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Review

e Last lecture:
* Deep learning applications
e History of neural networks and deep learning
* How does a machine learn?
* Course logistics

* Assignments (Canvas):
 Problem set 1 due next week

e Questions?



Today’s Topics

* Binary classification applications
* Evaluating classification models
* Biological neurons: inspiration

* Artificial neuron: Perceptron



Today’s Topics

* Binary classification applications



Today’s Scope: Binary Classification

Distinguish 2 classes



Binary Classification: Spam Detection
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Binary Classification: Resume Pre-Screening
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Binary Classification: Cancer Diagnhosis
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Binary Classification: Cognitive Impairment
Recognition by Apple App Usage

Image Credit: https://www.techradar.com/news/the-10-best-phones-for-seniors

https://www.technologyreview.com/f/615032/the-apps-you-use-on-your-phone-could-help-diagnose-your-cognitive-
health/?utm_medium=tr_social&utm_campaign=site visitor.unpaid.engagement&utm_source=Twitter#tEchobox=1579899156



Binary Classification: Sentiment Analysis
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Binary Classification: Food Quality Control
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Machine Learning: Using Algorithms to Sort Fruit
Demo: https://www.youtube.com/watch?v=BI3XzBWpZbY



Can you think of other binary
classification applications?



Today’s Topics

* Evaluating classification models



Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

Example:

Label: Hairy Hairy Not Hairy 00 Hairy




Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

1. Split data into a “training set” and “test set”

Training Data Test Data

Example:

Label:




Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

2. Train model on “training set” to try to minimize prediction error on it

Training Data

Example:

Label:




Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label:




Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label: Not Hairy 00




Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label:




Predicted
Not spam Spam

Evaluation Methods: Confusion Matrix

Spam Not spam

Actual

TP

FP

FN

TN

TP = true positive
TN = true negative
FP = false positive
FN = false negative



Evaluation Methods : Descriptive Statistics

e.g.,

Predicted
Not spam Spam

Spam Not spam

Actual

50

10

15

100

Commonly-used statistical descriptions:

* How many actual spam results are there?

* How many actual trusted results are there? -

* How many correctly classified instances?

* How many incorrectly classified instances? -

 Whatis the precision?

50/(50+10) ~ 83%

e What s the recall?

50/(50+15) ~ 77%

TP

TP +FP
TP

TP+ FN

65

110

150/175 ~ 86%
25/175 ~ 14%



Group Discussion

* Which of these evaluation metrics would you use versus not use and why?
e Accuracy (percentage of correctly classified examples)
* Precision
* Recall

* Scenario 1: Medical test for a rare disease affecting one in every million
people.

e Scenario 2: Deciding which emails to flag as spam.



Today’s Topics

* Biological neurons: inspiration



Inspiration: Animal’'s Computing Machinery

Neuron
- basic unit in the nervous system for receiving, processing, and
transmitting information; e.g., messages such as...

“loud”

https://kisselpaso.com/if-the-sun-city-
https://www.clipart.email/clipart/don music-fest-gets-too-loud-there-is-a- https://www.babycenter.com/404_when-
t-touch-hot-stove-clipart-73647.html phone-number-you-can-call-to-complain/ can-my-baby-eat-spicy-foods_1368539.bc



Inspiration: Animal’s Computing Machinery

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons Human: ~100,000,000,000 neurons



Inspiration: Animal’'s Computing Machinery
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Action Potential in the Neuron

Demo (0-1:14): https://www.youtube.com/watch?v=0a6rvUlig7o



Inspiration: Basic Understanding of Neurons

dendrites

N

 When the input signals exceed a certain threshold within a short period of time, a neuron “fires”
* Neuron “firing” is an “all-or-none” process, where either a signal is sent or nothing happens

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653



Sidenote: It Remains An Open Research Problem
to Understand How Individual Neurons Work



Today’s Topics

* Artificial neuron: Perceptron



Historical Context: Artificial Neurons

First mathematical
model of neuron

1943 1945 1950 99

IS5 c &
First programmable ™ 2 = -2
machine S & ©
o =2
Turing test i Emerges from

interdisciplinary
collaboration

Warren McCulloch Walter Pitts

(Neurophysiologist) (Mathematician)
http://web.csulb.edu/~cwallis/ar https://en.wikipedia.o

tificialn/warren_mcculloch.html rg/wiki/Walter_Pitts



Artificial Neuron: McCulloch-Pitts Neuron

“Input signals” “Output signal”
(F) Output
Artificial Neuron: u
Net input Threshold
function function

