Neural Network Training

Danna Gurari University of Colorado Boulder Fall 2022

https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/AboutCourse.html

Review

- Last lecture:
 - Objective function: what to learn
 - Gradient descent: how to learn
 - Training a neural network: optimization
 - Gradient descent for different activation functions
- Assignments (Canvas):
 - Problem set 1 grades out
 - Lab assignment 1 due Monday
- Questions?

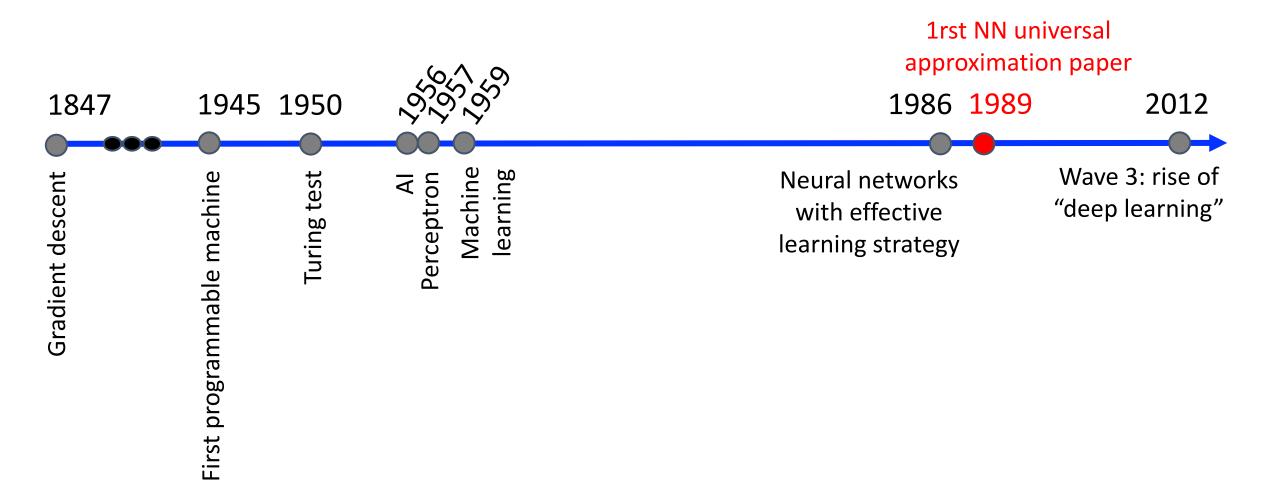
Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Historical Context: Universal Approximator

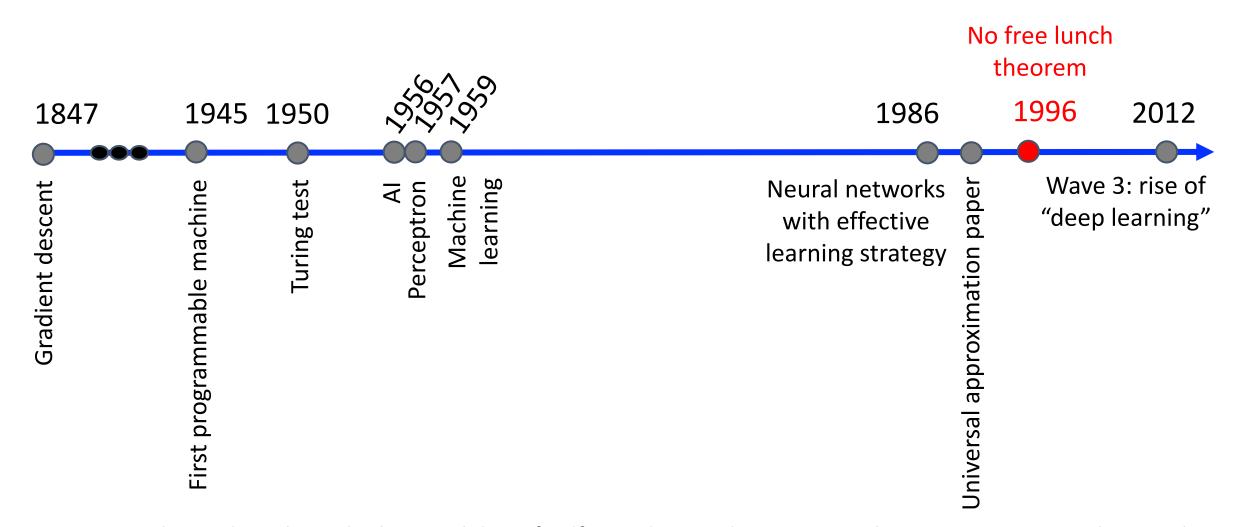


Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989

"The universal approximation theorem means that regardless of what function we are trying to learn, we know that a large MLP [multilayer perceptron] will be able to *represent* this function."

- Ch. 6.4.1 of Goodfellow book on Deep Learning

Historical Context: Challenge



Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989

"**no free lunch theorem**... no machine learning algorithm is universally any better than any other."

- Ch. 5.2.1 of Goodfellow book on Deep Learning

Deep Learning Challenge

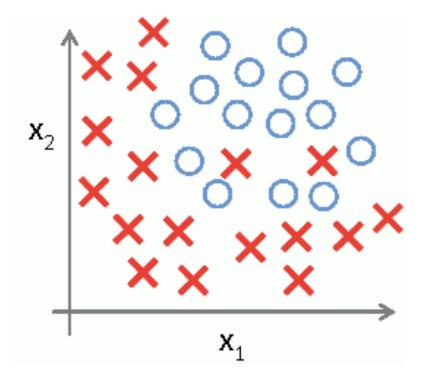
Since neural networks can in theory represent ANY function, how do we learn models that can perform well for the data generated in real world problems...

Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Recall: Class Exercise from Lecture 1

• Model-based classification approach: separate x from o

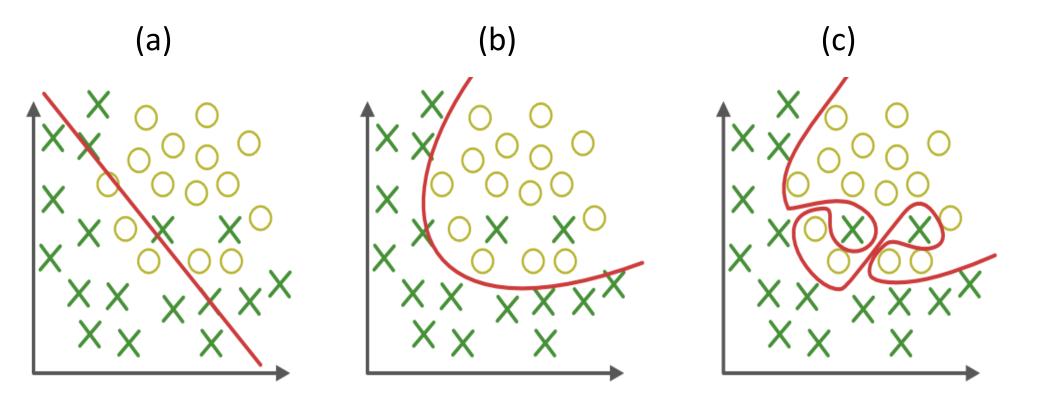


Class volunteer:
1) Draw a straight line (linear equation)
2) Draw a parabola (quadratic equation)
3) Draw any curve

Models with increasing representational capacity

Figure source: https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Which model would you choose to separate x from o?

