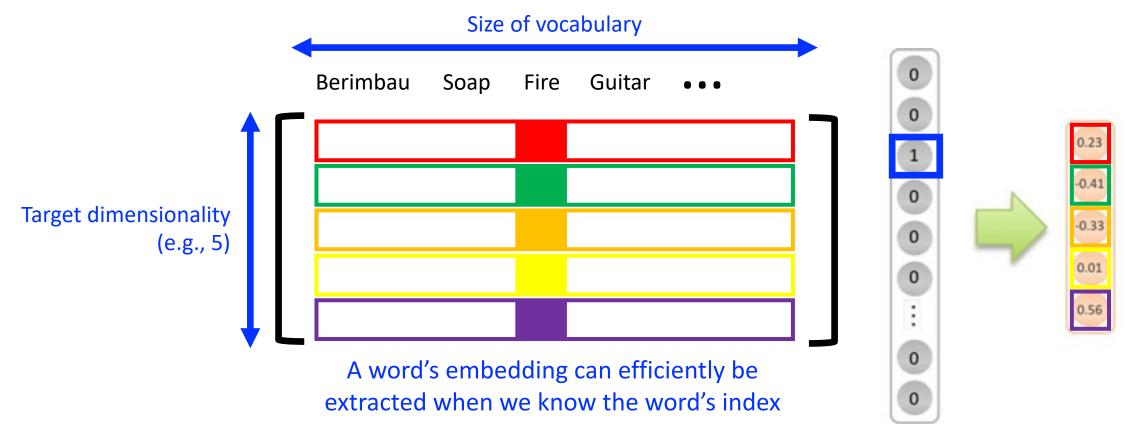
• The embedding matrix converts an input word into a dense vector



Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Embedding Matrix

It converts an input word into a dense vector

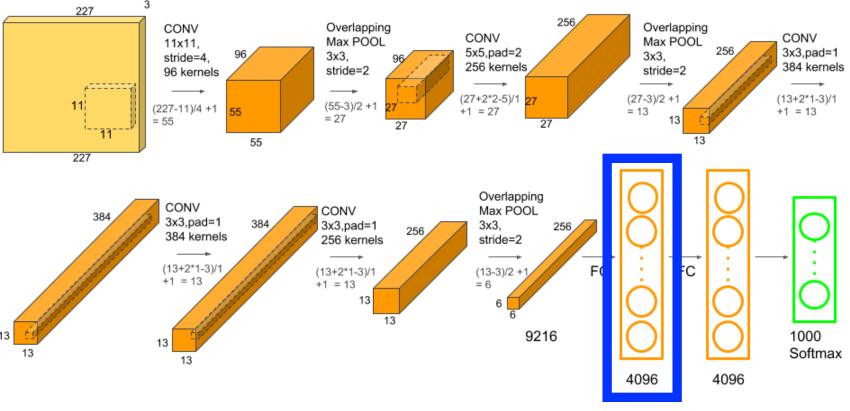


Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Word Embedding Analogous to a CNN Pretrained Feature

• e.g., FC6 layer of AlexNet

A representation of the data extracted inside a network (rather than the input or predicted output)



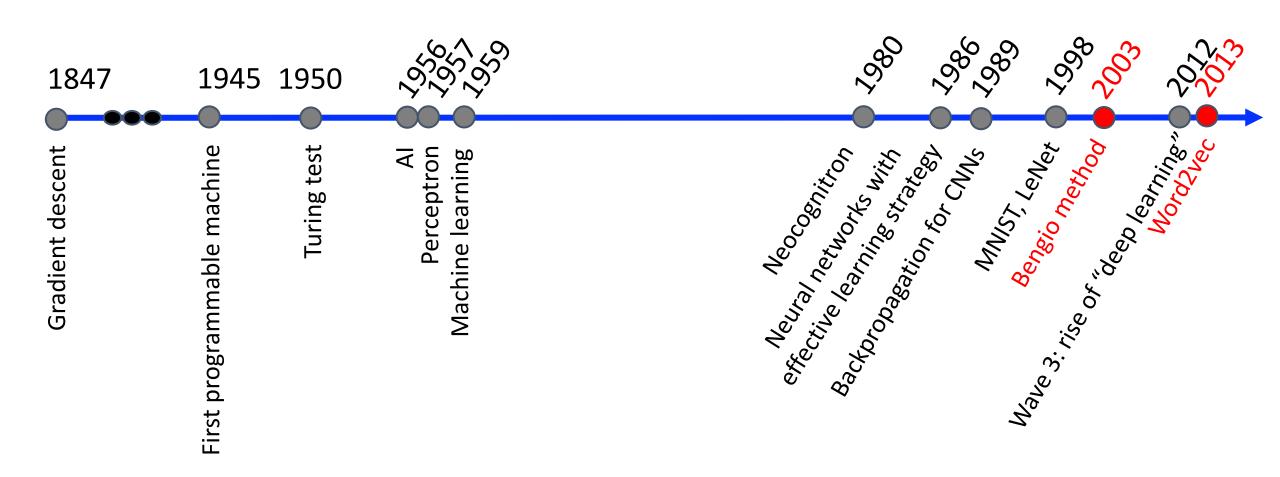
Popular Word Embeddings

Bengio method

Word2vec (skip-gram model)

• And more...

