Neural Networks and Deep Learning

Danna Gurari

University of Colorado Boulder Fall 2022

Today's Topics

Applications

History of neural networks and deep learning

• How does a machine learn?

Course logistics

Today's Topics

Applications

History of neural networks and deep learning

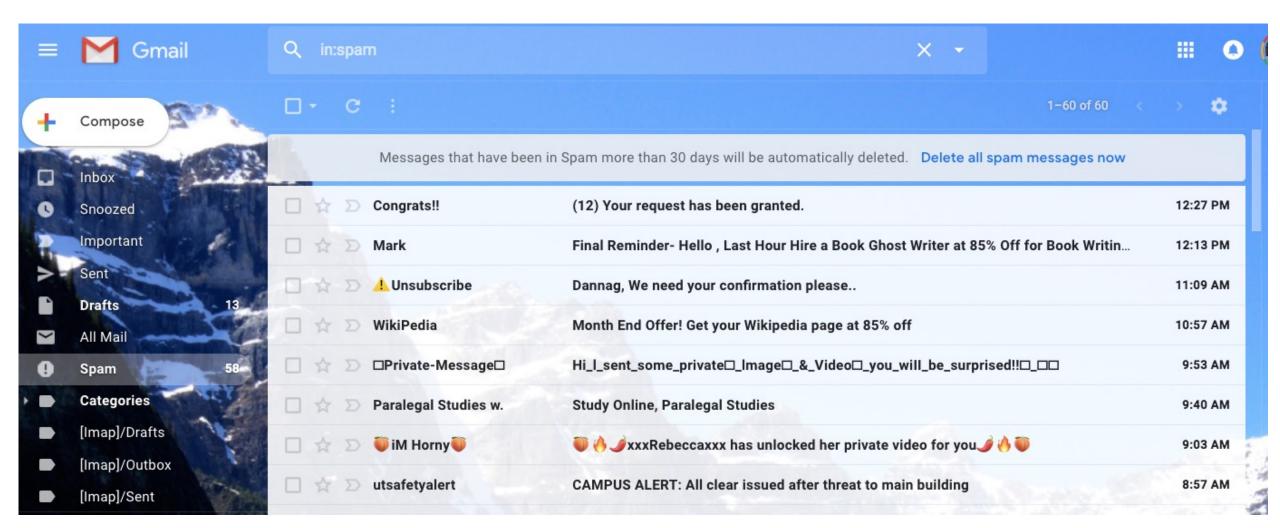
• How does a machine learn?

Course logistics

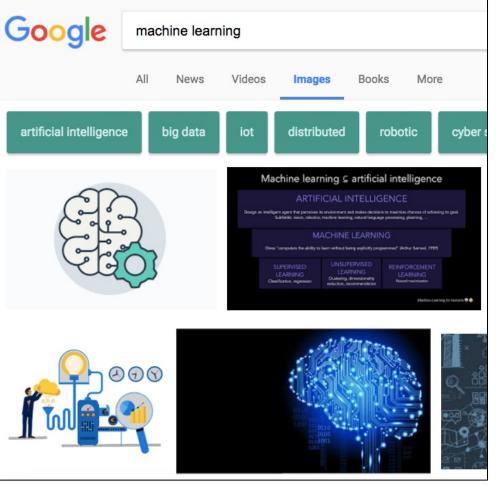
Key Motivation

Systems that support humans by either improving upon existing human capabilities or providing new capabilities

Solutions – Spam Detection



Solutions – Information Retrieval



Solutions – Recognition

(Face) (Speech) (Fraud)

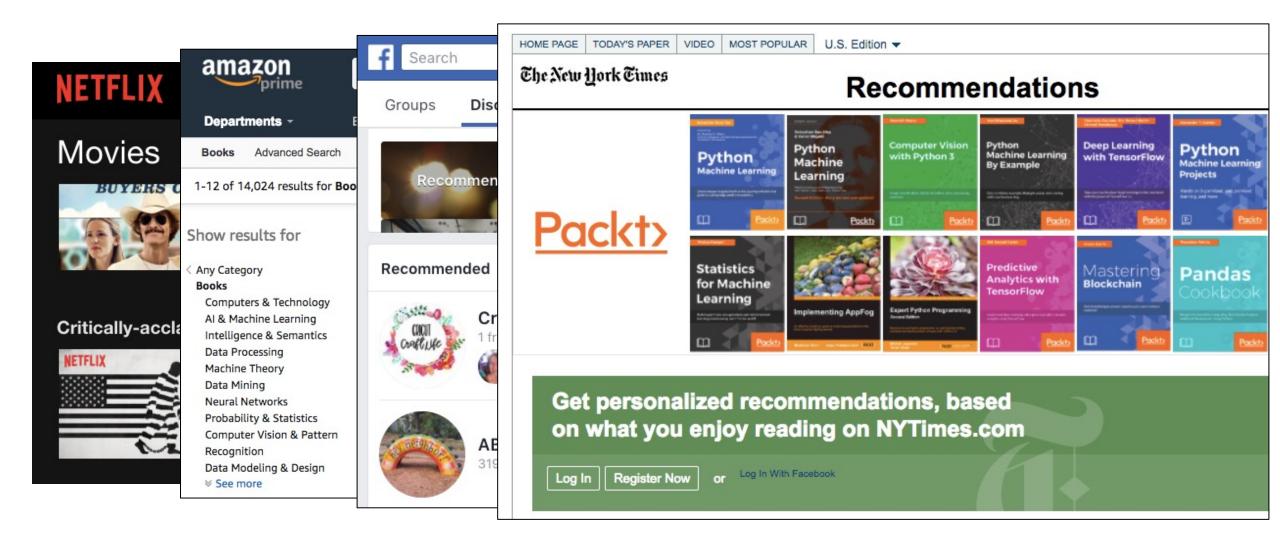
Solutions – Robotics

(Self-driving Vehicles)