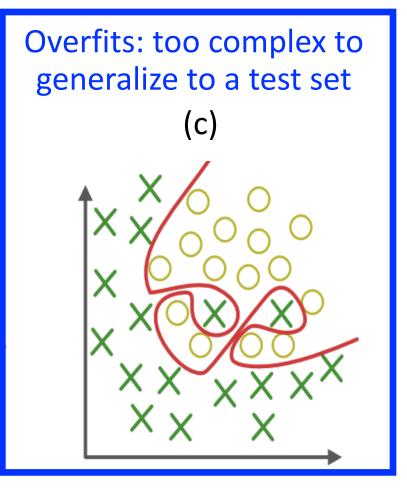


Underfits: too simple Overfits: too complex to to explain the data generalize to a test set (b) (a) (c)

Underfits: too simple to explain the data (a)

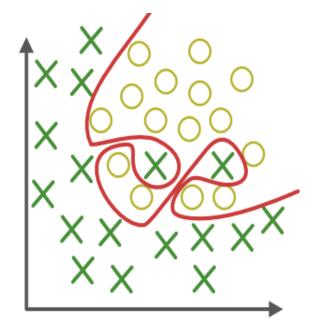
(b)

Key challenge for neural networks since they have many parameters

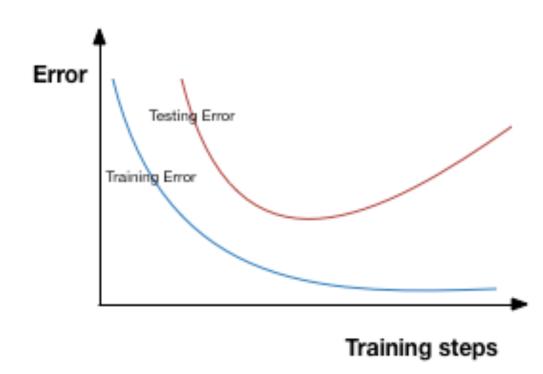


Model Capacity: Overfitting Problem

- Problem: models can learn to model **noise** and so generalize poorly to novel examples!
- What would cause noise in a dataset?
 - e.g., incorrect data entry/labeling, hardware measurement error
- Caution: some outliers are not noise and so are data points we want models to learn



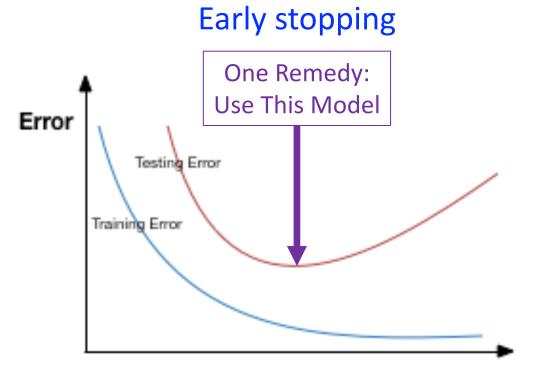
Model Capacity: Overfitting Remedy



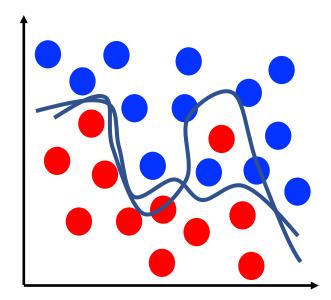
- To detect overfitting, analyze **learning curves** for models tested on training data and test data
 - What happens to training data error as number of training steps increases?
 - Error shrinks
 - What happens to test data error as number of training steps increases?
 - Error shrinks and then grows
 - Why does training error *shrink* and test error *grow*?
 - Modeling *noise* in the training data (i.e., "overfitting") reduces training error at the expense of losing knowledge that generalizes to unobserved test data

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

Model Capacity: How to Avoid Overfitting?



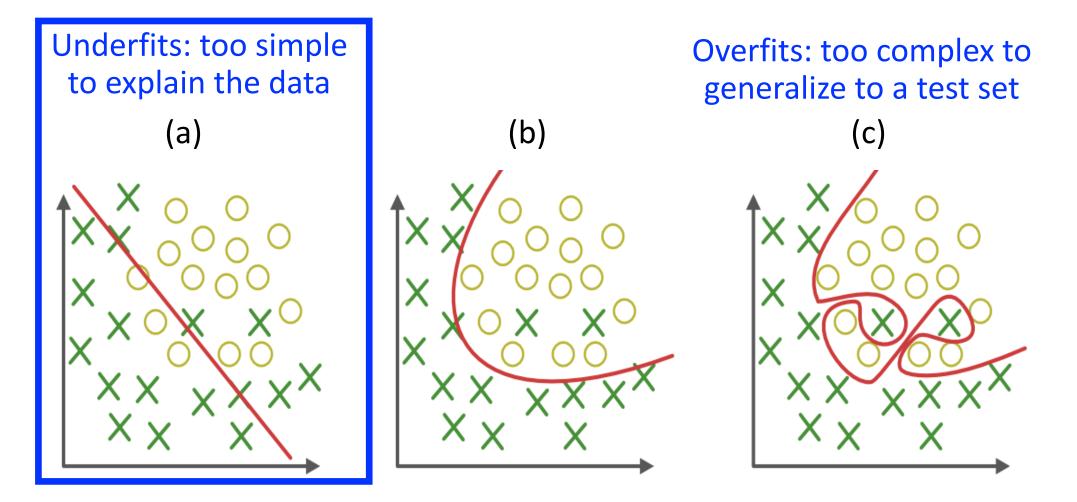
Add training data



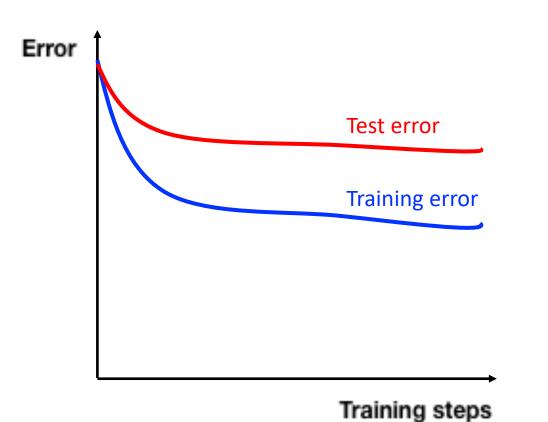
Training steps

Many more techniques to be discussed in this course...