Historical Context



Popular Word Embeddings

Bengio method

Word2vec (skip-gram model)

• And more...

Idea: Learn Word Embeddings That Help Predict Viable Next Words

e.g.,

- 1. Background music from a
- 2. Many people danced around the
- 3. I practiced for many years to learn how to play the _____

Task: Predict Next Word Given Previous Ones

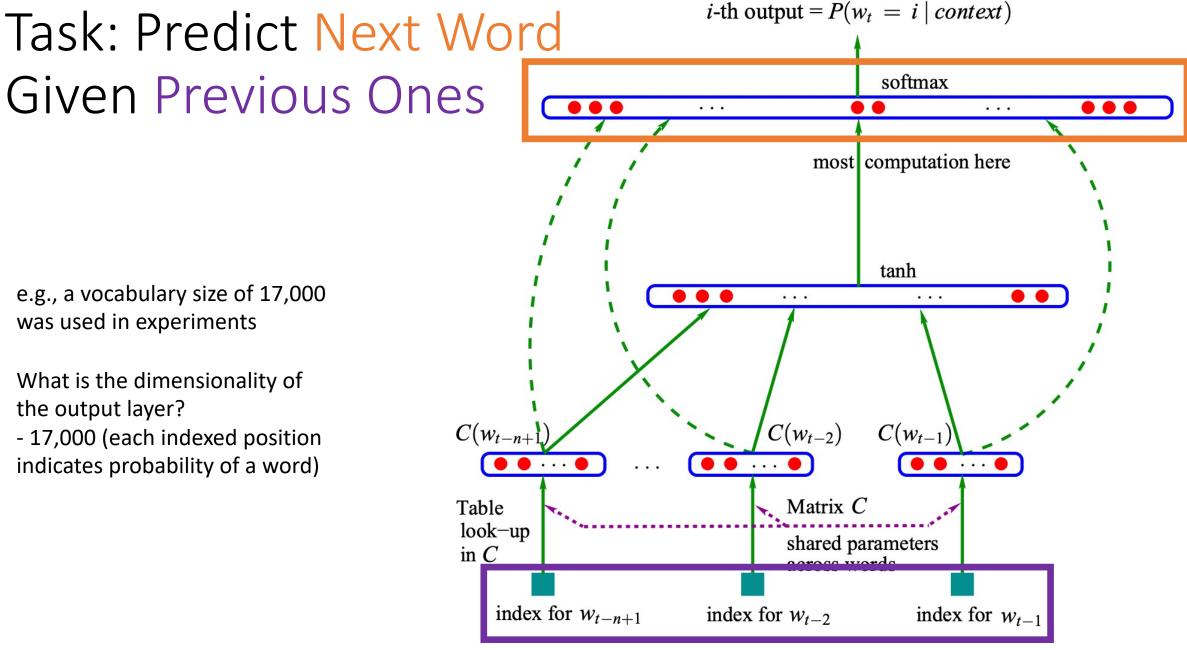
e.g.,

- 1. Background music from a
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____

Task: Predict Next Word

e.g., a vocabulary size of 17,000 was used in experiments

What is the dimensionality of the output layer? - 17,000 (each indexed position indicates probability of a word)



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = $P(w_t = i \mid context)$ Architecture softmax most computation here tanh $C(w_{t-1})$ $C(w_{t-n+1})$ $C(w_{t-2})$ Word embeddings:

Matrix C Table look-up shared parameters in Cacross words index for w_{t-n+1} index for w_{t-1} index for w_{t-2}