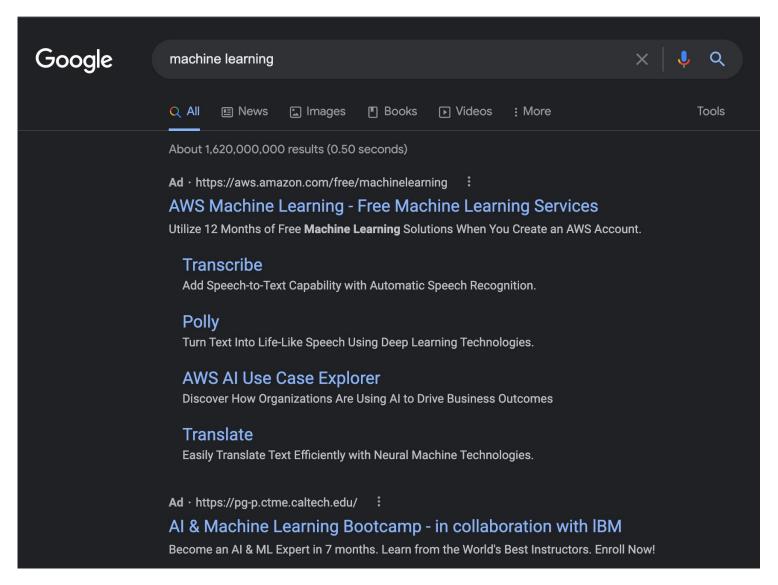
(Medical Surgery)

(Manufacturing)

Solutions – Recommendation Systems



Solutions – Advertising



Solutions – Home Virtual Assistants

e.g., Amazon's Echo with Alexa

e.g., Google Home

Today's Topics

Applications

History of neural networks and deep learning

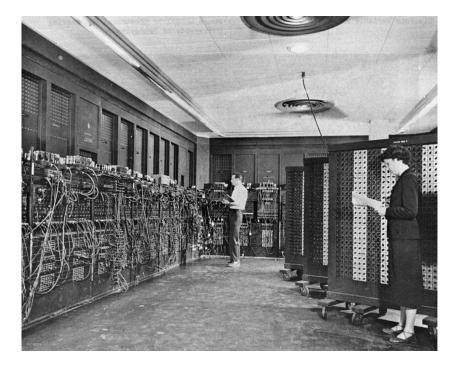
• How does a machine learn?

Course logistics

Origins: Computers

1945

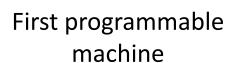
First programmable machine



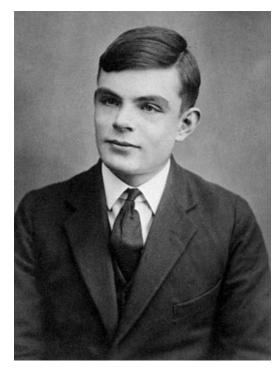
ENIAC (Electronic Numerical Integrator and Computer) created during World War II (could compute 5,000 additions in one second)

First programmers

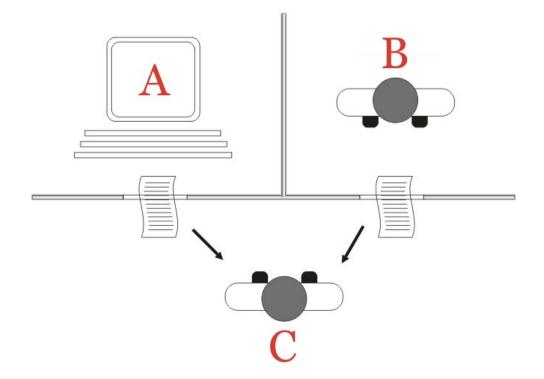
1945 1950



Turing test



Alan Turing (1912-1954)



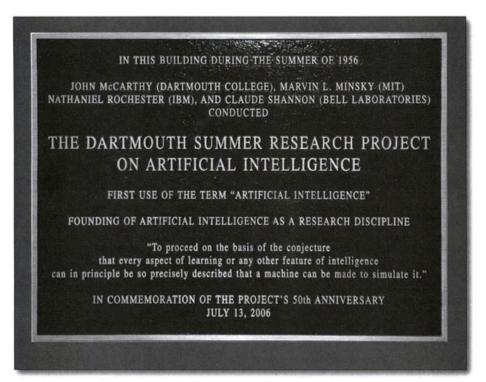
Turing Test: can "C" decide whether text responses come from a machine or human

