
Neural Network Training

Danna Gurari
University of Colorado Boulder

Fall 2022

https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/AboutCourse.html

Review

• Last lecture:
• Objective function: what to learn
• Gradient descent: how to learn
• Training a neural network: optimization
• Gradient descent for different activation functions

• Assignments (Canvas):
• Problem set 1 grades out
• Lab assignment 1 due Monday

• Questions?

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

Historical Context: Universal Approximator

Fi
rs

t p
ro

gr
am

m
ab

le
 m

ac
hi

ne

2012

M
ac

hi
ne

le

ar
ni

ng

Tu
rin

g
te

st

1945

AI
19

561950 19
59

Neural networks
with effective

learning strategy

1986

Wave 3: rise of
“deep learning”

19
57

Pe
rc

ep
tr

on

19891847

Gr
ad

ie
nt

 d
es

ce
nt

1rst NN universal
approximation paper

Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989

“The universal approximation theorem means that regardless of
what function we are trying to learn, we know that a large MLP
[multilayer perceptron] will be able to represent this function.”

- Ch. 6.4.1 of Goodfellow book on Deep Learning

Historical Context: Challenge

Fi
rs

t p
ro

gr
am

m
ab

le
 m

ac
hi

ne

2012

M
ac

hi
ne

le

ar
ni

ng

Tu
rin

g
te

st

1945

AI
19

561950 19
59

Neural networks
with effective

learning strategy

1986

Wave 3: rise of
“deep learning”

19
57

Pe
rc

ep
tr

on

1847

Gr
ad

ie
nt

 d
es

ce
nt

U
ni

ve
rs

al
 a

pp
ro

xi
m

at
io

n
pa

pe
r

Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989

1996

No free lunch
theorem

“no free lunch theorem… no machine learning algorithm is
universally any better than any other.”

- Ch. 5.2.1 of Goodfellow book on Deep Learning

Deep Learning Challenge

Since neural networks can in theory represent ANY
function, how do we learn models that can perform
well for the data generated in real world problems…

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

• Model-based classification approach: separate x from o

Figure source: https://medium.com/greyatom/what-is-underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Recall: Class Exercise from Lecture 1

Class volunteer:
1) Draw a straight line (linear equation)
2) Draw a parabola (quadratic equation)
3) Draw any curve

Models with increasing
representational capacity

Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

Which model would you choose to separate x from o?

(a) (b) (c)

Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple
to explain the data

Overfits: too complex to
generalize to a test set

Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple
to explain the data

Overfits: too complex to
generalize to a test set

Key challenge for neural networks
since they have many parameters

Model Capacity: Overfitting Problem

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

• Problem: models can learn to model noise
and so generalize poorly to novel examples!
• What would cause noise in a dataset?
• e.g., incorrect data entry/labeling, hardware

measurement error

• Caution: some outliers are not noise and so
are data points we want models to learn

Model Capacity: Overfitting Remedy

• To detect overfitting, analyze learning curves for
models tested on training data and test data

• What happens to training data error as number of
training steps increases?

• Error shrinks
• What happens to test data error as number of training

steps increases?
• Error shrinks and then grows

• Why does training error shrink and test error grow?
• Modeling noise in the training data (i.e., “overfitting”)

reduces training error at the expense of losing
knowledge that generalizes to unobserved test data

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

Model Capacity: How to Avoid Overfitting?

Image Source: https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

One Remedy:
Use This Model

Early stopping Add training data

Many more techniques to be discussed in this course…

Model Capacity

Figure source: https://towardsdatascience.com/underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf

(a) (b) (c)

Underfits: too simple
to explain the data

Overfits: too complex to
generalize to a test set

Model Capacity: Underfitting

• To detect underfitting, analyze learning curves for
models tested on training data

• What happens to training data error as number of
training steps increases?

• Error remains high
Training error

Test error

Model Capacity: How to Avoid Underfitting?

Increase representational complexity, for example add
the number of layers and/or units in a neural network

Model Capacity: Overfitting vs Underfitting

Often discussed with respect to a bias-variance trade-off
Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

high when model is overly-
complex and so misses simpler
patterns in the data (e.g., does
a quadratic function suffice?)

(not related to the
“bias” parameter in
neural networks):
high when model is
overly-simple and so
assumes simpler
patterns in the data
(e.g., linear function)

Model Capacity: Overfitting vs Underfitting

Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Underfitting linked to …
• High or low bias?
• High or low variance?

Overfitting linked to …
• High or low bias?
• High or low variance?

Model Capacity: Overfitting vs Underfitting

Source: Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Neural networks can
simultaneously arrive at
low bias and low variance,
with large neural networks
and large amounts of
training data

Summary: Model Capacity

• Goal: learn model with capacity that is neither too small nor too large
so it generalizes well when predicting on previously unseen test data

• Challenges: choosing…
- Architecture (i.e., number of layers, number of units per layer)
- Training algorithm (e.g., training duration too brief/long)
- Training dataset (e.g., insufficient training data)

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

Model Design Decisions

Key Challenge: how to design a model without repeatedly
observing the test data (which leads to overfitting)?

Model parameters (learned)
• Weights
• Biases

Model hyperparameters (selected); e.g.,
• Number of layers
• Number of units in each layer
• Activation function
• Batch size
• Learning rate
• …

Recall: Our Goal is to Design Models that Generalize
Well to New, Previously Unseen Examples (Test Data)

Training Data Test Data

Example:

Label: Hairy Hairy Not Hairy Hairy

Key Challenge: how to design a model without repeatedly
observing the test data (which leads to overfitting)?