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0



Model Capacity: Underfitting

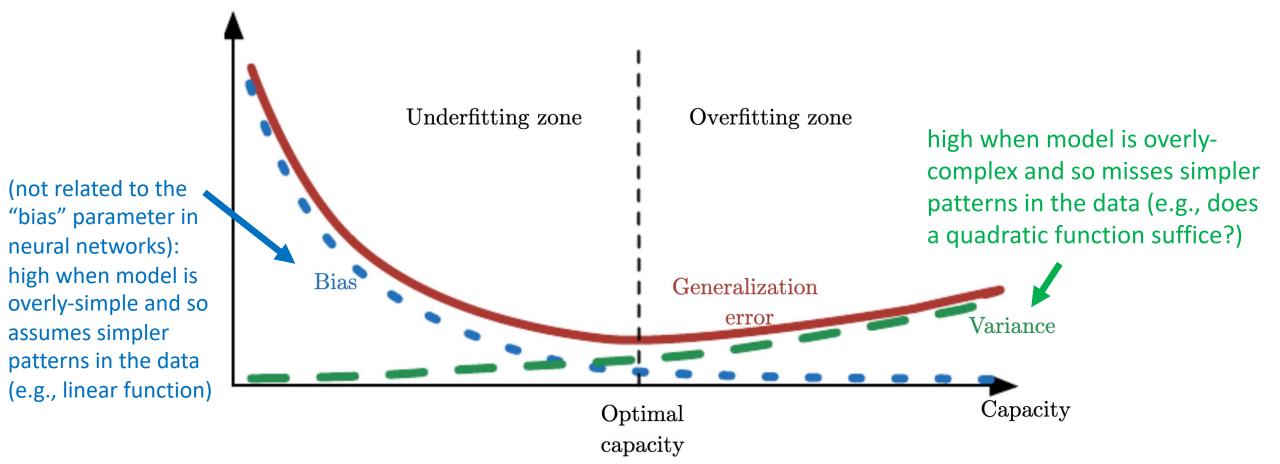


- To detect underfitting, analyze **learning curves** for models tested on training data
 - What happens to training data error as number of training steps increases?
 - Error remains high

Model Capacity: How to Avoid Underfitting?

Increase representational complexity, for example add the number of layers and/or units in a neural network

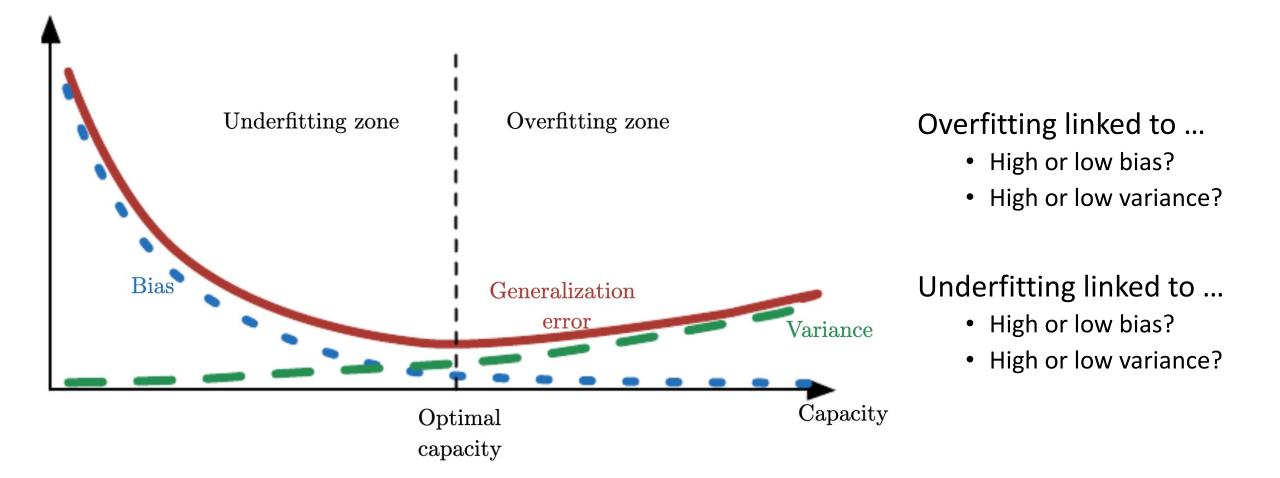
Model Capacity: Overfitting vs Underfitting



Often discussed with respect to a **bias-variance** trade-off

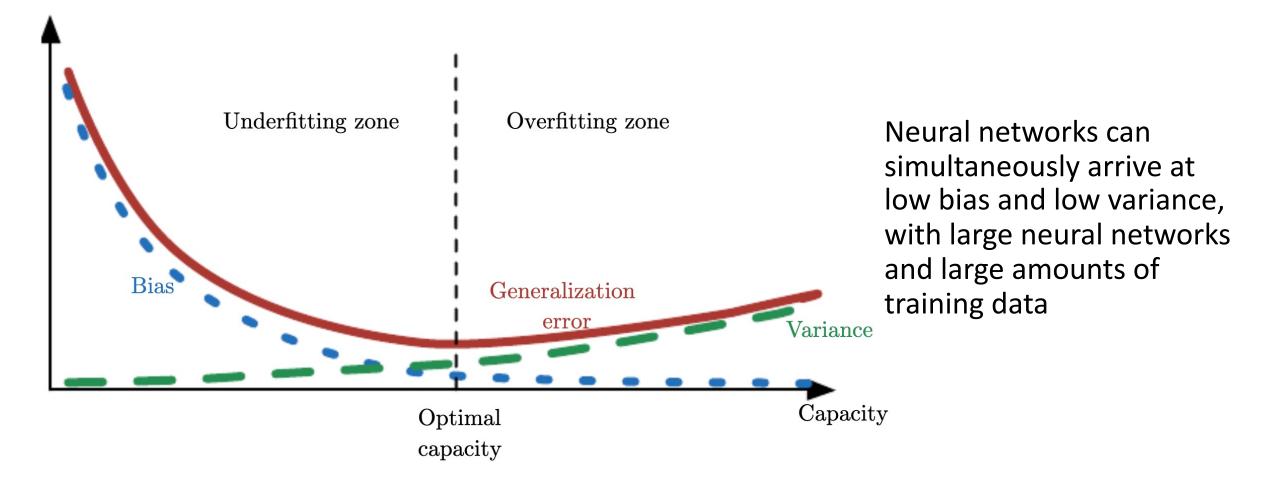
Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Model Capacity: Overfitting vs Underfitting



Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Model Capacity: Overfitting vs Underfitting



Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Summary: Model Capacity

- Goal: learn model with capacity that is neither too small nor too large so it generalizes well when predicting on previously unseen test data
- Challenges: choosing...
 - Architecture (i.e., number of layers, number of units per layer)
 - Training algorithm (e.g., training duration too brief/long)
 - Training dataset (e.g., insufficient training data)

Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Model Design Decisions

Model hyperparameters (selected); e.g.,

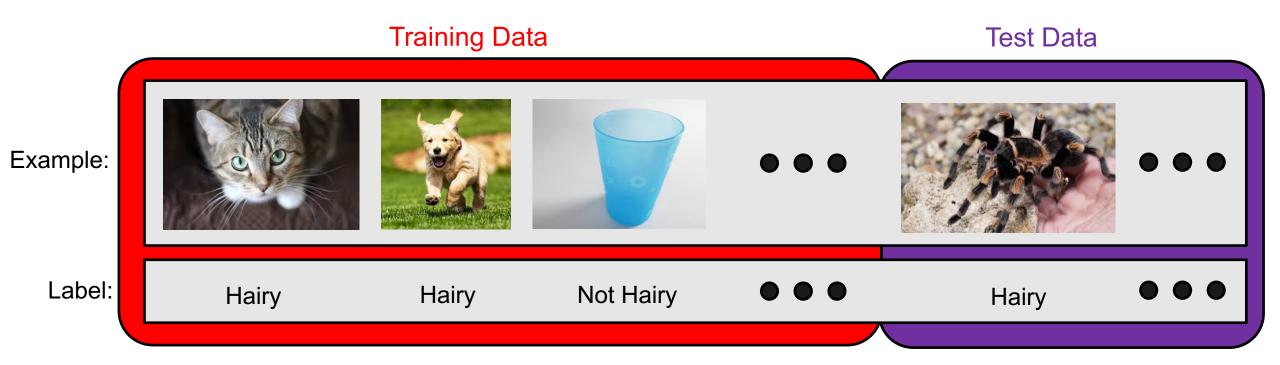
- Number of layers
- Number of units in each layer
- Activation function
- Batch size
- Learning rate

Model parameters (learned)

- Weights
- Biases

Key Challenge: how to design a model without repeatedly observing the test data (which leads to overfitting)?

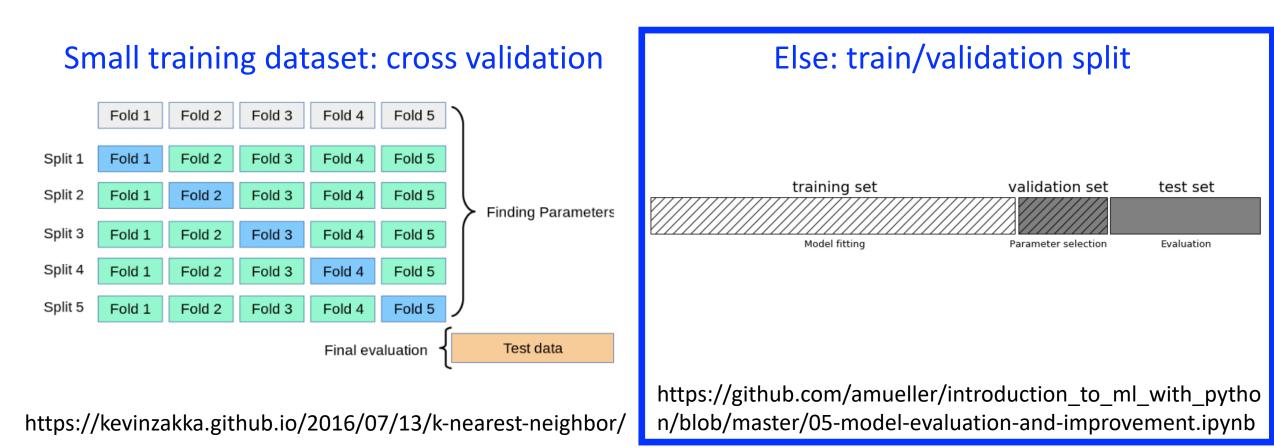
Recall: Our Goal is to Design Models that **Generalize** Well to New, Previously Unseen Examples (Test Data)



Key Challenge: how to design a model without repeatedly observing the test data (which leads to overfitting)?

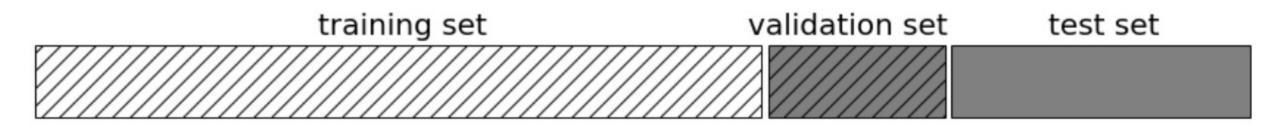
Hyperparameter Tuning: Split Training Set So It Can Be Used to Test Different Hyperparameters

For statistically strong results:



Train/Validation/Test Split

- Split dataset into 3 sets: "train", "validation", and "test" splits
 - e.g., 60%/20%/20% train/val/test split

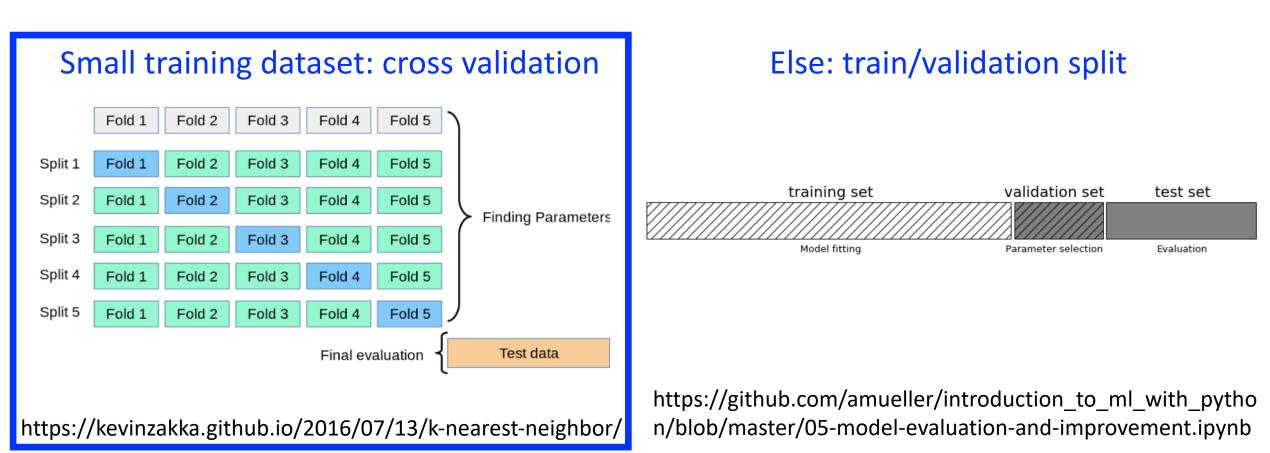


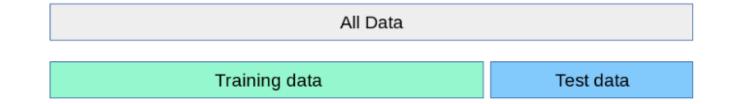
- Hyperparameter selection: test variants on validation set to identify best set of hyperparameters
- Final model: train a new model on data in the training AND validation splits using the best hyperparameters from hyperparameter selection

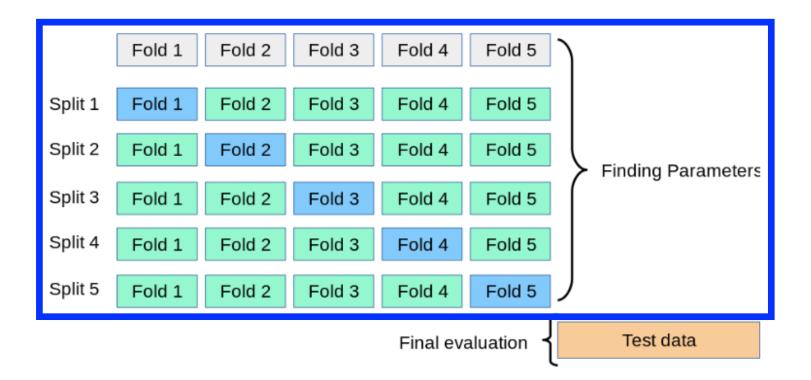
https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb

Hyperparameter Tuning: Split Training Set So It Can Be Used to Test Different Hyperparameters

For statistically strong results:

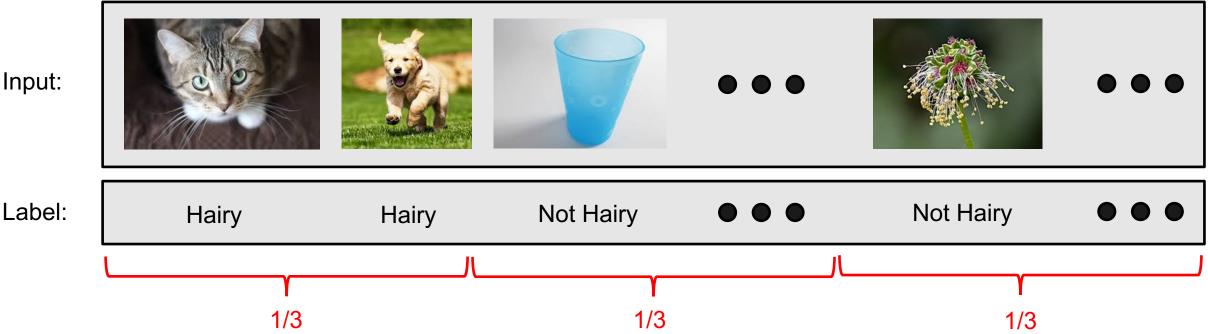






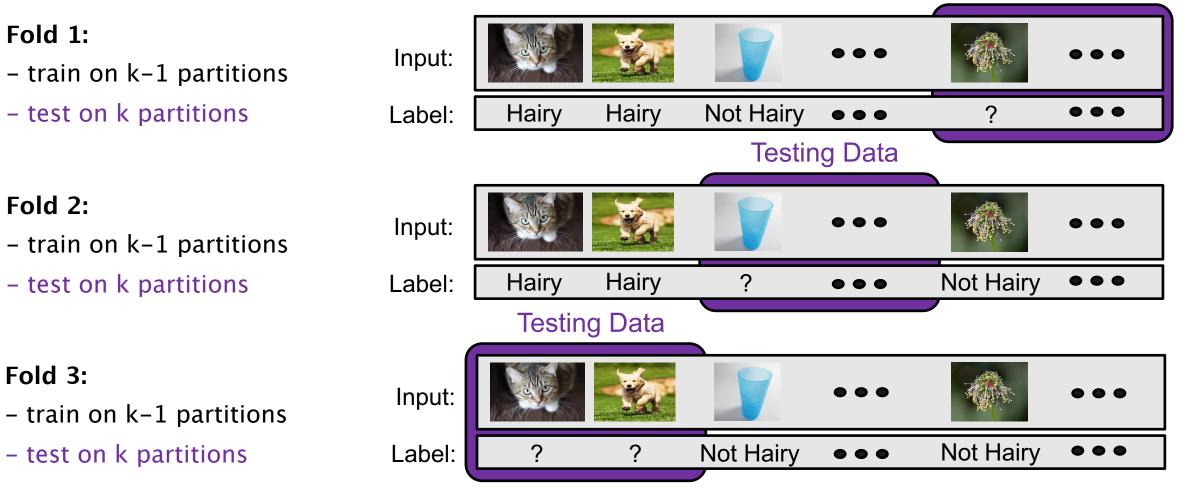
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

e.g., 3-fold cross-validation on training data



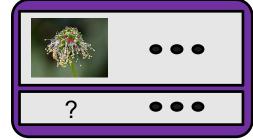
Input:

e.g., 3-fold cross-validation on training data Testing Data



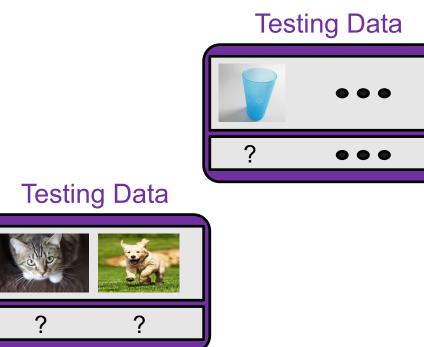
e.g., 3-fold cross-validation on training data Testi

Testing Data

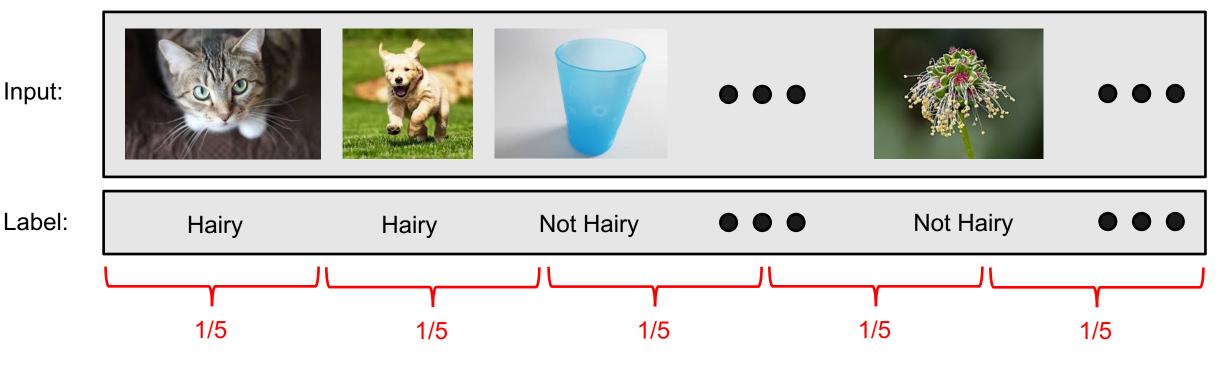


Model performance:

performance across all folds of "test" data

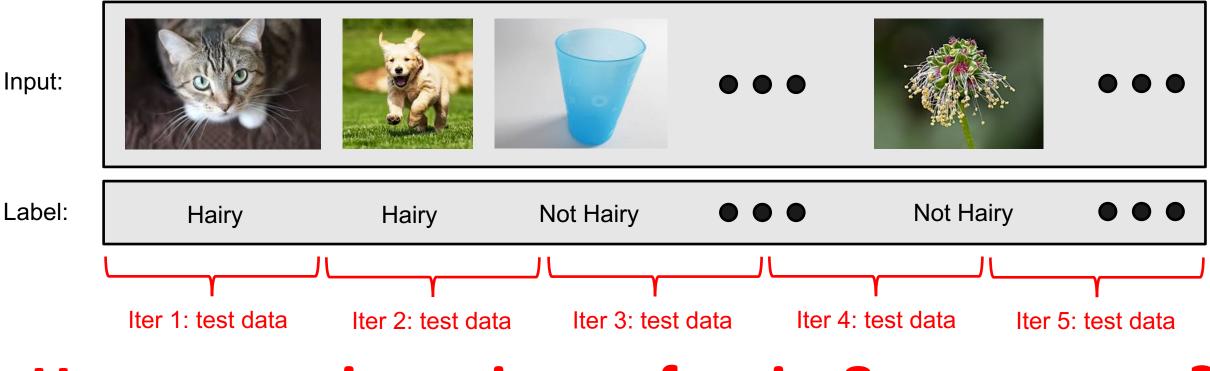


e.g., 5-fold cross-validation on training data



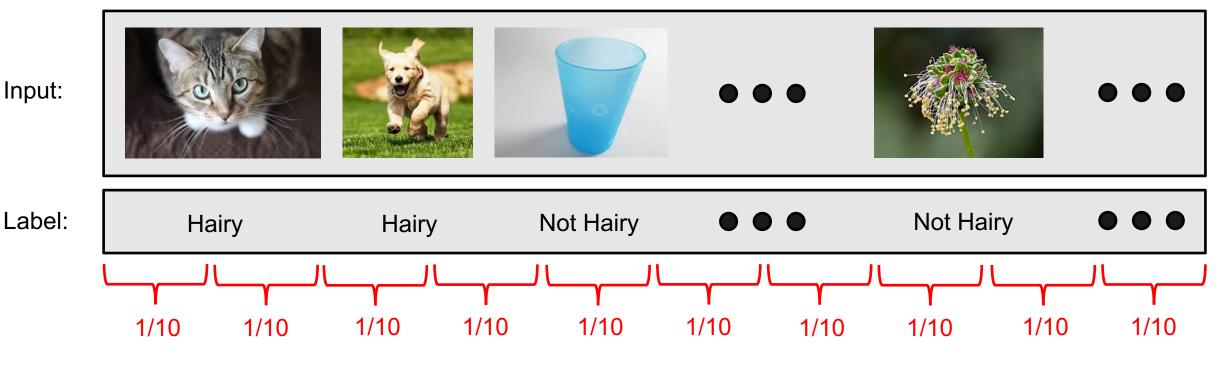
How many partitions of the data to create?

e.g., 5-fold cross-validation on training data



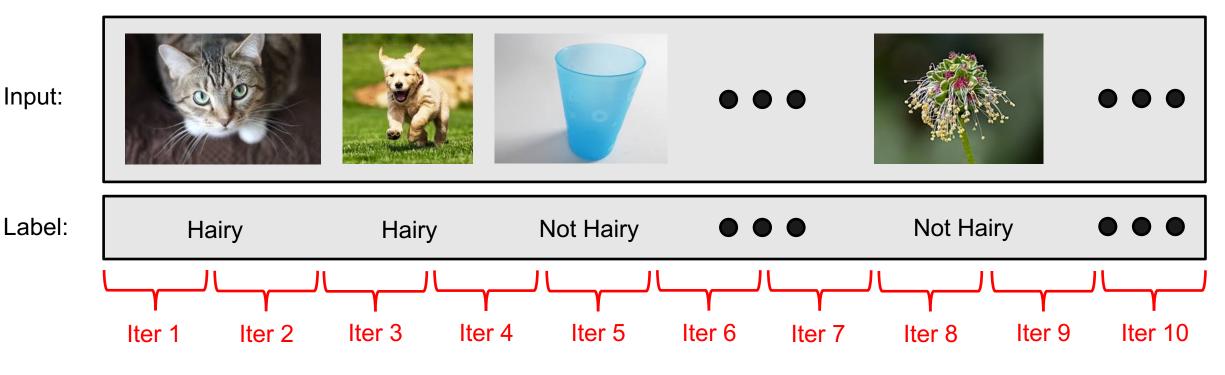
How many iterations of train & test to run?

e.g., 10-fold cross-validation on training data



How many partitions of the data to create?

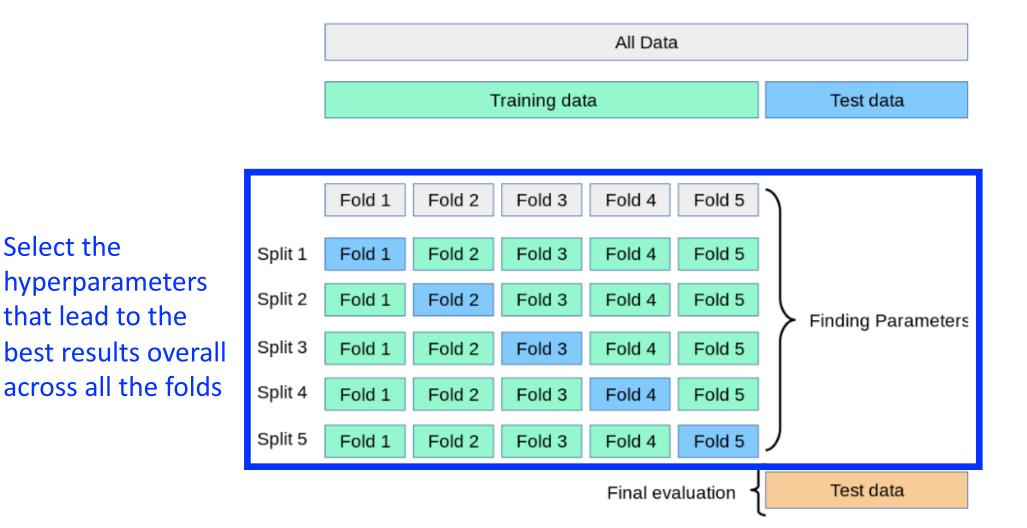
e.g., 10-fold cross-validation on training data



How many iterations of train & test to run?

e.g., k-fold cross-validation on training data

What are the (dis)advantages of using larger values for "k"?

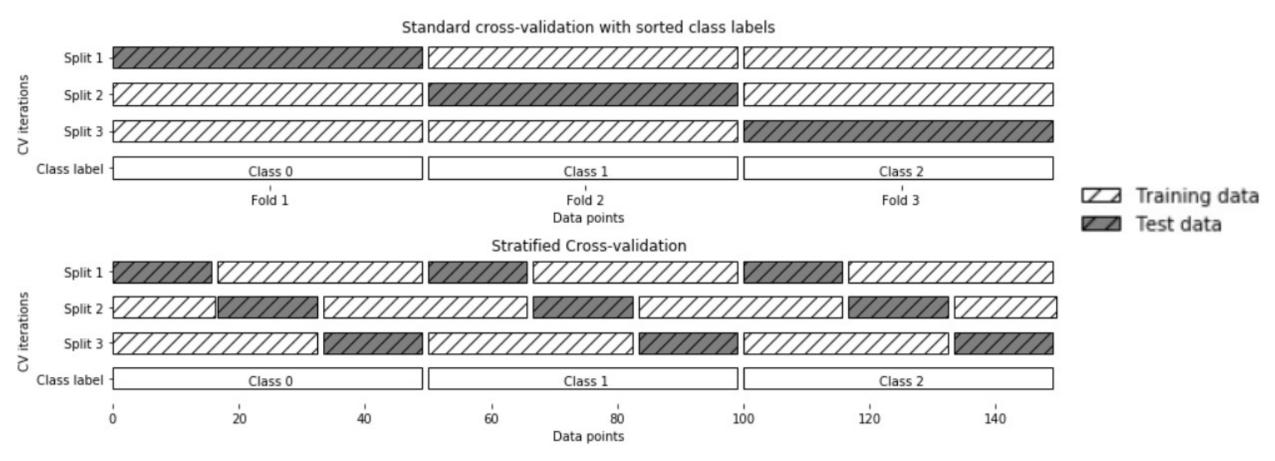


Select the

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Stratified Dataset Splits

• For imbalanced datasets, preserve frequencies of each category in each split; e.g.,