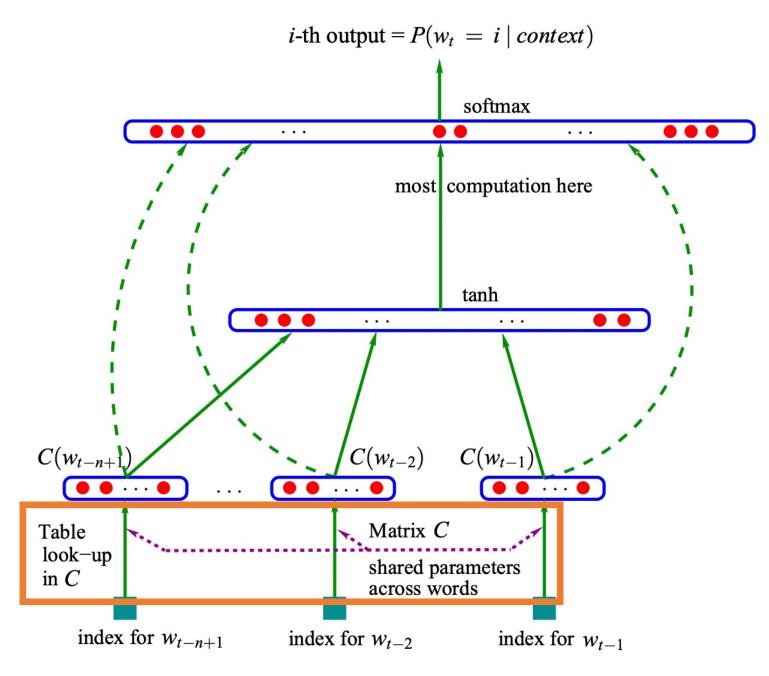
Embedding matrix:

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

e.g., a vocabulary size of 17,000 was used with embedding sizes of 30, 60, and 100 in experiments

Assume a 30-d word embedding - what are the dimensions of the embedding matrix C?

30 x 17,000 (i.e., 510,000 weights)

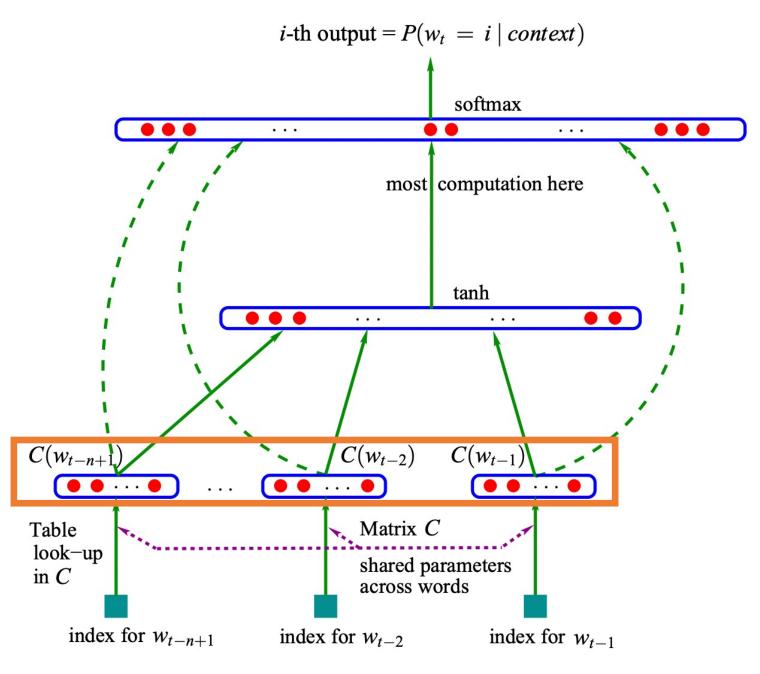


Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

e.g., a vocabulary size of 17,000 was used with embedding sizes of 30, 60, and 100 in experiments

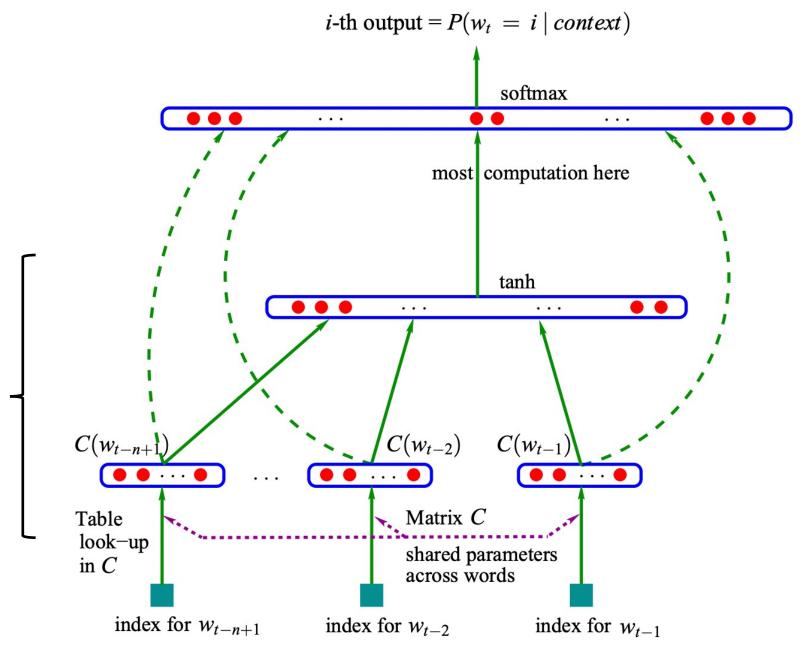
Assume a 30-d word embedding - what are the dimensions of each word embedding?

