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Review

• Last lecture:
• Objective function: what to learn
• Gradient descent: how to learn
• Training a neural network: optimization 
• Gradient descent for different activation functions

• Assignments (Canvas):
• Problem set 1 grades out 
• Lab assignment 1 due Monday

• Questions?



Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial
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Historical Context: Universal Approximator
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Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989



“The universal approximation theorem means that regardless of 
what function we are trying to learn, we know that a large MLP 
[multilayer perceptron] will be able to represent this function.”

- Ch. 6.4.1 of Goodfellow book on Deep Learning



Historical Context: Challenge
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1996
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theorem



“no free lunch theorem… no machine learning algorithm is 
universally any better than any other.”

- Ch. 5.2.1 of Goodfellow book on Deep Learning



Deep Learning Challenge

Since neural networks can in theory represent ANY 
function, how do we learn models that can perform 
well for the data generated in real world problems…



Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters
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• Programming tutorial



• Model-based classification approach: separate x from o

Figure source: https://medium.com/greyatom/what-is-underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Recall: Class Exercise from Lecture 1

Class volunteer:
1) Draw a straight line (linear equation)
2) Draw a parabola (quadratic equation)
3) Draw any curve

Models with increasing 
representational capacity 



Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

Which model would you choose to separate x from o?

(a) (b) (c)



Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple 
to explain the data

Overfits: too complex to 
generalize to a test set



Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple 
to explain the data

Overfits: too complex to 
generalize to a test set

Key challenge for neural networks 
since they have many parameters



Model Capacity: Overfitting Problem

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

• Problem: models can learn to model noise 
and so generalize poorly to novel examples!
• What would cause noise in a dataset?
• e.g., incorrect data entry/labeling, hardware 

measurement error

• Caution: some outliers are not noise and so 
are data points we want models to learn



Model Capacity: Overfitting Remedy

• To detect overfitting, analyze learning curves for 
models tested on training data and test data

• What happens to training data error as number of 
training steps increases?

• Error shrinks
• What happens to test data error as number of training 

steps increases?
• Error shrinks and then grows

• Why does training error shrink and test error grow?
• Modeling noise in the training data (i.e., “overfitting”) 

reduces training error at the expense of losing 
knowledge that generalizes to unobserved test data

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0



Model Capacity: How to Avoid Overfitting?

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

One Remedy: 
Use This Model 

Early stopping Add training data

Many more techniques to be discussed in this course…



Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple 
to explain the data

Overfits: too complex to 
generalize to a test set



Model Capacity: Underfitting

• To detect underfitting, analyze learning curves for 
models tested on training data

• What happens to training data error as number of 
training steps increases?

• Error remains high
Training error

Test error



Model Capacity: How to Avoid Underfitting?

Increase representational complexity, for example add 
the number of layers and/or units in a neural network



Model Capacity: Overfitting vs Underfitting

Often discussed with respect to a bias-variance trade-off
Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

high when model is overly-
complex and so misses simpler 
patterns in the data (e.g., does 
a quadratic function suffice?)

(not related to the 
“bias” parameter in 
neural networks): 
high when model is 
overly-simple and so 
assumes simpler 
patterns in the data 
(e.g., linear function)



Model Capacity: Overfitting vs Underfitting

Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Underfitting linked to …
• High or low bias?
• High or low variance?

Overfitting linked to …
• High or low bias?
• High or low variance?



Model Capacity: Overfitting vs Underfitting

Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Neural networks can 
simultaneously arrive at 
low bias and low variance, 
with large neural networks 
and large amounts of 
training data



Summary: Model Capacity

• Goal: learn model with capacity that is neither too small nor too large
so it generalizes well when predicting on previously unseen test data

• Challenges: choosing…
- Architecture (i.e., number of layers, number of units per layer)
- Training algorithm (e.g., training duration too brief/long)
- Training dataset (e.g., insufficient training data)
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Model Design Decisions

Key Challenge: how to design a model without repeatedly 
observing the test data (which leads to overfitting)?

Model parameters (learned)
• Weights 
• Biases

Model hyperparameters (selected); e.g.,
• Number of layers
• Number of units in each layer
• Activation function
• Batch size
• Learning rate
• …



Recall: Our Goal is to Design Models that Generalize 
Well to New, Previously Unseen Examples (Test Data)

Training Data Test Data

Example:

Label: Hairy Hairy Not Hairy Hairy

Key Challenge: how to design a model without repeatedly 
observing the test data (which leads to overfitting)?