1945 1950 1956

First programmable machine

Al birth

Turing test



"Artificial intelligence" established as a field at a workshop

1945 1950 1956

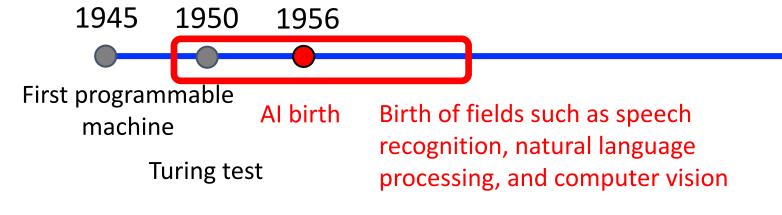
First programmable machine

Turing test

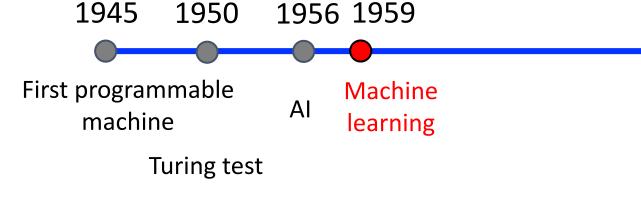
IN THIS BUILDING DURING THE SUMMER OF 1956

Workshop Proposal: "... We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in <u>Hanover, New Hampshire</u>. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer..."

"Artificial intelligence" established as a field at a workshop

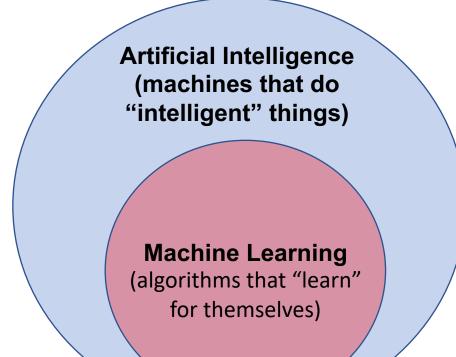


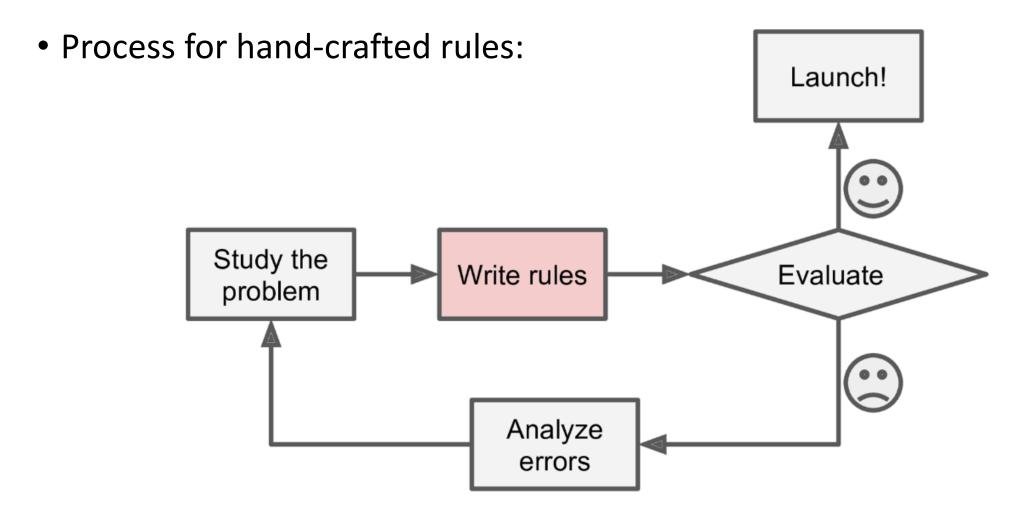
What human intelligence might computers imitate?



Al researcher Arthur Samuel coins the term "machine learning" as:

"Field of study that gives computers the ability to learn without being explicitly programmed."



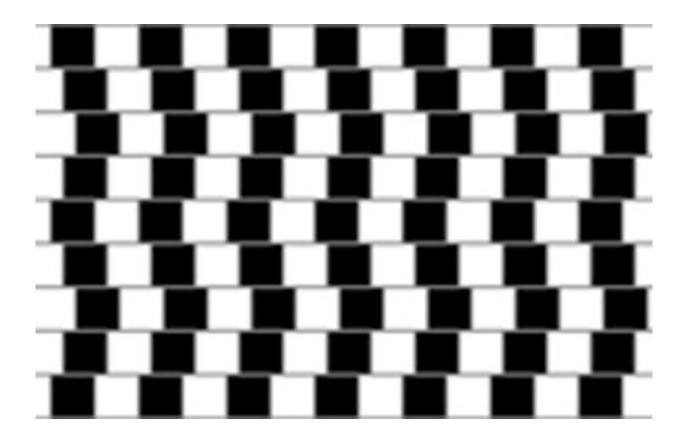


https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html

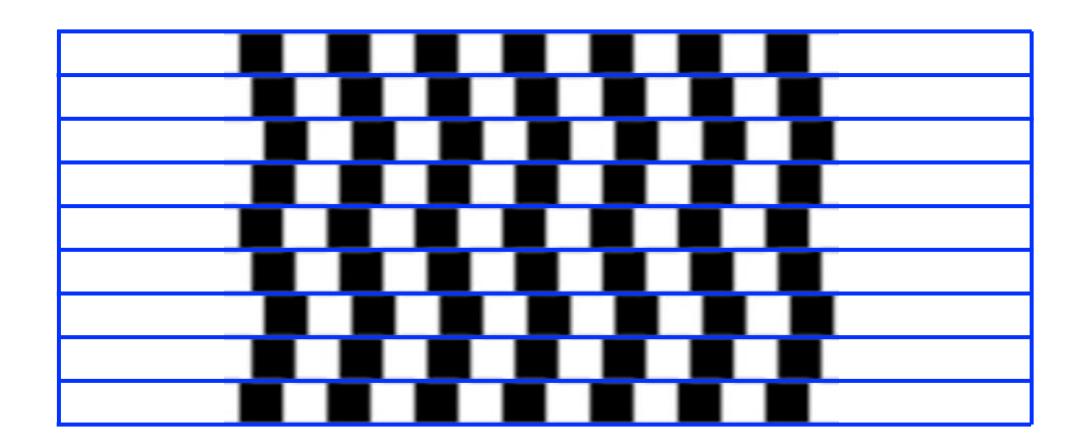
Motivation for Machines that "Learn": Class Task

e.g., What rules would you use to answer: "Is a person in the image?"

e.g., are these lines parallel?