1 x 30



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

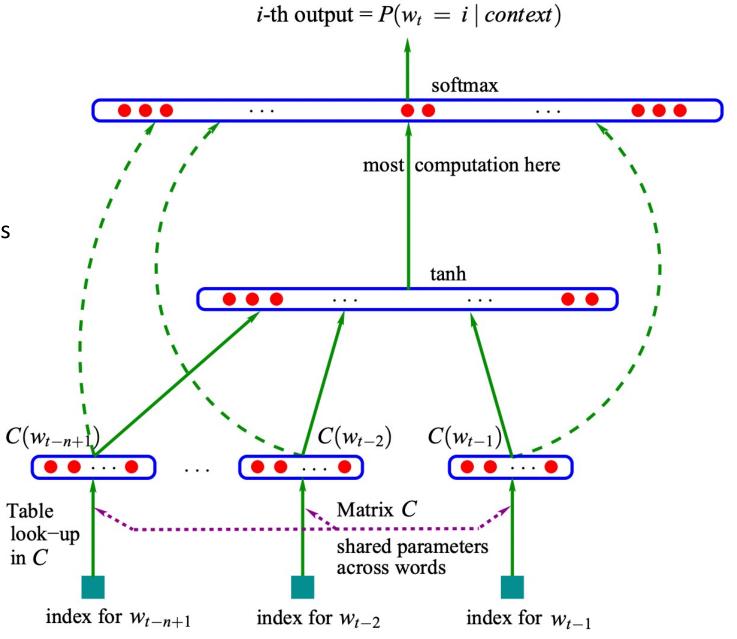
Projection layer followed by a hidden layer with non-linearity



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Use sliding window on input data; e.g., 3 words

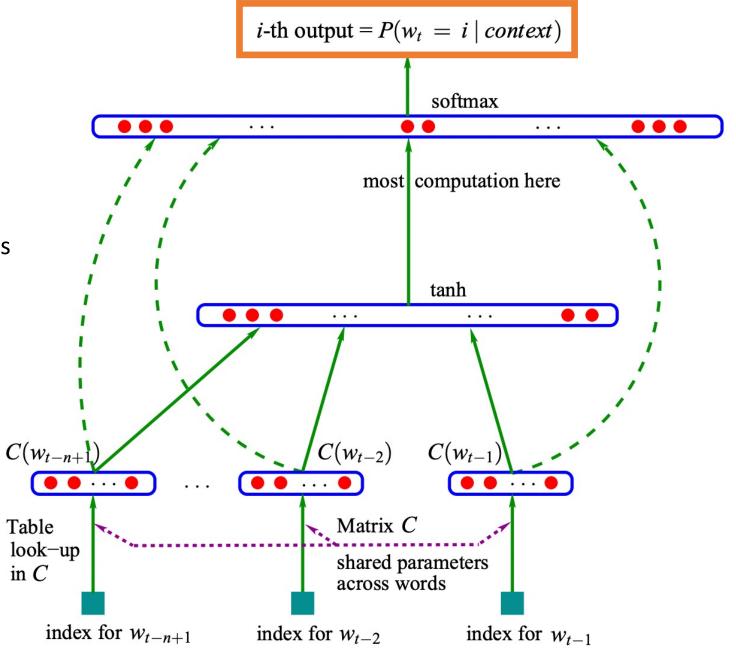
Background music from a berimbau offers a beautiful escape...



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Use sliding window on input data; e.g., 3 words

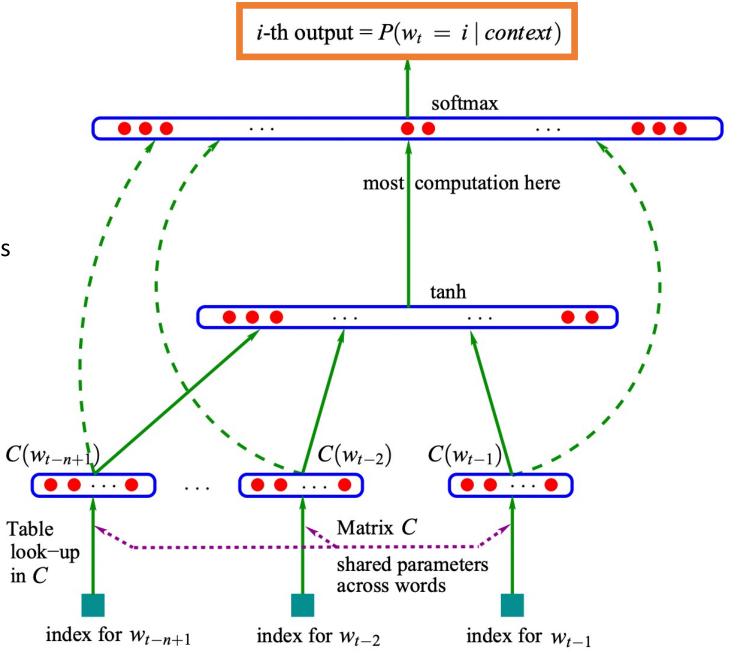
Background music from a berimbau offers a beautiful escape...



