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Review

• Last lecture:
• Motivation for neural networks: need non-linear models
• Neural network architecture: hidden layers 
• Neural network architecture: activation functions
• Neural network architecture: output units
• Programming tutorial

• Assignments (Canvas):
• Lab assignment 1 due next week

• Questions?



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions



Objective Function: Analogous to Learning…
e.g., to walk

Key question: how do you measure/quantify task success?



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Figure source: http://cs231n.github.io/neural-networks-1/

e.g., make as small as possible the 
squared error (aka, L2 loss, quadratic loss)

What is the range of possible values?
• Minimum: 0 

• i.e., all correct predictions

• Maximum: Infinity 
• i.e., incorrect predictions

Predicted valueTrue value

Mean taken over n instances



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Figure source: https://towardsdatascience.com/multi-label-
image-classification-with-neural-network-keras-ddc1ab1afede

e.g., make as small as possible the 
distance between predicted and true 
class distributions for the training 
examples with cross entropy loss

True prediction is 1 hot vector (i.e., one 1 and the rest 0s)



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Number of classes

Probability distribution of true class
Probability distribution of predicted class

Recall, truth is set to 1 for 
one class and 0 otherwise

Observed features

Simplifies to the log of the predicted 
probability for the correct class 

(i.e., negative log likelihood loss) 



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Number of classes?

Probability distribution of true class
Probability distribution of predicted class

Recall, truth is set to 1 for 
one class and 0 otherwise

Observed features
What is the range of possible values?
• Minimum: 0 

• i.e., correct prediction: negative log of 1

• Maximum: Infinity 
• i.e., incorrect prediction: negative log of 0



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

What is the range of possible values?
• Minimum: 0 

• i.e., correct prediction: negative log of 1

• Maximum: Infinity 
• i.e., incorrect prediction: negative log of 0

Source: https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

More confidently wrong 
predictions lead to greater error



Objective Function: Learn Model Parameters 
that Achieve a Specified (Measurable) Goal

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



MANY objective functions exist, and we 
will examine popular ones in this course



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions



Historical Context: Gradient Descent
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Scalable way to train nonlinear models on “big data”



• Repeat:
1. Guess
2. Calculate error

• e.g., learn linear model for converting kilometers to miles when only 
observing the input “miles” and output “kilometers”

Miles Kilometers = miles x constant Kilometers

Gradient Descent: Intuition

Make Your Own Neural Network, Tariq Rashid



• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

$10 Shekels = dollars x constant

Gradient Descent: Intuition



• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Error = Guess - Correct

Gradient Descent: Intuition

$10 Shekels = dollars x constant
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• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent: Intuition

$10 Shekels = dollars x constant



Gradient Descent: Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

• Idea: iteratively adjust constant (i.e., model parameter) to try to 
reduce the error

Error = Guess - Correct$10 Shekels = dollars x constant



Gradient Descent: Intuition

• Iteratively search for model parameters (i.e., weights and biases) that solve 
optimization problem (i.e., minimize or maximize an objective function)

Analogy: hiking to 
the bottom of a 
mountain range… 
blind or blindfolded!

Start

End Point (Minimum)



Gradient Descent: Employs Calculus
• Idea: use derivatives!

• Derivatives tells us how to change the input x to make a small change to the output f(x)
• Gradient is a vector that indicates how f(x) changes as each function variable changes (i.e., partial derivatives)

• Gradient descent: 
• Iteratively take steps in the opposite direction of the gradient to minimize the function

Which letter(s) are the global minima?

Which letter(s) are local minima?



• Step size = learning rate
• (a) When learning rate is too small, convergence to good solution will be slow
• (b) When learning rate is too large, convergence to a good solution is not possible

• Next lecture: examination of how to learn effectively using the gradients

Gradient Descent: How Much to Update?

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

(a) (b) 



Gradient Descent: How Often to Update?

• Use calculations over all training examples (Batch gradient descent)
• Less bouncing but can be slow or infeasible when dataset is large

• Use calculations from one training example (Stochastic gradient descent)
• Fast to compute and can train using huge datasets (stores one instance in memory at each 

iteration) but updates are expected to bounce a lot

• Use calculations over subset of training examples (Mini-batch gradient descent)
• Bounces less erratically than SGD and can train using huge datasets (store some instances in 

memory at each iteration) but can be slow or infeasible when dataset is large

• Often mini-batch gradient descent is used with maximum # of examples that fit in memory 



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions



Summary: Approach to Train Neural Network
• Learn model parameters (weights, biases) that minimize an 

objective function using gradient descent; e.g.,

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Key challenge: calculating gradients. Depends on:

1) Objective function 

2) Activation functions



Solution: Backpropagation to Compute Gradients
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• Idea: compute gradient on objective function to decide how to adjust each model parameter to get 
closer to solving the optimization problem

• Key observation: networks are functions connected in a chain

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Can use chain rule of calculus (and so 
compute from top to bottom where 
derivatives on the top are used to 
compute derivatives at the bottom); 

e.g.,

Solution: Backpropagation to Compute Gradients



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



• What stopping criterion to use?
• Weight changes are incredibly 

small
• Finished a pre-specified 

number of epochs
• Percentage of misclassified 

example is below some 
threshold

• …

When to Stop Training Neural Networks?