Hyperparameter Tuning: Split Training Set So It
Can Be Used to Test Different Hyperparameters

For statistically strong results:

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://github.com/amueller/introduction_to_ml_with_pytho
n/blob/master/05-model-evaluation-and-improvement.ipynb

Train/Validation/Test Split

• Split dataset into 3 sets: “train”, “validation”, and “test” splits
• e.g., 60%/20%/20% train/val/test split

• Hyperparameter selection: test variants on validation set to identify
best set of hyperparameters
• Final model: train a new model on data in the training AND validation

splits using the best hyperparameters from hyperparameter selection

https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb

Hyperparameter Tuning: Split Training Set So It
Can Be Used to Test Different Hyperparameters

For statistically strong results:

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://github.com/amueller/introduction_to_ml_with_pytho
n/blob/master/05-model-evaluation-and-improvement.ipynb

Cross-Validation: Limit Influence of Dataset Split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

1/3 1/3 1/3

e.g., 3-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label:

Testing Data

Fold 2:
- train on k-1 partitions
- test on k partitions ?

? ? Not Hairy

Input:

Label:

Testing Data

Fold 3:
- train on k-1 partitions
- test on k partitions Not Hairy

Hairy Hairy ?

Input:

Label: Not Hairy

Testing Data

Fold 1:
- train on k-1 partitions
- test on k partitions

e.g., 3-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split
Testing Data

?

Testing Data

? ?

Testing Data

?Model performance:
performance across all
folds of “test” data

e.g., 3-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many partitions of the data to create?
1/5 1/5 1/5 1/5 1/5

e.g., 5-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many iterations of train & test to run?
Iter 1: test data Iter 2: test data Iter 3: test data Iter 4: test data Iter 5: test data

e.g., 5-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

How many partitions of the data to create?
1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

e.g., 10-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

How many iterations of train & test to run?

e.g., 10-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

Hairy Hairy Not Hairy

Input:

Label: Not Hairy

What are the (dis)advantages of
using larger values for “k”?

e.g., k-fold cross-validation on training data

Cross-Validation: Limit Influence of Dataset Split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Select the
hyperparameters
that lead to the
best results overall
across all the folds

Stratified Dataset Splits

• For imbalanced datasets, preserve frequencies of each category in each split; e.g.,

https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb

Summary: Hyperparameter Tuning Approaches

For statistically strong results:

Small training dataset: cross validation Else: train/validation split

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://github.com/amueller/introduction_to_ml_with_pytho
n/blob/master/05-model-evaluation-and-improvement.ipynb

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

Challenge: Train Faster!!!

Algorithm training can take hours, days, weeks, months,
or more with big data and so many parameters…

Recall: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make prediction

2. Quantify the dissatisfaction
with a model’s results on the
training data

3. Backward pass: using
predicted output, calculate
gradients backward to assign
blame to each model
parameter

4. Update each parameter
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Train Faster: How to Update Using Gradient?

• Demo at http://cs231n.github.io/neural-networks-3/#update

Train Faster: How to Update Using Gradient?

• Vanilla Approach:

Figure from: https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

Inefficient since
steps get smaller as
gradient gets smaller

http://cs231n.github.io/neural-networks-3/#update

GradientParameters

Train Faster: How to Update Using Gradient?

• Momentum optimization:
• Analogy: roll a ball down a hill and it will pick up momentum

Figure from: https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5

Train Faster: How to Update Using Gradient?

• Momentum optimization:
• Analogy: roll a ball down a hill and it will pick up momentum

• What are advantages and disadvantages?
• Can roll past local minima J
• It may roll past optimum and oscillate around it L
• Another hyperparameter to tune: mu L

http://cs231n.github.io/neural-networks-3/#update

Like friction; values range
from 0 to 1 with larger
being greater friction

Gradient not used for speed
but instead acceleration

Velocity vector captures cumulative
direction of previous gradients;
initialized to 0

Train Faster: How to Update Using Gradient?

• Step decay:
• Reduce the learning rate by some factor every few epochs

• Exponential decay

• 1/t decay

• Adapt learning rate per-parameter
• e.g., AdaGrad, RMSprop, and Adam (i.e., adaptive momentum – very popular in practice)

http://cs231n.github.io/neural-networks-3/#update

Monitor Loss/Error During Training

• What should happen to the loss function value during training?

https://cs231n.github.io/neural-networks-3/#update

Analysis: Why Might There Be Oscillations in
the Learning Curve for the Training Loss?

https://cs231n.github.io/neural-networks-3/#update
epochs

Tr
ai

ni
ng

 L
os

s

Discussion: From These Learning Curves, What Do
You Think Is Happening and What Might Be a Fix?

(a) (b) (c)

epochs # epochs# epochs

Lo
ss

Feeling Bewildered By Your Learning Curves?

You may feel better when looking at this link:
https://lossfunctions.tumblr.com/

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

Today’s Topics

• Universal approximation theorem vs No Free Lunch theorem

• Selecting model capacity: avoid overfitting and underfitting

• Selecting model hyperparameters

• Learning efficiently: optimization methods

• Programming tutorial