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Use sliding window on input data; e.g., 3 words

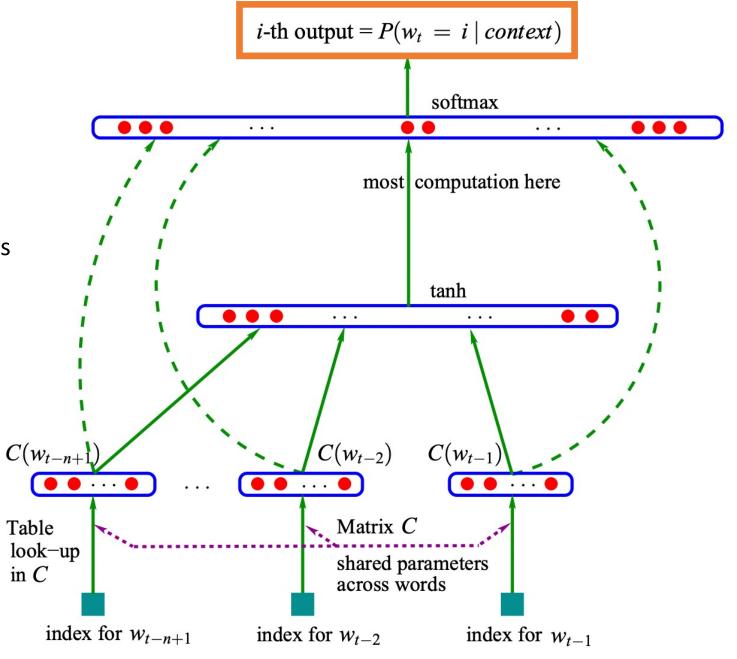
Background music from a berimbau offers a beautiful escape...



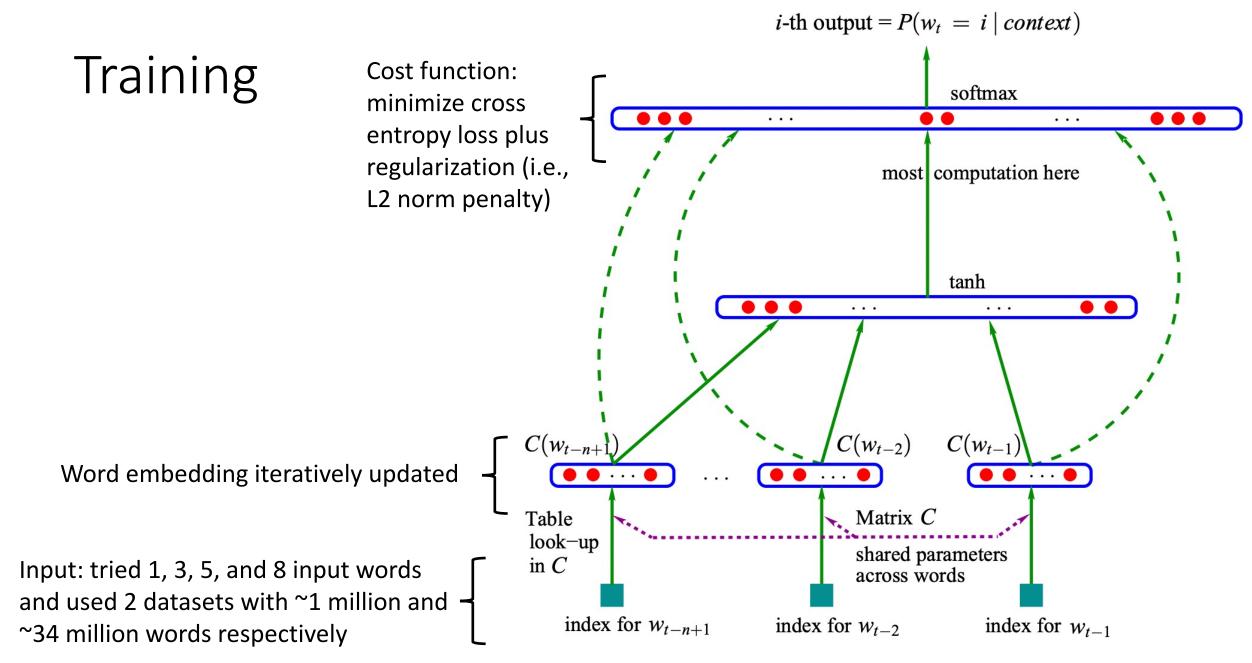
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a beautiful escape...