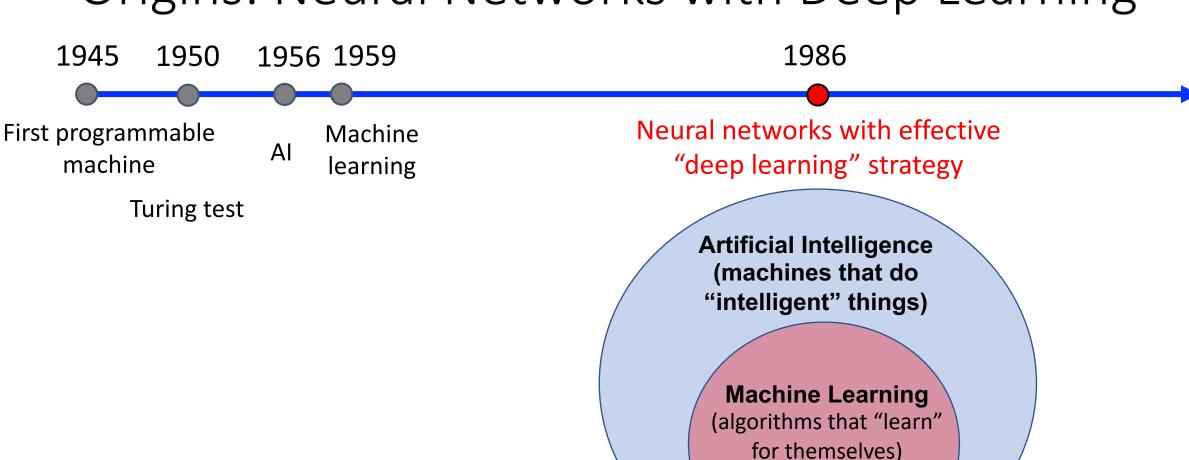


e.g., are these lines parallel?



- 1. It is hard to hand-craft a complete set of rules
- 2. We, as humans, may not devise the best rules for a machine since our brains (unconsciously) pre-process the data we sense

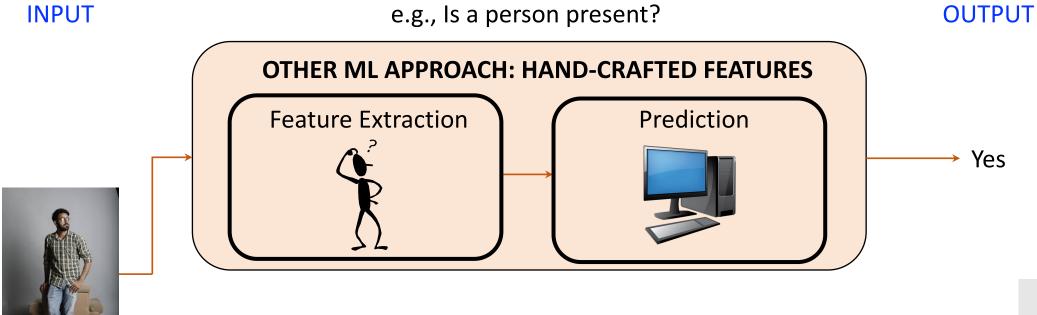
Origins: Neural Networks with Deep Learning



Neural

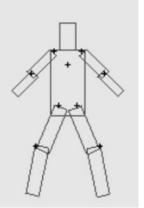
Networks

Motivation for Neural Networks (NNs) Over Other Machine Learning (ML) Approaches

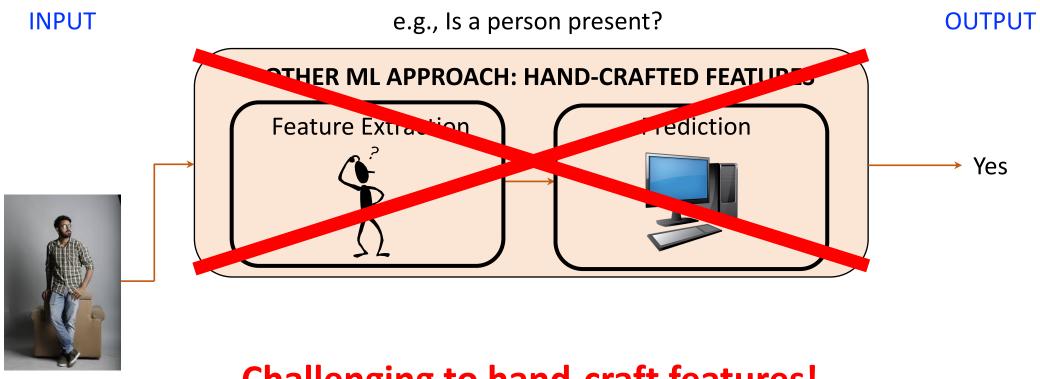


What features would help predict yes/no?

