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Review

• Last lecture:
• Representation learning
• Pretrained features
• Fine-tuning
• Training neural networks: hardware & software
• Programming tutorial

• Assignments (Canvas)
• Lab assignment 2 due Wednesday

• Questions?



Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks



Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks



Recall: Image Classification Task

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works



Today’s Scope: Localize Content of Interest 
(Segmentation and Detection)

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works



Today’s Scope: Localize Content of Interest 
(Segmentation and Detection)

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Locate all pixels that belong 
to pre-specified categories

Note: instances of the same 
class are NOT separated



Today’s Scope: Localize Content of Interest 
(Segmentation and Detection)

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Use bounding boxes to locate 
every instance of an object 
from pre-specified categories 



Today’s Scope: Localize Content of Interest 
(Segmentation and Detection)

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Segment every instance of objects 
from pre-specified categories 



Today’s Scope: Localize Content of Interest 
(Segmentation and Detection)

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works



Challenge: When to Choose Which Task?

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works



Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks



Social Media

Face detection 
(e.g., Facebook)



Banking

Mobile check deposit 
(e.g., Bank of America)



Transportation

License Plate Detection (e.g., AllGoVision)



Construction Safety

Pedestrian Detection
(e.g., Blaxtair)

http://media.brintex.com/Occurrence/121/Brochure/3435/brochure.pdf



Counting

Counting Fish (e.g., SalmonSoft)
http://www.wecountfish.com/?page_id=143

Business Traffic Analytics



Remodeling Inspiration

Bell et al; SIGGRAPH; 2013



Rotoscoping (many examples on Wikipedia)

https://www.starnow.co.uk/ahmedmohamm
ed1/photos/4650871/before-and-after-

rotoscopinggreen-screening



Disease Diagnosis; e.g.,

Figure Source: https://pathology.jhu.edu/brain-tumor/grading-classification



Face Makeover

Demo: https://www.maybelline.com/virtual-try-on-makeup-tools



Self-Driving Vehicles

Figure Source: https://www.inc.com/kevin-j-ryan/self-driving-cars-powered-by-people-playing-games-mighty-ai.html



Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks



VOC Challenge

• Goal: locate all instances of 20 
object categories with BBs
• Dataset: 11,530 images collected 

from Flickr and annotated by 
annotators at University of Leeds

Dataset location: http://host.robots.ox.ac.uk/pascal/VOC/index.html
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 

Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

https://cv-tricks.com/artificial-intelligence/object-
detection-using-deep-learning-for-advanced-users-part-1/

http://host.robots.ox.ac.uk/pascal/VOC/index.html


VOC Challenge: Evaluation Metric (IoU)

Score

Ground Truth:

Algorithm:



VOC Challenge: Evaluation Metric (IoU)

Ground Truth:

Algorithm:

28

47

(60%)

Then, threshold: 
e.g., 50% or greater 
means correct detection!



VOC Challenge: Evaluation Metric (mAP)

• For each object class (e.g., cat, dog, …), compute:
• Precision: fraction of correct detections from all detections using 0.5 IoU threshold

Algorithm BB + its Confidence

[Russakovsky et al; IJCV 2015]
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173



VOC Challenge: Evaluation Metric (mAP)

• For each object class (e.g., cat, dog, …), compute:
• Precision: fraction of correct detections from all detections using 0.5 IoU threshold

[Russakovsky et al; IJCV 2015]
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

? ? ? ?



VOC Challenge: Evaluation Metric (mAP)

• For each object class (e.g., cat, dog, …), compute:
• Precision: fraction of correct detections from all detections using 0.5 IoU threshold

• Then, compute mean precision across all classes

[Russakovsky et al; IJCV 2015]
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173



Evaluation Metric (mAP): 
Why “Mean” and Why “Average”

• More generally, for each object class (e.g., cat, dog, …) :
• AP: compute area under a precision-recall curve, created by varying IoU threshold

• Then, compute mean AP across all classes

[Russakovsky et al; IJCV 2015]
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173



Naïve Solution: Sliding Window Approach
Person?

Image Source: https://yourboulder.com/boulder-neighborhood-downtown/

Person?