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Summary: Word Embeddings Learn Context of Previous Words Needed to Predict Next Word

e.g.,

- 1. Background music from a
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____

Popular Word Embeddings

Bengio method

Word2vec (skip-gram model)

• And more...

Idea: Learn Word Embeddings That Know What Are Viable Surrounding Words

e.g.,

1. ___ berimbau ___ ___ ___

2. ___ berimbau ___

Task: Given Word, Predict a Nearby Word

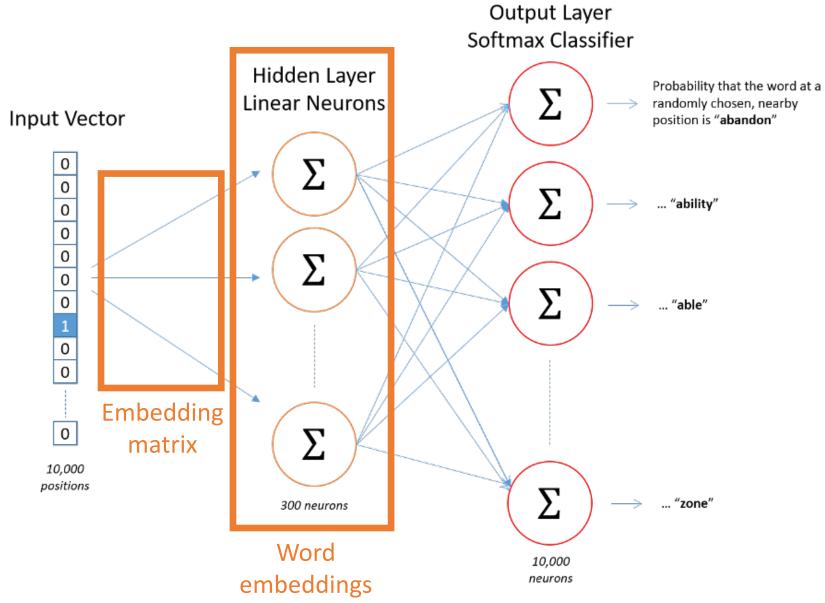
e.g.,

1. ____ berimbau ___ ___ ___

2. ____ berimbau ____

Task: Given Word, Predict **Output Layer** a Nearby Word Softmax Classifier Hidden Layer Probability that the word at a **Linear Neurons** randomly chosen, nearby Input Vector position is "abandon" 0 ... "ability" 0 0 0 ... "able" 0 0 0 Σ 10,000 positions ... "zone" 300 neurons 10,000

neurons

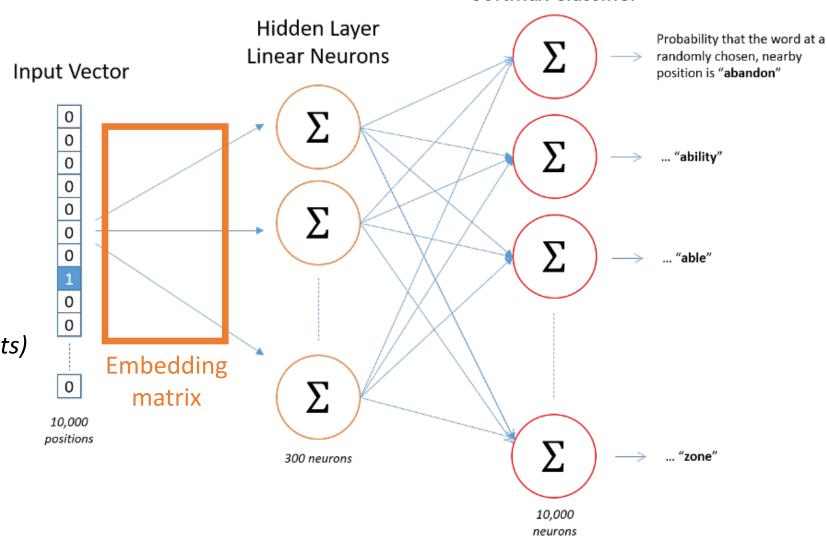


https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

e.g., a vocabulary size of 10,000 is used with embedding sizes of 300

What are the dimensions of the embedding matrix?