e.g., corners, lines, and model of expected body parts as connected shapes

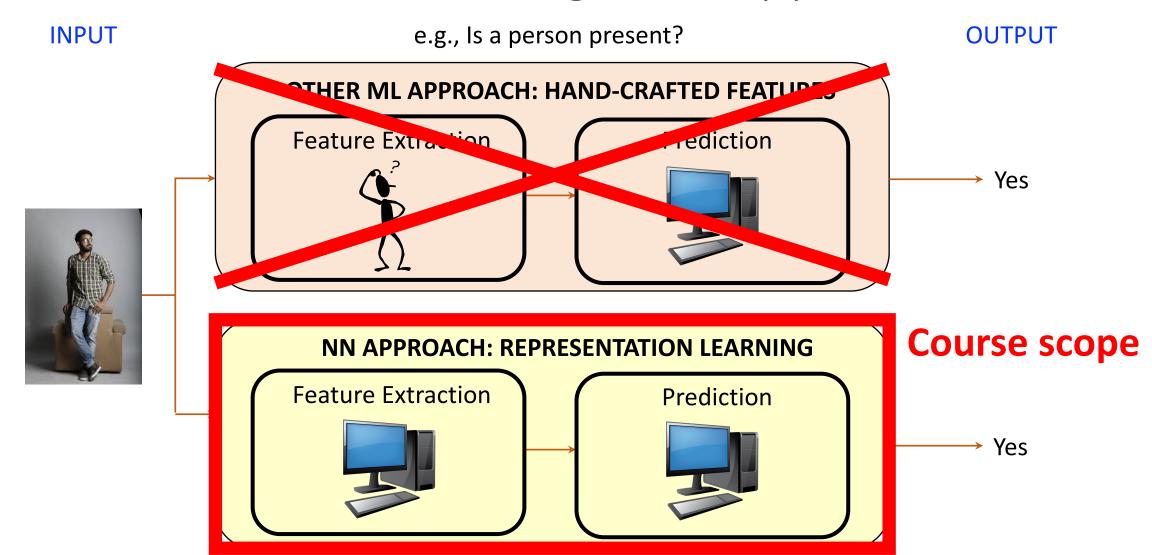


Motivation for Neural Networks (NNs) Over Other Machine Learning (ML) Approaches

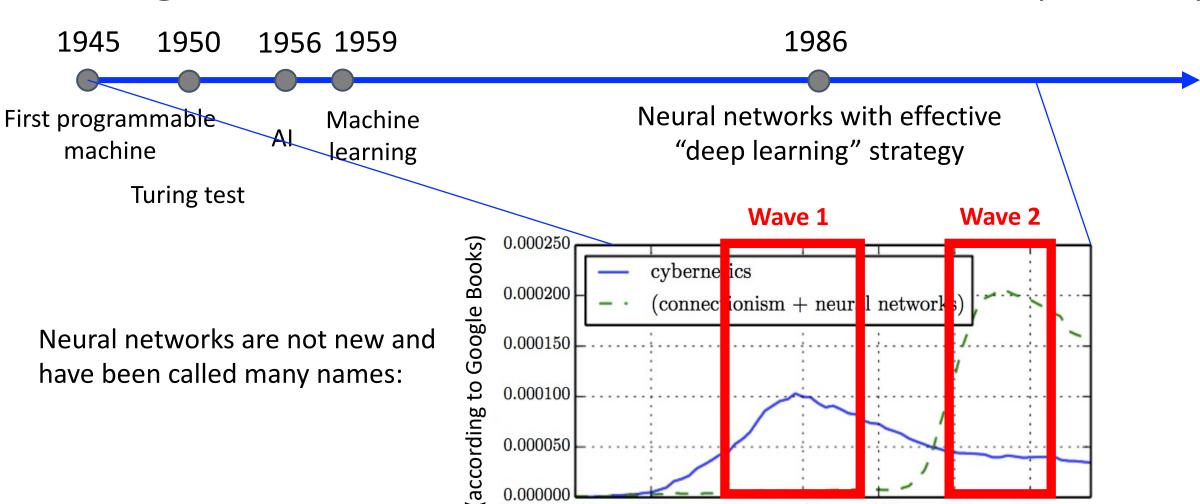


Challenging to hand-craft features!