Hyperparameter Tuning: Split Training Set So It 
Can Be Used to Test Different Hyperparameters

For statistically strong results: 

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://github.com/amueller/introduction_to_ml_with_pytho
n/blob/master/05-model-evaluation-and-improvement.ipynb



Train/Validation/Test Split

• Split dataset into 3 sets: “train”, “validation”, and “test” splits 
• e.g., 60%/20%/20% train/val/test split

• Hyperparameter selection: test variants on validation set to identify 
best set of hyperparameters
• Final model: train a new model on data in the training AND validation 

splits using the best hyperparameters from hyperparameter selection

https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb



Hyperparameter Tuning: Split Training Set So It 
Can Be Used to Test Different Hyperparameters

For statistically strong results: 

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
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Cross-Validation: Limit Influence of Dataset Split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

1/3 1/3 1/3

e.g., 3-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label:

Testing Data

Fold 2: 
- train on k-1 partitions
- test on k partitions ?

? ? Not Hairy

Input:

Label:

Testing Data

Fold 3: 
- train on k-1 partitions
- test on k partitions Not Hairy

Hairy Hairy ?

Input:

Label: Not Hairy

Testing Data

Fold 1: 
- train on k-1 partitions
- test on k partitions

e.g., 3-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split
Testing Data

?

Testing Data

? ?

Testing Data

?Model performance: 
performance across all 
folds of “test” data

e.g., 3-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many partitions of the data to create?
1/5 1/5 1/5 1/5 1/5

e.g., 5-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many iterations of train & test to run?
Iter 1: test data Iter 2: test data Iter 3: test data Iter 4: test data Iter 5: test data

e.g., 5-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many partitions of the data to create?
1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

e.g., 10-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

How many iterations of train & test to run?

e.g., 10-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

What are the (dis)advantages of 
using larger values for “k”?

e.g., k-fold cross-validation on training data



Cross-Validation: Limit Influence of Dataset Split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Select the 
hyperparameters 
that lead to the 
best results overall 
across all the folds



Stratified Dataset Splits

• For imbalanced datasets, preserve frequencies of each category in each split; e.g., 

https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb



Summary: Hyperparameter Tuning Approaches

For statistically strong results: 

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://github.com/amueller/introduction_to_ml_with_pytho
n/blob/master/05-model-evaluation-and-improvement.ipynb
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Challenge: Train Faster!!!

Algorithm training can take hours, days, weeks, months, 
or more with big data and so many parameters…



Recall: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Train Faster: How to Update Using Gradient?

• Demo at http://cs231n.github.io/neural-networks-3/#update



Train Faster: How to Update Using Gradient?

• Vanilla Approach:

Figure from: https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

Inefficient since 
steps get smaller as 
gradient gets smaller

http://cs231n.github.io/neural-networks-3/#update

GradientParameters



Train Faster: How to Update Using Gradient?

• Momentum optimization: 
• Analogy: roll a ball down a hill and it will pick up momentum

Figure from: https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5



Train Faster: How to Update Using Gradient?

• Momentum optimization: 
• Analogy: roll a ball down a hill and it will pick up momentum

• What are advantages and disadvantages?
• Can roll past local minima J
• It may roll past optimum and oscillate around it L
• Another hyperparameter to tune: mu L

http://cs231n.github.io/neural-networks-3/#update

Like friction; values range 
from 0 to 1 with larger 
being greater friction

Gradient not used for speed 
but instead acceleration

Velocity vector captures cumulative 
direction of previous gradients; 
initialized to 0



Train Faster: How to Update Using Gradient?

• Step decay: 
• Reduce the learning rate by some factor every few epochs

• Exponential decay

• 1/t decay

• Adapt learning rate per-parameter 
• e.g., AdaGrad, RMSprop, and Adam (i.e., adaptive momentum – very popular in practice)

http://cs231n.github.io/neural-networks-3/#update



Monitor Loss/Error During Training

• What should happen to the loss function value during training?

https://cs231n.github.io/neural-networks-3/#update



Analysis: Why Might There Be Oscillations in 
the Learning Curve for the Training Loss?

https://cs231n.github.io/neural-networks-3/#update
# epochs
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Discussion: From These Learning Curves, What Do 
You Think Is Happening and What Might Be a Fix?

(a) (b) (c)

# epochs # epochs# epochs

Lo
ss



Feeling Bewildered By Your Learning Curves?

You may feel better when looking at this link: 
https://lossfunctions.tumblr.com/
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