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Example

• Binary classification: predict if a student will get a B- or better

• Inputs: 
• Percentage of assignments completed
• Percentage of readings read
• Percentage of lectures watched



Example: Choose Neural Network Architecture

o6

Sigmoid Activation 
Functionx1

x2

x3

Example from: Jiawei Han and Micheline Kamber; Data Mining.



Example: Choose Loss Function for Training

ok

Example from: Jiawei Han and Micheline Kamber; Data Mining.

Squared Error Function 
(regression or binary classification problem)

x1

x2

x3



Example: Resolve How to Compute Gradient?
(Output Layer)

t is a constant value:

ok

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1
e = ?

Wj,k

Wj,k

Example from: Jiawei Han and Micheline Kamber; Data Mining.



Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :
Sigmoid activation function:



Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :

We can rewrite our function as follows:

Sigmoid activation function:

For efficiency, compute last



Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :
Sigmoid activation function:

Key Observation: Possible because activation function 
and loss function are differentiable!!!



Example: Resolve How to Compute Gradient?
(Output Layer)

ok

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1
e = ?

Wj,k

Wj,k



Example: How to Compute Gradient?
(Hidden Layer)

Symmetry in how to solve for 
parameters in hidden layers

ok

Wi,j

Wj,k

Wj,k

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1

e = ?

e = ?



Example: Initialize Model Parameters

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

o66

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

1

1

1x1

x2

x3

Example from: Jiawei Han and Micheline Kamber; Data Mining.



Example: Input Training Example

W1,4 = 0.21

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

0

1

t1 = 1

o6

1

1

1

Example from: Jiawei Han and Micheline Kamber; Data Mining.



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = ?

o6

Input to node 4: 
i4 = (1 x 0.2 + 0 x 0.4 + 1 x -0.5) – 0.4
i4 = -0.7

Output of node 4 (sigmoid function): 
o4 = sigmoid(-0.7)  
o4 = 1/(1+e-(-0.7))
o4 = 0.332

1

1

11

0

1



Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o5 = ?

o6

Input to node 5: 
i5 = (1 x -0.3 + 0 x 0.1 + 1 x 0.2) + 0.2
i5 = 0.1

Output of node 5 (sigmoid function): 
o5 = sigmoid(0.1)  
o5 = 1/(1+e-0.1)
o5 = 0.525

1

1

11

0

1



Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = ?

o5 = 0.525

Input to node 6: 
i6 = (0.332 x -0.3 + 0.525 x -0.2) + 0.1
i6 = -0.105

Output of node 6 (sigmoid function): 
o6 = sigmoid(-0.105)  
o6 = 1/(1+e-(-0.105))
o6 = 0.474

1

1

11

0

1



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Objective function 
used to compute error



Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = ?

1

1

11

0

1



Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = ?

Error at node 6: 
e6 = (1-0.474) (0.474)(1-0.474) 
e6 = 0.1311

1

1

11

0

1



Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

Error at node 5: 
e5 = (0.1311)(-0.2)(0.525)(1-0.525)
e5 = -0.0065

o6 = 0.474

o5 = 0.525

e6 = 0.1311

e5 = ?

1

1

11

0

1



Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

Error at node 4: 
e4 = (0.1311)(-0.3)(0.332)(1-0.332)
e4 = -0.0087

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = ?

e5 = -0.0065

1

1

11

0

1



Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

1

1

11

0

1



Training: How Neural Networks Learn
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Example: Step 3 – Update Weights

W1,4 = ?

W4,6 = ?

W5,6 = ?

W1,5 = ?

W2,4 = ?

W2,5 = ?

W3,4 = ?

W3,5 = ?

6

4

5

b4 = ?

b5 = ?

b6 = ?