300 x 10,000 (i.e., 3,000,000 weights)



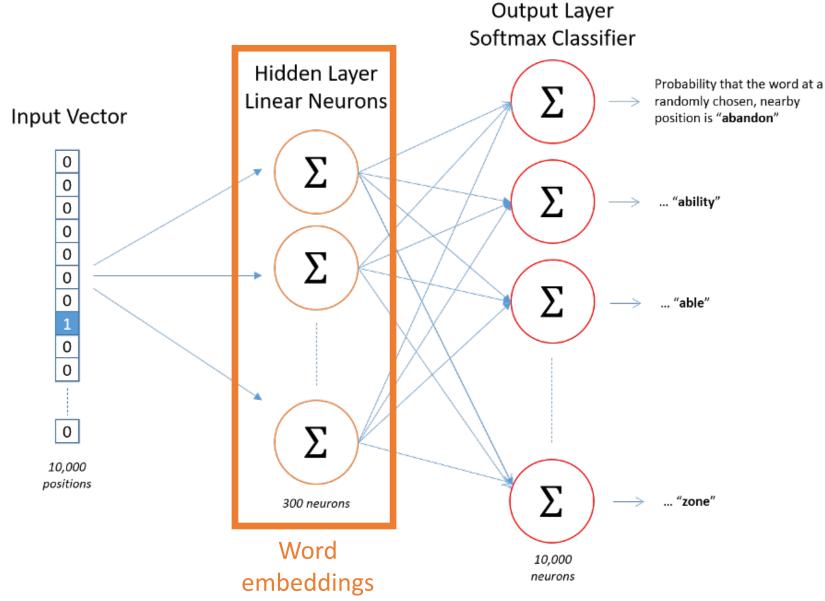
Output Layer Softmax Classifier

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

e.g., a vocabulary size of 10,000 is used with embedding sizes of 300

What are the dimensions of each word embedding?

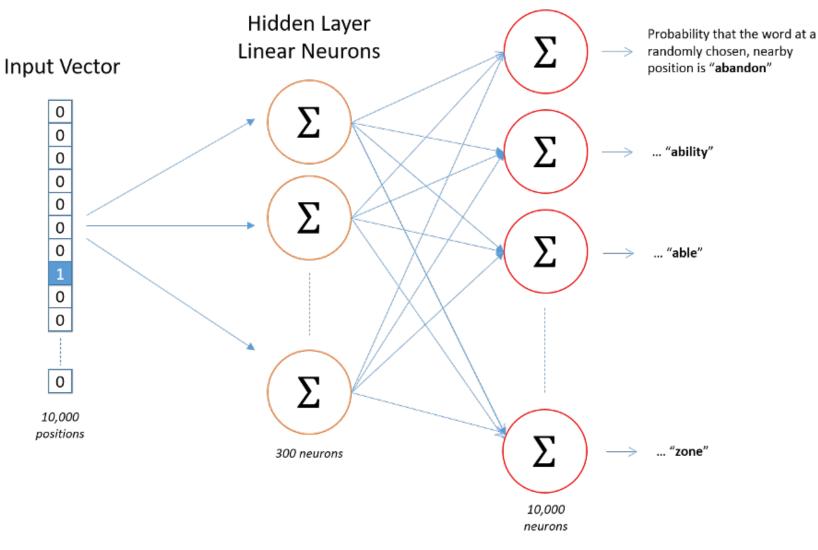
1 x 300



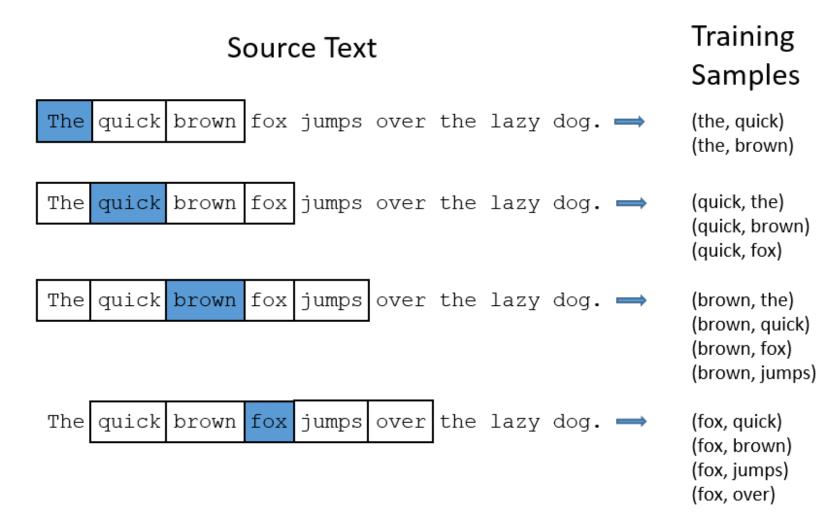
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Output Layer Softmax Classifier

A shallower, simpler architecture than the Bengio approach (i.e., lacks a non-linear hidden layer)!



Sliding window run on input data to sample neighbors of each target word (e.g., using window size of 2)



Extra Tricks: More Efficient Representations

kargaroo

1. Change output layer to hierarchical softmax

word count fat 3 fridge 2 zebra 1 potato 3 and 14 in 7 today 4 kangaroo 2

2. Reformulate problem to perform negative sampling

Binary classification: predict for a given word if another word is nearby

- Positive examples: observed target and neighboring words
- Negative examples: randomly sampled other words

https://www.cs.princeton.edu/courses/archive/spring20/cos598C/lectures/lec2-word-embeddings.pdf

Hyperparameters: What Works Well?