Person?

Person?

Person?

Person?

Person?

Person?

Person?



Naïve Solution: Sliding Window Approach
Car?

Image Source: https://yourboulder.com/boulder-neighborhood-downtown/

Car?

Car?

Car?

Car?

Car?

Car?

Car?

Car?



Naïve Solution: Sliding Window Approach

• Sliding window approach: must test different locations at…
• Different scales
• Different aspect ratios (e.g., for person vs car or car viewed at different angles)

• Number of regions to test? (e.g., 1920 x 1080 image)
• Easily can explode to hundreds of thousands or millions of windows

• Key limitation
• Very slow!



Historical Context: R-CNN Methods
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R-CNN

• First CNN to outperform 
hand-crafted features on 
detection challenges

• Named after technique: 
Region proposals with 
CNN features

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/



R-CNN

Locate “object”-like regions 
using objectness methods 

• Considerably fewer regions 
than sliding window approach

• Regions likely contain objects 
of interest (i.e., high recall)

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/



R-CNN

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/



Describe Each Region with Fixed-length Vector

Image Source: https://www.researchgate.net/figure/Architecture-of-Alexnet-
From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

Given relatively little amount of training data, devise good feature by fine-tuning pre-trained model

1) Replace final layer of AlexNet (trained on ImageNet) with # of categories in detection dataset 

2) Train for image classification (use max IoU class, if IoU >= 0.5)

Input: 227 x 227 x 3 image

How many classes should be predicted?



Describe Each Region with Fixed-length Vector

Image Source: https://www.researchgate.net/figure/Architecture-of-Alexnet-
From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

Input: 227 x 227 x 3 image

Use FC7 layer from the 
fine-tuned AlexNet model



Describe Each Region with Fixed-length Vector

Image Source: https://www.researchgate.net/figure/Architecture-of-Alexnet-
From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

Challenge: how to resize a proposed 
region to the required size?



Describe Each Region with Fixed-length Vector

Image Source: https://www.researchgate.net/figure/Architecture-of-Alexnet-
From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

Region anisotropically scaled to 
fit the required resolution



Describe Each Region with Fixed-length Vector

Image Source: https://www.researchgate.net/figure/Architecture-of-Alexnet-
From-left-to-right-input-to-output-five-convolutional-layers_fig2_312303454

Input: 227 x 227 x 3 image



R-CNN

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

1. SVM classifier trained to use 
a region’s CNN feature to assign 
a category from pre-defined set

2. Regressor trained to refine 
each region’s position, width, 
and height



R-CNN: Region Refinement

Original region proposal with 
center (px, py), width (pw), and 
height (ph) is refined using model 
parameters (dx, dy, dw, dh)

Image Source: https://lilianweng.github.io/lil-log/2017/12/31/object-
recognition-for-dummies-part-3.html#bounding-box-regression



Algorithm Training: Linear Regression Model

Image Source: https://lilianweng.github.io/lil-log/2017/12/31/object-
recognition-for-dummies-part-3.html#bounding-box-regression

Predicted locationTrue location

• Aim: learn transformation from 
region proposal to ground truth
• Input: original region location; BB 

described by a center (px, py), width (pw), and height (ph) 
• Output: learns four refinement 

functions: dx, dy, dw, dy
• Loss function for learning: SSE



R-CNN Limitations

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

• Slow training procedure
• Must train three models

• Slow at test time 
(~1 minute per image)



Fast R-CNN: Single Stage Training (rather than 3)

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Extract feature description 
per proposed region with 
section of feature map 
corresponding to region 

For each region, assign it 
to a class and refine it



Fast R-CNN Training: Multi-task Loss

Objective function sums classification and localization losses for each region proposal

Softmax scores

Box coordinates (x, y, w, h)

Softmax loss

True label

L2 loss

True location (x’, y’, w’, h’)

Total loss+



Fast R-CNN Training: Multi-task Loss

Objective function sums classification and localization losses for each region proposal

Softmax scores

Box coordinates (x, y, w, h)

Softmax loss

True label

L2 loss

True location (x’, y’, w’, h’)