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w4,6 = -0.3 + (0.9)(0.1311)(0.332)
w4,6 = -0.261

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

Add here for efficiency (removed from earlier equation)

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w5,6 = -0.2 + (0.9)(0.1311)(0.525)
w5,6 = -0.138

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New bias (learning rate = 0.9):
b6 = 0.1 + (0.9)(0.1311)
b6 = 0.218

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w1,4 = 0.2 + (0.9)(-0.0087)(1)
w1,4 = 0.192

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w1,5 = -0.3 + (0.9)(-0.0065)(1)
w1,5 = -0.306

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1



Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w2,4 = 0.4 + (0.9)(-0.0087)(0)
w2,4 = 0.4

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218
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Example: Step 3 – Update Weights
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o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w2,5 = 0.1 + (0.9)(-0.0065)(0)
w2,5 = 0.1

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2
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Example: Step 3 – Update Weights
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t1 = 1
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o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w2,5 = 0.1 + (0.9)(-0.0065)(0)
w2,5 = 0.1

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2
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b6 = 0.218
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Example: Step 3 – Update Weights
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5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w3,4 = -0.5 + (0.9)(-0.0087)(1)
w3,4 = -0.508

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1
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11

0

1



Example: Step 3 – Update Weights
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5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New weights (learning rate = 0.9):
w3,5 = 0.2 + (0.9)(-0.0065)(1)
w3,5 = 01.94

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218
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Example: Step 3 – Update Weights
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5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New bias (learning rate = 0.9):
b5 = 0.2 + (0.9)(-0.0065)
b5 = 0.194

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.4

b5 = 0.2

b6 = 0.218
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Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

New bias (learning rate = 0.9):
b4 = -0.4 + (0.9)(-0.0087)
b4 = -0.408

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1



Repeat Steps 1-3 With New Examples

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087

e5 = -0.0065

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.408

b5 = 0.2

b6 = 0.218

1

1

1x1

x2
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Repeat Steps 1-4 With New Examples
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Objective/loss function 
used to compute error



Repeat Steps 1-4 With New Examples
• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients

What type of gradient descent 
was used in the toy example?
a. Batch gradient descent
b. Stochastic gradient descent
c. Mini-batch gradient descent



Training: How Neural Networks Learn

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, 
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

The mean gradient is used for batch 
and mini-batch gradient descent

• Repeat until stopping criterion met:
1. Forward pass: propagate 

training data through model 
to make prediction

2. Quantify the dissatisfaction 
with a model’s results on the 
training data

3. Backward pass: using 
predicted output, calculate 
gradients backward to assign 
blame to each model 
parameter

4. Update each parameter 
using calculated gradients



* Practical Detail (More in Future Lectures)

https://github.com/amueller/introduction_to_ml_with_python/blob/master/03-unsupervised-learning.ipynb

Basic data initialization approach:
- standardize so mean is 0 and standard deviation 1
- simplifies learning

Basic model parameter initialization: 
- set weights to random values drawn from Gaussian or uniform distribution
- set biases to 0 

Original data: Standardized data:



* Practical Detail

• When training neural networks, optimization function is often used 
interchangeably with loss function and cost function

• Subtle nuances are discussed here: https://www.baeldung.com/cs/cost-vs-
loss-vs-objective-function



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions



Activation Function Overview

• Want: function with a gradient large enough to support efficient learning

• Implied requirement: function should be differentiable

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb



Activation Functions with Gradients: 
Revisiting Perceptron

Python Machine Learning; Raschka & Mirjalili

What is the gradient 
for a step function?

Deep Learning for NLP and Speech 
Recognition; Kamath, Liu, & Whitaker

0 everywhere except 0 where 
it is non-differentiable

No gradient means model parameters wouldn’t change with gradient descent!



Activation Functions with Gradients: 
Nonlinear Activation Functions

Masi et al. Journal of the Mechanics and Physics of Solids. 2021

Sigmoid Tanh

Problem: units with small or 
large “z” values lead to 
little/slow learning; why?

Reason: small gradients limit 
amount model parameters 
change with gradient descent



Activation Functions with Gradients: 
Nonlinear Activation Functions

Masi et al. Journal of the Mechanics and Physics of Solids. 2021

ReLU

Advantages: 
- Fast to compute
- Large gradient when unit is “firing”

Problem: no gradient 
means units can “die"



Activation Functions with Gradients: 
Nonlinear Activation Functions

Masi et al. Journal of the Mechanics and Physics of Solids. 2021

ReLU ELU

Can avoid dying units by increasing 
computational complexity of ELU-
based activation functions



Activation Functions with Gradients: 
Nonlinear Activation Functions

Masi et al. Journal of the Mechanics and Physics of Solids. 2021

Sigmoid Tanh ReLU ELU

Goal: computationally-efficient functions with large gradients to support efficient learning



Demo: https://playground.tensorflow.org/



Today’s Topics

• Objective function: what to learn

• Gradient descent: how to learn

• Training a neural network: optimization 

• Gradient descent for activation functions