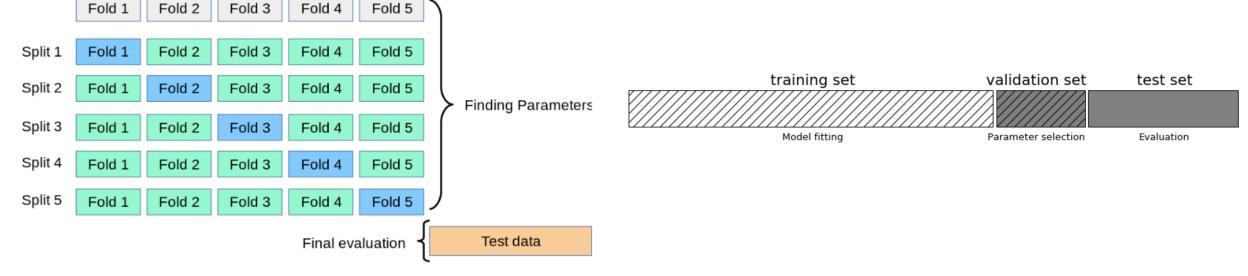
https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb

Summary: Hyperparameter Tuning Approaches

For statistically strong results:

Small training dataset: cross validation

Else: train/validation split



https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

https://github.com/amueller/introduction_to_ml_with_pytho n/blob/master/05-model-evaluation-and-improvement.ipynb

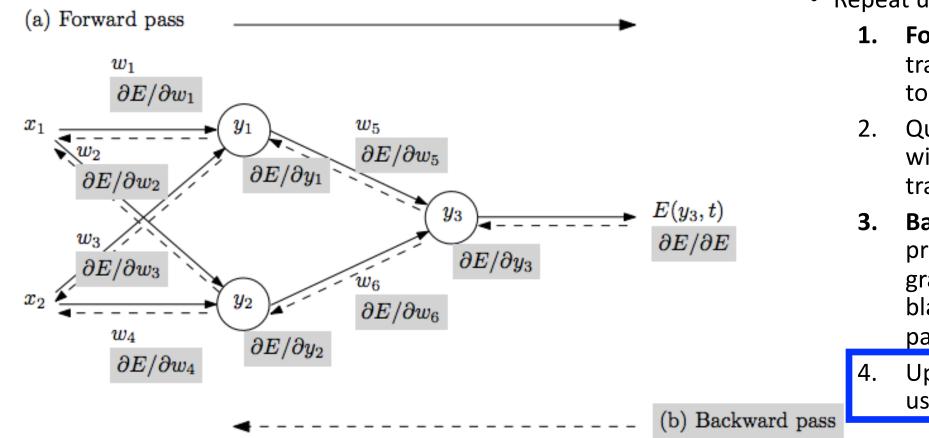
Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Challenge: Train Faster!!!

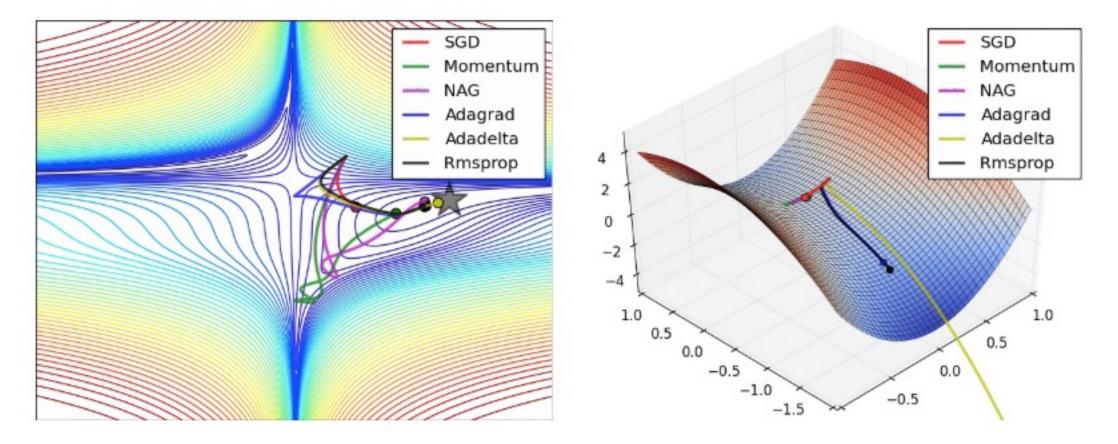
Algorithm training can take hours, days, weeks, months, or more with big data and so many parameters...

Recall: How Neural Networks Learn

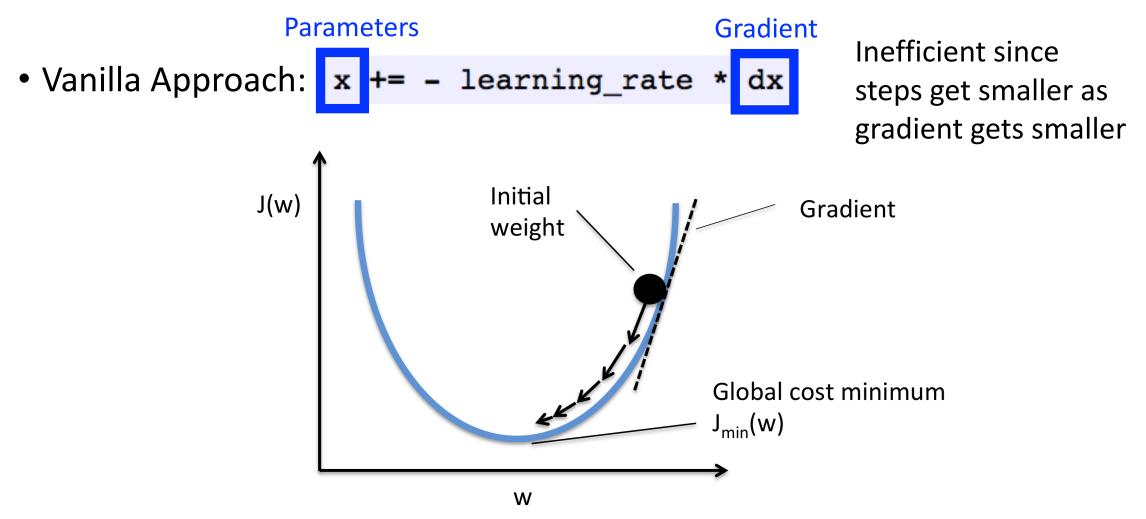


- Repeat until stopping criterion met:
 - Forward pass: propagate training data through model to make prediction
 - 2. Quantify the dissatisfaction with a model's results on the training data
 - Backward pass: using predicted output, calculate gradients backward to assign blame to each model parameter
 - Update each parameter using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