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653



Artificial Neuron: McCulloch-Pitts Neuron

- outputs 1 or O (mimics neurons
by “firing” only when aggregate
value exceeds threshold)

- inputs (x) and weights (w) canbeOor 1
- weights (w) and threshold values are fixed

Net input Threshold
function function

Vo

WX, +...+W X =W X

Figure source: Python Machine Learning; Raschka & Mirjalili
Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Artificial Neuron: McCulloch-Pitts Neuron

- outputs 1 or O (mimics neurons
by “firing” only when aggregate
value exceeds threshold)

- inputs (x) and weights (w) canbeOor 1
- weights (w) and threshold values are fixed

Net input Threshold
function function

This neuron representation supports propositional logic; e.g., if weights
equal 1 and there are 3 inputs, how is the AND function achieved?

Figure source: Python Machine Learning; Raschka & Mirjalili
Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Artificial Neuron: McCulloch-Pitts Neuron

- outputs 1 or O (mimics neurons
by “firing” only when aggregate
value exceeds threshold)

- inputs (x) and weights (w) canbeOor 1
- weights (w) and threshold values are fixed

Net input Threshold
function function

This neuron representation supports propositional logic; e.g., if weights
equal 1 and there are 3 inputs, how is the OR function achieved?

Figure source: Python Machine Learning; Raschka & Mirjalili
Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Artificial Neuron: McCulloch-Pitts Neuron

- outputs 1 or O (mimics neurons
by “firing” only when aggregate
value exceeds threshold)

- inputs (x) and weights (w) canbeOor 1
- weights (w) and threshold values are fixed

Net input Threshold
function function

This neuron representation supports propositional logic; more examples
found at https://home.csulb.edu/~cwallis/artificialn/History.htm

Figure source: Python Machine Learning; Raschka & Mirjalili
Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Artificial Neuron: McCulloch-Pitts Neuron

- outputs 1 or O (mimics neurons
by “firing” only when aggregate
value exceeds threshold)

- inputs (x) and weights (w) canbeOor 1
- weights (w) and threshold values are fixed

Net input Threshold
function function

Proposed for computation on a “Turing machine”

Figure source: Python Machine Learning; Raschka & Mirjalili
Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Historical Context: Artificial Neurons

First mathematical
model of neuron

1943 1945 1950 9

Al

Perceptron

First programmable
machine

Machine
learning

Turing test



Perceptron: Innovator and Vision

“[The perceptron is|] the embryo of an
electronic computer that [the Navy] expects
will be able to walk, talk, see, write,

reproduce itself and be conscious of its
existence.... [It] is expected to be finished in
I obout a year at a cost of $100,000.”

b

Frank Rosenblatt

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-
navy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt



Perceptron: Architecture (Linear Threshold Unit)

@ @ 9 Q Output
@ . % Net input Threshold
(%

function function

Extends McCulloch-Pitts neuron as follows:
- inputs and weights can be any value
- weights (W) are learned

Python Machine Learning; Raschka & Mirjalili
Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957



Perceptron: Architecture (Linear Threshold Unit)

* Function deciding output value (“fire” or not):
* Note: Kamath textbook offers two
common conventions for Perceptrons of

o =
2 1=
using two possible output values of {-1, 1}

—1 otherwise
* Rewriting function: ] i and {0, 1}, in Chapters 2.5 and 4. The
¢ ( z) — . — output choice dictates whether the
—~1 OI‘hGIWIlS’e threshold should be set to 0.5 or 0.

* Where:
_ R A
[ A

Bias [—@ || 1

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957




Perceptron: Architecture (Linear Threshold Unit)

d(w'x) =0

A \

Graphical representation: O o

X1

Python Machine Learning; Raschkka & Mirjalili



Perceptron: Architecture (Linear Threshold Unit)

Output

Net input Threshold
function function

What is the motivation for weights? e.g.,
for predicting if you will like a movie?

Python Machine Learning; Raschka & Mirjalili
Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957



Perceptron: Architecture (Linear Threshold Unit)

Motivation for bias: without it, O G
model must go through origin

0 0
0 1
(a) (b)
zZ= w-’oleo +WX, ...t WX =W X Error
[ A
Bias |—@ || 1

Uday Kamath, John Liu, and James Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Perceptron: Architecture (Linear Threshold Unit)

Motivation for bias: with it, model L ete
does not have to go through origin |

(W

Bias

......
.............
e .= ° .’:‘..0'..... .