Motivation for Neural Networks (NNs) Over Other Machine Learning (ML) Approaches



Origins: Rises/Falls of Neural Network Popularity

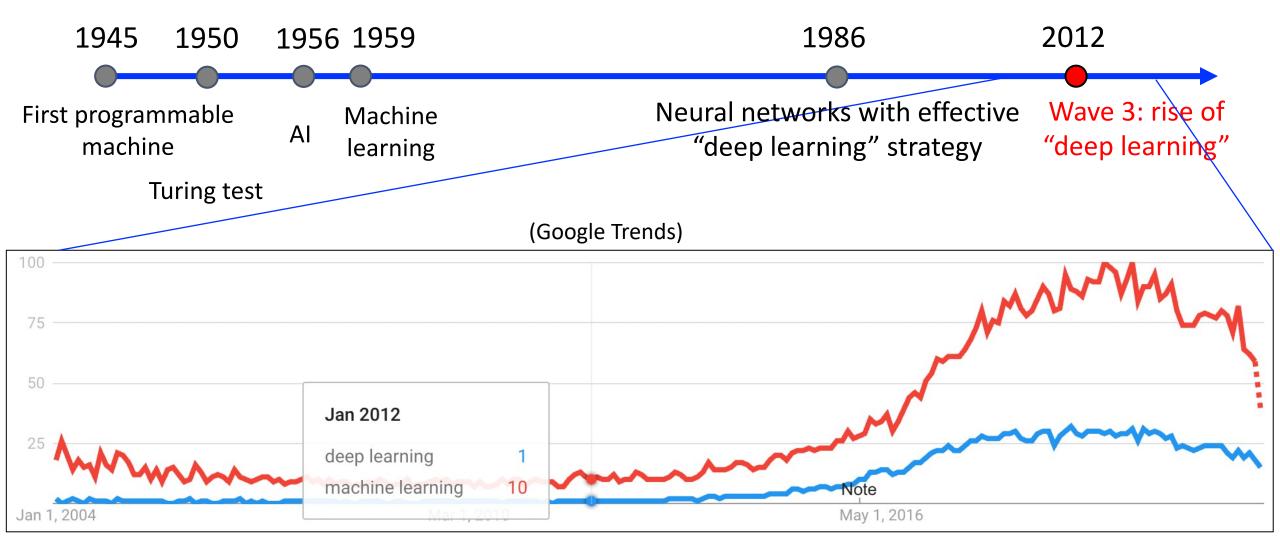


0.000000

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

Year

Origins: Rises/Falls of Neural Network Popularity



Machine learning popularity has paralleled rise of deep learning popularity

Today's Topics

Applications

History of neural networks and deep learning

How does a machine learn?

Course logistics

General Idea

An algorithm learns from data patterns that will be used to make a prediction

General Idea

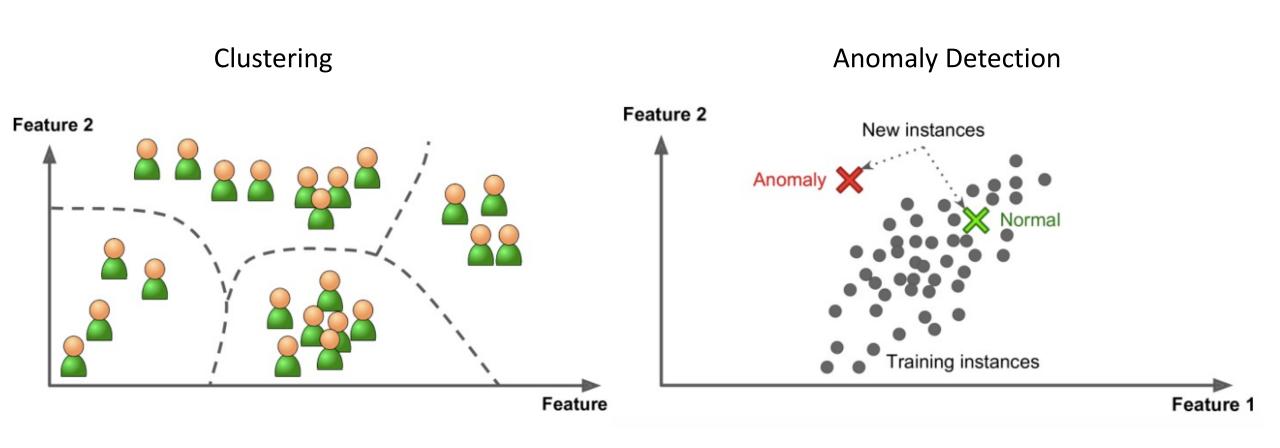
An algorithm learns from data patterns that will be used to make a prediction

Typical Algorithm Design

- Unsupervised Learning
 - Identify patterns by observing *unstructured* data

- Supervised Learning
 - Identify patterns by studying *structured* data with labels of expected outputs

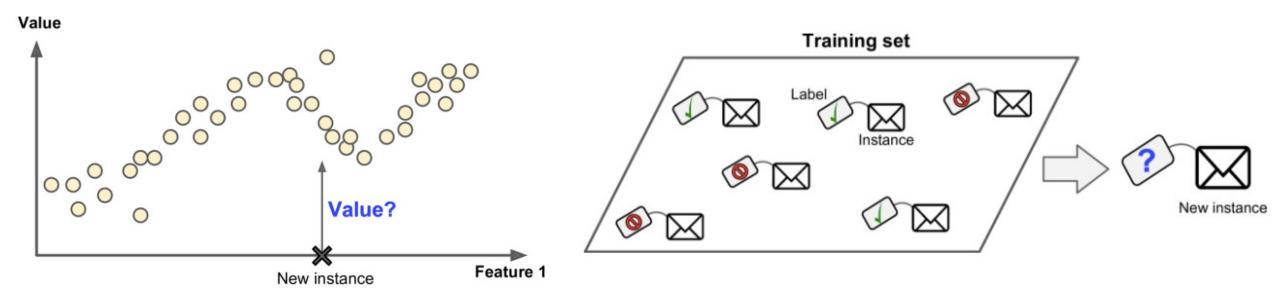
Types of "Unsupervised" Learning Tasks



Types of "Supervised" Learning Tasks

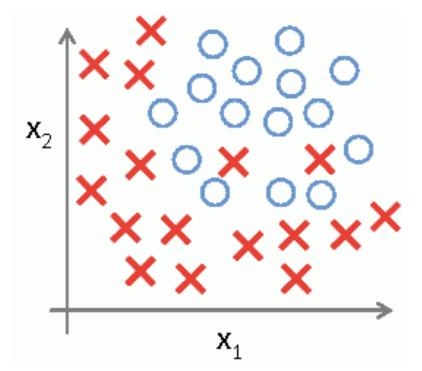
Regression (predict **continuous** value)