• Demo at http://cs231n.github.io/neural-networks-3/#update



http://cs231n.github.io/neural-networks-3/#update

Figure from: https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

- Momentum optimization:
 - Analogy: roll a ball down a hill and it will pick up momentum

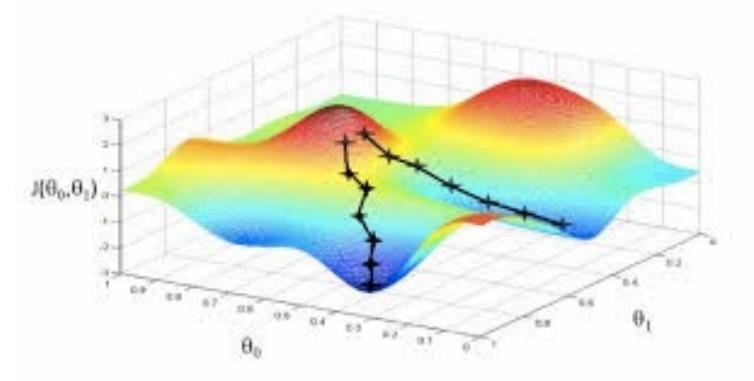


Figure from: https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5

- Momentum optimization:
 - Analogy: roll a ball down a hill and it will pick up momentum

Like friction; values rangeVelocity vector captures cumulativefrom 0 to 1 with largerdirection of previous gradients;Gradient not used for speedbeing greater frictioninitialized to 0but instead acceleration

v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position

- What are advantages and disadvantages?
 - Can roll past local minima 🙂
 - It may roll past optimum and oscillate around it $\ensuremath{\mathfrak{S}}$
 - Another hyperparameter to tune: mu $\ensuremath{\mathfrak{S}}$

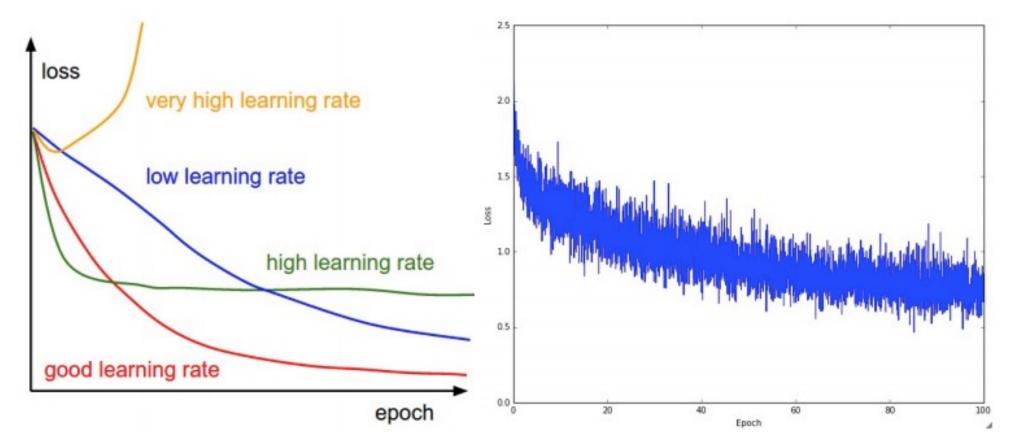
http://cs231n.github.io/neural-networks-3/#update

- Step decay:
 - Reduce the learning rate by some factor every few epochs
- Exponential decay
- 1/t decay
- Adapt learning rate per-parameter
- e.g., AdaGrad, RMSprop, and Adam (i.e., adaptive momentum very popular in practice)

http://cs231n.github.io/neural-networks-3/#update

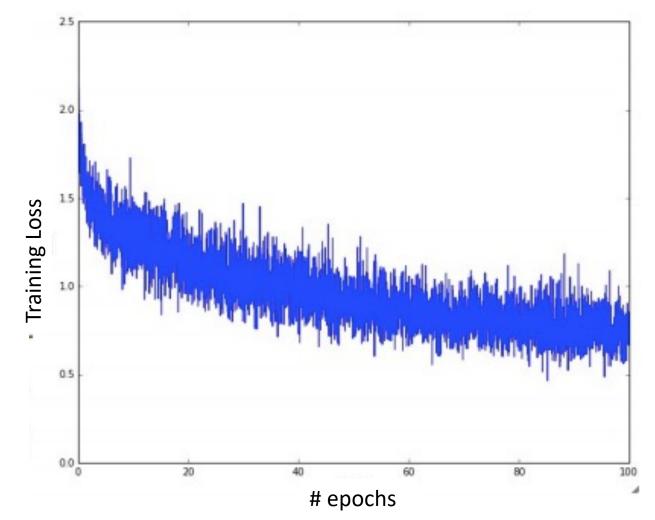
Monitor Loss/Error During Training

• What should happen to the loss function value during training?



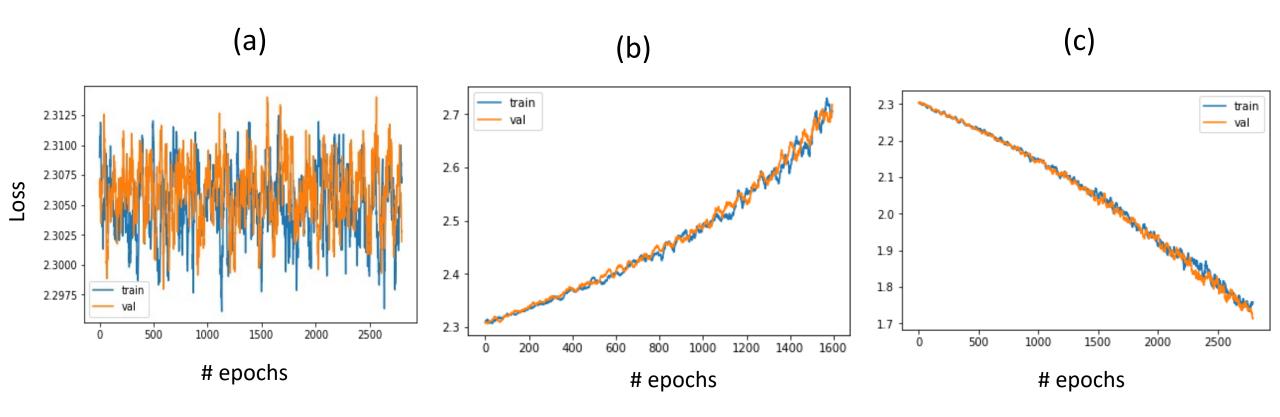
https://cs231n.github.io/neural-networks-3/#update

Analysis: Why Might There Be Oscillations in the Learning Curve for the Training Loss?



https://cs231n.github.io/neural-networks-3/#update

Discussion: From These Learning Curves, What Do You Think Is Happening and What Might Be a Fix?



Feeling Bewildered By Your Learning Curves?

You may feel better when looking at this link: https://lossfunctions.tumblr.com/

Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

Today's Topics

- Universal approximation theorem vs No Free Lunch theorem
- Selecting model capacity: avoid overfitting and underfitting
- Selecting model hyperparameters
- Learning efficiently: optimization methods
- Programming tutorial