0 0 1

' Iy ) Y ) ~ — r
Wofbo[T WX, ...+ W, X, =w X
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7

3

—0

1

Uday Kamath, John Liu, and James Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Perceptron: Learning Algorithm

Weight update
Error

O— @ o

Net input Threshold
function function

D)
ok

Learns weights and bias values

Python Machine Learning; Raschka & Mirjalili



Perceptron: Learning Algorithm

Process: iteratively update o
boundary with observation
of each additional example:

domestication

https://en.wikipedia.org/wiki/Perceptron



Perceptron: Learning Algorithm

Process: iteratively update o
boundary with observation
of each additional example:

https://en.wikipedia.org/wiki/Perceptron



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers
2. For each training sample (i.e., i) :

m

1. Compute predicted value (i.e., {-1, 1}): ZJ,:O X W, = w' x

2. Update parameters based on prediction success: W; 1= W;

Aw; =n (target(i) - output(i)) x}i)

Learning Rate

(set a priori and True Class Label Predicted Class Label

held constant)

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers
2. For each training sample (i.e., i) :

m

1. Compute predicted value (i.e., {-1, 1}): ZJ,:O X W, = w' x

2. Update parameters based on prediction success: W; 1= W;

Aw; =n (target(i) - output(i)) x}i)

What happens to the weights when the
model predicts the correct class label?

- no weight update since result is O

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers
2. For each training sample (i.e., i) :

m

1. Compute predicted value (i.e., {-1, 1}): ZJ,:O X W, = w' x

2. Update parameters based on prediction success: W; 1= W;

Aw; =n (target(i) - output(i)) x}i)

What happens to the weights when the
model predicts the wrong class label?

- weights change since result is “2” or “-2”

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html



Perceptron: Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 | Xo | X3 Y Input Black box

1100

1] 0| 1 Xy

11110 Output
11117

0| 0|1 Xy > ™Y

0| 1]o0

0| 1| 1 X,t»

0| o]o

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 | Xo | X3 Y Input Black box

110 0| -1

10| 1 X

11110 Output
11| 1

oo 1]? Xy > ™Y
o|1]o0

0| 11 X,t»

ool o

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 [ Xo | Xs| Y Input Black box

1101 0| -1

1 1o 1] 1 X+

11110 Output
111 ] 1

olol|1]7? Xy Y

ol 1/ o0

ol 1| 1 X,t»

ol oo

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 | Xo | X3 Y Input Black box

1101 0| -1

1 o] 1] 1 X+

1111 ol 1 Output
1 1] 1] 1

o | o] 1| -1 X Y

0ol 1| 0] -1

ol 11 1 X,t»

0| o/l o] -1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 1rst Sample)

 Compute predicted value: Z

Predicted

1if ¢(wTx) =0
" —wliy - Ty) = —
0 XiWi =W X HW'X) -1 otherwise

~—

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 1rst Sample)

* Update params: w; = w; + 7 (target(i) - output(i)) xj@; learning rate = 0.1

Predicted

1

Wi | W2 | wWs | Aw, =7 (target(i) - OUtpUt(i))
0

Aw, =17 (target(i) - output(i)) xf")
Aw, =n (target(i) - output(i)) xéi)

Aw, =1 (target(i) - output(i)) x_,fi)

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 1rst Sample)

* Update params: w; = w; + 7 (target(i) - output(i)) xj@; learning rate = 0.1

X2 X3 Y Predicted

0] 0| -1 1

wi | w2 | ws (f Aw, =0.1(-1-1)*1=-0.2
0

Aw, =0.1(-1-1)*1=-0.2

Aw, =0.1(-1-1)*0 =0

Updates make weights more negative so that the model Aw3 = 0. 1(-1-1)*0 =0

is more likely to classify the sample as -1 next time

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 2nd Sample)

1if d(wTx) =0
* Compute output value: Z;" xw. =wx; ¢wlx)=—

=0/ J -1 otherwise
Xo | X3 Y Predicted Wo | W1 | W2 | W3
) o [ o] o] o
) 02|02 0 | O

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf




Perceptron: Example (Training with 2nd Sample)