Total loss+



Fast R-CNN Training: Classification Loss 
(Recall Cross Entropy Loss, aka Log Loss)

Figure source: https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

Greater penalty when 
predicted probability 

of true class is 
confidently wrong

Lesser penalty otherwise



Fast R-CNN Training: Multi-task Loss

Objective function sums classification and localization losses for each region proposal

Softmax scores

Box coordinates (x, y, w, h)

Softmax loss

True label

L2 loss

True location (x’, y’, w’, h’)

Total loss+



Fast R-CNN Training: Measure Localization Loss

Predicted location 
for class u

True location for 
true class “u”

Less sensitive to 
outliers than SSE

Image Source: https://lilianweng.github.io/lil-log/2017/12/31/object-
recognition-for-dummies-part-3.html#bounding-box-regression



Fast R-CNN: Limitation

Figure Source: https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/

Still requires slow, initial  
step of generating  
region proposals



Faster R-CNN

Ren Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” Neurips 2015.

Adds finding region proposals to 
network so that all parts of model 
are learned in end-to-end fashion

Convolutional layers are shared for 
region proposal and detection



Faster R-CNN: Region Proposal Network

Ren Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” Neurips 2015.

Based on convolution, so uses 
sliding window

• At each sliding window position, 
region proposals are predicted 
with respect to an anchor point 
(i.e., center of sliding window 
position) 

• At each anchor point, k = 9 
anchors are used to represent 3 
scales and 3 aspect ratios

Probability of 
object/not object

Parameters to refine anchor box to match 
GT box (center, width, and height)



Faster R-CNN: Region Proposal Network

Ren Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” Neurips 2015.

Based on convolution, so uses 
sliding window

• At each sliding window position, 
region proposals are predicted 
with respect to an anchor point 
(i.e., center of sliding window 
position) 

• At each anchor point, k = 9 
anchors are used to represent 3 
scales and 3 aspect ratios

At training, loss for each region proposal is sum of classification and localization losses



Faster R-CNN Training

Ren Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” Neurips 2015.

1. Train RPN
2. Train Fast R-CNN using 

proposals from pretrained RPN
3. Fine-tune layers unique to RPN
4. Fine-tune the fully connected 

layers of Fast R-CNN



Historical Context: In 2017, Mask R-CNN 
Introduced for Instance Segmentation
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Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks



VOC Challenge

• Goal: locate all pixels belonging to 
20 categories (e.g., person, cat, 
bus, mortorbike, potted plant, 
bottle) plus background
• Dataset: 11,530 images collected 

from Flickr and annotated by 
annotators at University of Leeds

Dataset location: http://host.robots.ox.ac.uk/pascal/VOC/index.html
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew 

Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

http://host.robots.ox.ac.uk/pascal/VOC/index.html


VOC Challenge: Evaluation Metric (IoU)

Score

Ground Truth:

Algorithm:



VOC Challenge: Evaluation Metric (IoU)

Ground Truth:

Algorithm:

?



VOC Challenge: Evaluation Metric (IoU)

Ground Truth:

Algorithm:

19

27

Mean IoU: IoU between predicted and ground-truth pixels, averaged over all 21 categories



Architecture
Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

For each image pixel, 
the probability of 
each class is predicted



Architecture: Output Layer

• e.g., assume a 5-class classifier

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture: Output Layer

• e.g., assume a 5-class classifier; output 1-hot encoding collapsed into single mask image

Source: https://www.jeremyjordan.me/semantic-segmentation/



Architecture
Input: RGB image of ANY size

Output: Image of same size as input

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

How many classes 
are there?
- 21
Why 21? 
- 20 object classes 
plus background



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Do you recognize 
this architecture?



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Can use your favorite 
pretrained ImageNet classifier; 
AlexNet, VGG, GoogleNet



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

To make the architecture 
fully convolutional, fully 
connected layers are 
converted to 
convolutional layers.

In the absence of fully 
connected layers, there 
are no constraints on the 
number of input nodes 
(and so any input image 
size can be supported).



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Another result of 
this change is 
that, unlike for 
classification, a 
class can be 
assigned to each 
“coarse region.”