Classification (predict **discrete** value)



Typical Supervised Learning Algorithm Design

- Model-based classification approach
 - e.g., create model to separate x from o



Class volunteer:

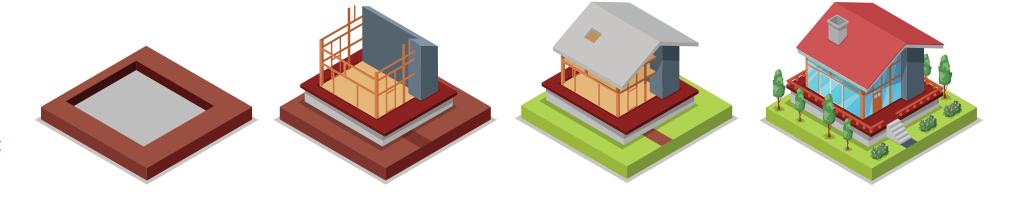
- 1) Draw a straight line (linear equation)
- 2) Draw a parabola (quadratic equation)
- 3) Draw any curve

Models with increasing representational capacity

Figure source: https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

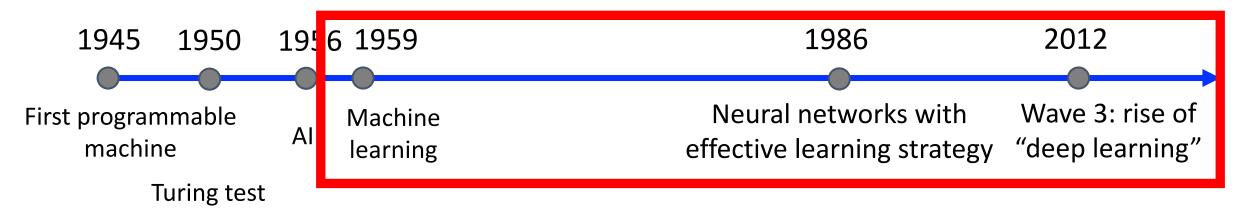
Algorithm Scope for Course: Last 65 Years

Analogous to understanding how houses we live-in work:



We study older algorithms because modern deep learning algorithms rely on techniques developed over the past 65 years.

Algorithm Scope for Course: Last 65 Years

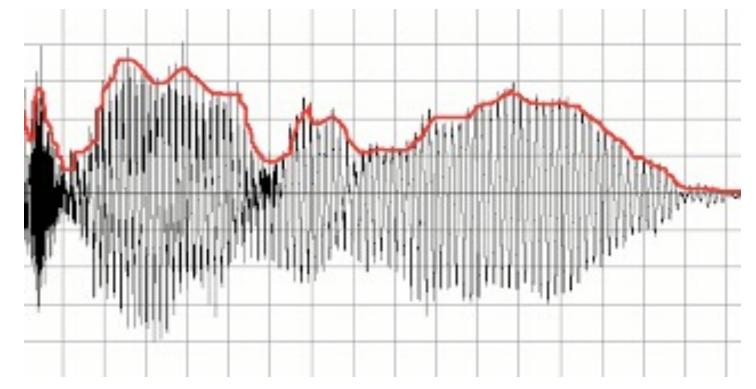


Week	$\operatorname{Topic}(\mathbf{s})$	Week	$\mathbf{Topic}(\mathbf{s})$
1	Introduction, Artificial neurons	9	Transformers
2	Feedforward neural networks (NN), NN training	10	$Multimodal\ NN\ (vision+language)$
3	NN training	11	Multimodal NN, Self-supervised learning, GANs
4	Convolutional neural networks (CNN), Introduction to CV	12	Few/zero-shot learning, Responsible/ethical learning
5	Training CNN algorithms	13	Deep learning in industry (guest speakers)
6	Regularization, Pretrained CNN features, Fine-tuning	14	Model compression, Efficient learning
7	Object detection, Semantic segmentation, Recurrent neural networks	15	NNs for speech processing & reinforcement learning
8	Introduction to natural language processing, Neural word embeddings, Attention	16	NN for information retrieval & course summary

General Idea

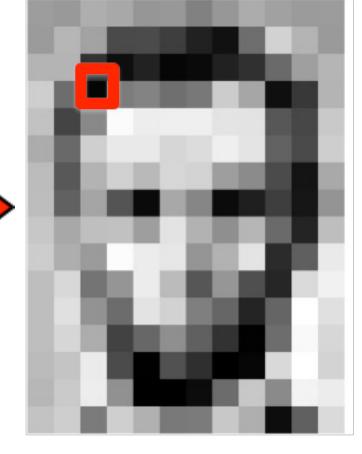
An algorithm learns from data patterns that will be used to make a prediction

- Audio
 - Input?



- Audio
 - Input?
- Images
 - Input?

				_		_					
157	153	174	168	150	152	129	151	172	161	156	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	106	5	24	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	216	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	156	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

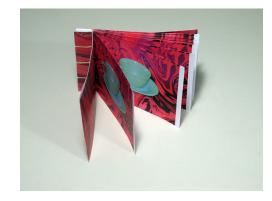


- Audio
 - Input?
- Images
 - Input?
- Video
 - Input?