- Word embedding dimensionality?
 - Dimensionality set between 100 and 1,000

- Context window size?
 - ~10

Very Exciting/Surprising Finding

Vector arithmetic with word embeddings can solves many analogies

(Full test list: http://download.tensorflow.org/data/questions-words.txt)

- Semantic relationships (meaning of words in a sentence):
 - Italy + (Paris France) = Rome
- Syntactic relationships (rules for words in a sentence)
 - smallest + (big small) = biggest
 - think + (read reading) = thinking
 - mouse + (dollars dollar) = mice

Summary: Word Embeddings Are Learned that Support Predicting Viable Surrounding Words!

e.g.,

1. ____ berimbau ___ ___ ___

2. ___ berimbau ___

Popular Word Embeddings

Bengio method

Word2vec (skip-gram model)

• And more...

Variants for Learning Word Embeddings

- Capture global context rather than just local context of previous or surrounding words; e.g.,
 - GloVe for Global Vectors (Pennington et al., 2014)
- Capture that the same word can have different word vectors under different contexts; e.g.,
 - Elmo for embeddings from language models (Peters et al., arXiv 2018)
- Support multiple languages; e.g.,
 - Fast-text (Bojanowski et al., 2016)

Popular Word Embeddings

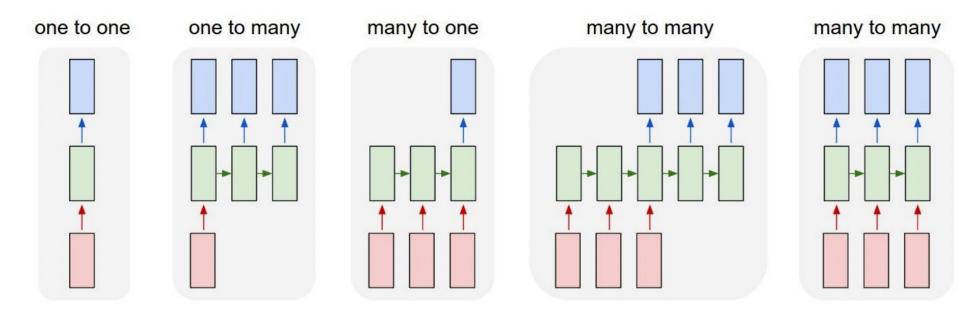
Bengio method

Word2vec (skip-gram model)

• And more...

Recap of Big Picture

• Convert words into compact vectors as input to neural networks; e.g., RNNs



- Implementation detail: may need to learn extra tokens such as "UNK" and "EOS" to represent out of vocabulary words and signify end of the string respectively
- Also, can fine-tune word embedding matrices for different applications

Word Embedding Limitations/Challenges

- Distinguish antonyms from synonyms
 - Antonyms are learned near each other in the embedding space since they are commonly used in similar contexts: "I hate math" vs "I love math" or "Take a right turn" vs "Take a left turn"

Gender bias:

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

¹Boston University, 8 Saint Mary's Street, Boston, MA

²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA

tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Word Embedding Limitations/Challenges

- Distinguish antonyms from synonyms
 - Antonyms are learned near each other in the embedding space since they are commonly used in similar contexts: "I hate math" vs "I love math" or "Take a right turn" vs "Take a left turn"

Gender bias:

Extreme she	Extreme <i>he</i>		Gender stereotype she-he analogies	
1. homemaker	1. maestro			
2. nurse	2. skipper	sewing-carpentry	registered nurse-physician	housewife-shopkeeper
3. receptionist	3. protege	nurse-surgeon	interior designer-architect	softball-baseball
-	1	blond-burly	feminism-conservatism	cosmetics-pharmaceuticals
4. librarian	4. philosopher	giggle-chuckle	vocalist-guitarist	petite-lanky
5. socialite	5. captain	sassy-snappy	diva-superstar	charming-affable
6. hairdresser	6. architect	volleyball-football	cupcakes-pizzas	lovely-brilliant
7. nanny	7. financier	-		
8. bookkeeper	8. warrior	(Gender appropriate she-he analogies	
•		queen-king	sister-brother	mother-father
9. stylist	9. broadcaster	waitress-waiter	ovarian cancer-prostate cancer convent-monastery	
10. housekeeper	10. magician	wante	ovarian cancer prostate cance	convent inchastery

Word Embedding Limitations/Challenges

- Distinguish antonyms from synonyms
 - Antonyms are learned near each other in the embedding space since they are commonly used in similar contexts: "I hate math" vs "I love math" or "Take a right turn" vs "Take a left turn"

Gender bias

What other language biases do you think could be learned?

Today's Topics

Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

Today's Topics

Introduction to natural language processing

Text representation

Neural word embeddings

Programming tutorial

The End