Architecture: Coarse Region Classification 
(Recall Intuition)

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Using 
VGG16 

instead:



Architecture: Coarse Region Classification 
(Recall Intuition)

Grids reflect relative spatial 
coarseness at each layer

Each line represents a 
convolutional layer

Using 
VGG16 

instead:

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.



Architecture: Coarse Region Classification 
(Recall Intuition)
Stacking many convolutional layers leads to learning patterns in increasingly larger 
regions of the input (e.g., pixel) space.

https://www.deeplearningbook.org/contents/convnets.html



Architecture: Fully vs Convolution Layers

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Each slice indicates 
the likelihood each 
pixel in the coarse 
region belongs to 
the class identified 
by the filter



Architecture: Fully vs Convolution Layers

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

If convolutionizing
ImageNet trained 
classifiers, how 
many classes would 
be predicted for 
each coarse region?



Architecture: Coarse Region Classification 

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Locates 20 object classes 
plus background for VOC



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Challenge: how to decode from 
coarse region classifications to 

per pixel classification?



Architecture: Upsampling (Many Approaches)

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf



Architecture: Upsampling
(Transposed Convolutional Layer)
• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 

”deconvolution layer”
• Idea: learn filters with a fractional sized stride to upsample the coarse image while refining 

it based on the filter values; e.g.,

https://www.machinecurve.com/index.php/2019/09/29/understanding-
transposed-convolutions/#the-goal-reconstructing-the-original-input



Architecture: Upsampling
(Transposed Convolutional Layer)
• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 

”deconvolution layer”
• Idea: learn filters with a fractional sized stride to upsample the coarse image while refining 

it based on the filter values; e.g.,

https://d2l.ai/chapter_computer-vision/transposed-conv.html

(padding is used to 
intermediate values)



Architecture: Upsampling
(Transposed Convolutional Layer)
• Also called “fractional convolutional layer”, “backward convolution”, and, incorrectly, 

”deconvolution layer”
• Idea: learn filters with a fractional sized stride to upsample the coarse image while refining 

it based on the filter values; e.g.,

https://d2l.ai/chapter_computer-vision/transposed-conv.html

(stride is used to compute intermediate values)



Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Results

Figure source: https://www.jeremyjordan.me/semantic-segmentation/

Next challenge: how to decode a highly 
detailed per pixel classification from 

the coarse region classifications?



Architecture: Update to Use Skip Connections

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

FCN16: Sums predictions of lower-
level, more fine-grained features 

(pool4) with the predictions at the 
coarser features

Trained ~1 
more day to 
update the 
FCN-32 model



Architecture: Results

Figure source: https://www.jeremyjordan.me/semantic-segmentation/

Skip connections support capturing finer-grained details while retaining the correct semantic information!



Architecture: Upsampling + Skip Connections

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Seems complicated… why not instead preserve the 
image size and solve for per-pixel classification? 
- would result in unreasonable computational 
burden due to many model parameters



Architecture: Encoder Decoder Architecture

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Then, the feature 
map is decoded 
(upsampled) into a 
full-resolution 
segmentation map.

For efficiency, the image is encoded 
(downsampled) into a lower-resolution 
feature map that effectively 
discriminates between classes…



Training: Took 3 days on 1 GPU

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

• Repeat until stopping criterion met:
1. Forward pass: propagate 

training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients



Training: How Neural Networks Learn

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

• Repeat until stopping criterion met:
1. Forward pass: propagate 

training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Sum across all pixels the distance between predicted 
and true distributions using cross entropy loss

Sum of gradients for all pixels (acts like a minibatch)



Training: Cross Entropy Loss 
(Multinomial Logistic Loss)
• e.g., assume a 5-class classifier
• Distance between predicted 

and true distributions per pixel 
with cross entropy loss



Architecture: Algorithm Training

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Training updates weights of 
pretrained network (aka, fine-tuning)



Results

Long, Shelhamer, and Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Compared to existing methods, produces better results at a faster speed!



Today’s Topics

• Problems

• Applications

• PASCAL VOC detection challenge: R-CNNs

• PASCAL VOC semantic segmentation challenge: fully convolutional networks