* Update params: w; = w; + 7 (target(i) - output(i)) x}i); learning rate = 0.1

X1 | Xy | Xg Predicted
1T1010 1
0| 1 -1

Wo | W1 W2 | W3
0 0 0 0
-02(-02( O 0

Aw, =n (target'” — output'?)
Aw, =17 (target(i) aa output(i)) xfi)
Aw, =n (target(i) - output(i)) xé")

Aw, =1 (target(i) - output(i)) x_,fi)

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 2nd Sample)

* Update params: w; = w; + 7 (target(i) - output(i)) xj@; learning rate = 0.1

Xo | X3 | Y | |Predicted Wo | Wi | W2 | wz |§ Aw, =0.1(1--1)*1=0.2

0/ 0] -1 1 S L R

0111 1 021020 0 O W Aw =0.1(1--1)*1 = 0.2
? ? ? ? 1 ) )

Aw, =0.1(1--1)*0 = 0

Updates make weights more positive so that the model Aw3 =0.1(1--1)*1=0.2
is more likely to classify the sample as 1 next time

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example (Training with 2nd Sample)

* Update params: w; = w; + 7 (target(i) - output(i)) x}i); learning rate = 0.1

Xo | X3| Y | |Predicted Wo | Wi | W2 | wz |§ Aw, =0.1(1--1)*1=0.2

0/ 0] -1 1 0 1 0} 010

01111 1 2102 0 Loz [l Aw, =0.1(1--1)*1=0.2
Aw, = 0.1(1--1)*0 =0

What is the influence of the learning rate? i.e., Aw3 = 0.1(1--1)*1 =0.2

what would happen if the value was larger/smaller?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example — One Epoch (Training
with All Samples)

* Wi=w;+1n (target(i) - output(i)) x}i) ; learning rate = 0.1

X1 Xo | X3 Y Wo | Wi | W2 [ W3
1 0 0| -1 0 0 0 0 0
1]o1] > 1010l ooz
1 1 (1) 1 3 o | o | o |02

4 o | o| o |02
010 ] 1] 5 (02| 0| ol o
0 (1 10]|-1 6 |-02] o | o | o
011/ 1 7 o | o | 02] 02
0(0/|O0]|-1 8 |-02| 0 |02/ 02

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example — Six Epochs

c Wi=w;+ 1 (target(i) - output(i)) x}i) ; learning rate = 0.1

X1 Xo| X3 Y
17100 (-1
1T10 ] 1] 1
T1110] 1
T 111 1] 1
010 1]-1
0|11 10]-1
011111
00| 0]-1

Epoch| wp [Wq | W3 [ W3
0 0[0|0|0O

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Example — Six Epochs

c Wi=w;+ 1 (target(i) - output(i)) x}i) ; learning rate = 0.1

X1 Xo | X3 Y Wo | Wi | W2 | W3 Epoch| wp | W4 | W2 [ W3
1100 | -1 0 0| 0] 0| O 0 Oo(0[0]|O
110 1] 1 1 02702 0 | O 1 |-02] 0 [0.2]0.2
111]0] 1 2 0 0| 0 02 2 |-02[ 0 ]04]02
IEEERE 2 g 8 8 83 3 |-04]| 0]04]02
00| 1]-1 e lo2l ol ol o 4 [-04l02[04]04
0| 1/|0]-1 6 lo2l ol ol o 5 |-06]/02[04]0.2
0 (111 7 0 0 | 02| 02 6 -06/0.410.4]0.2
0|0/ 0] -1 8 |-02| o |02/ 02

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf



Perceptron: Learning Algorithm Choices

* Learning rate
 Number of epochs (passes over the dataset)



Today’s Topics






Credits

* Image of Boulder: http://boulderrunning.com/where2run/five-trails-
for-hill-running-and-mountain-training/

* Stick person figure:
https://drawception.com/game/AsPNcppPND/draw-yourself-
blindfolded-pio/

 Figure: https://www.quora.com/What-is-meant-by-gradient-descent-
in-laymen-terms

* Figure and great reference:
https://beamandrew.github.io/deeplearning/2017/02/23/deep learn
ing 101 partl.html



http://boulderrunning.com/where2run/five-trails-for-hill-running-and-mountain-training/
https://drawception.com/game/AsPNcppPND/draw-yourself-blindfolded-pio/
https://www.quora.com/What-is-meant-by-gradient-descent-in-laymen-terms
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