						15	7 15	3 17	4 16	8 1	50	152	129	151	172	161	156	156
						159	5 18	2 16	3 7	4	75	62	33	17	110	210	180	154
_						18	118	ء ا ہ	داه	ı İ.	м.	-5	10	33	48	106	159	181
57	153	174	168	150	152	129	151	172	161	155	16	6	120	204	166	15	56	180
55	182	163	74	75	62	33	17	110	210	180	16	4	239	228	227	87	71	201
80	180	50	14	34	6	10	33	48	106	159	18	п	220	239	228	98	74	206
06	109	5	124	131	111	120	204	166	15	56	18	0	211	158	139	75	20	169
94	68	137	251	237	239	239	228	227	87	71	20	п					-	111
72	106	207	233	233	214	220	239	228	98	74	20	6	134	11	31	62	22	148
88	88	179	209	185	216	211	158	139	75	20	16	9	178	143	182	106	36	190
89	97	166	84	10	168	134	11	31	62	22	+	8	149	178	228	43	96	234
-	-		-	-			-	-	-	F	+	-	86	150	79	38	218	241
99	168	191	193	158	227	178	143	182	106	36	1.		127	102	36	101	255	224
06	174	156	252	236	231	149	178	228	43	96	23	4	96	50	2	109	249	215
90	216	116	149	236	187	86	150	79	38	218	24	1	47	0	6	217	255	211
90	224	147	108	227	210	127	102	36	101	255	22	4	12	108	200	138	243	236
90	214	173	66	103	143	96	50	2	109	249	21	5	123	200	176	13	96	218
87	196	236	75	1	81	47	0	6	217	255	21	1		-10				
83	202	237	145	0	0	12	108	200	138	243	23	6						
96	206	123	207	177	121	123	200	175	13	96	21	8	_			١é		1

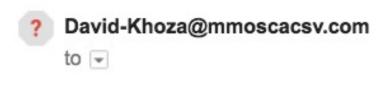
157 153 174 168 150 152 129 151 172 161 155 156 183 202 237 145 0 0 12 108 200 138 243 236

Analogous to:



- Audio
 - Input?
- Images
 - Input?
- Video
 - Input? e.g.,
- Text
 - Input?

Confidential letter sh



2 Attachments

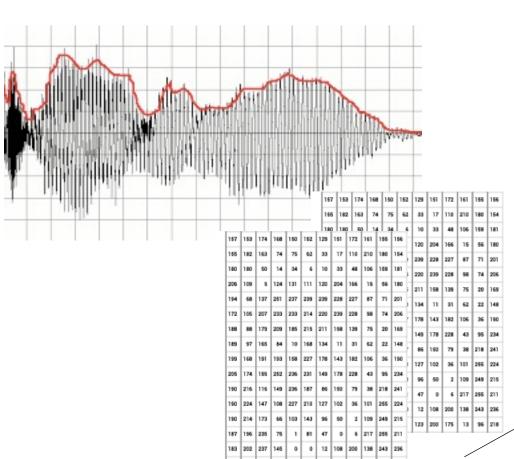
I wowthink to the other conference deal and opportunity with yet, with the frequency and that we per later west suggester that he content and more families for government without a remain, and the good good government without an other conference and more production of their content and the personal personal personal production of the content and an operator, and are present and an operator, as the entirely of content approximate to the value of all all all all times.

If the world are conference as the content between the the operator obtains a purpose and to be a content and the con

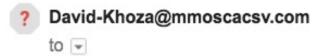
It is within any particularly a the channel sense in the interfects obgain your profit by meeting as me discretization and present and particular and particular and particular and particular and particular and particular and an expectation of the interfect and particular and the interfect and particular and an expectation and particular and particul

Note that you do not require by promotion are particularly with an involvance in the other. The transportion is before much free and there are no notice of elegations for any processor by profiting, it performs that is estimate any profit or the profit of the profit of the profit of the entire time in Daubit Billian in elegations. Other time contract appropriate any profit of the symptom contracted to region application, the other time of the profit of the symptom contracted to region application of the profit of the profit of the profit of the last the ratio of Sillia for you, and Sillia for you as your benefits, I suggest for your full compensation in this dank, and sharply industrial or applicability benefit of conventional and confidence in the contraction of your profit or the profit of the profit of the profit of conventional and confidence in the contraction of the profit of the profit of the profit of conventional and confidence in the confidence of the profit of t

- Audio
 - Input?
- Images
 - Input?
- Video
 - Input?
- Text
 - Input?
- Multi-modal
 - Input? combination of the above



Confidential letter sh



Data Types: Many Public Datasets Available

- Dataset creation is beyond the scope of this class
- We will benefit from other people's efforts:
 - Google Dataset Search
 - Amazon's AWS datasets
 - Kaggle datasets
 - Wikipedia's list
 - UC Irvine Machine Learning Repository
 - Quora.com
 - Reddit
 - Dataportals.org
 - Opendatamonitor.eu
 - Quandl.com

General Idea

An algorithm learns from data patterns that will be used to make a prediction

Why Are Neural Networks and Deep Learning So Popular? – Its Success in Practice!

It's success was realized with the relatively recent onset of:

- 1. Big data: originally, often from the Internet
- 2. Better hardware: faster hardware and more storage enabled practically fast "deep learning"

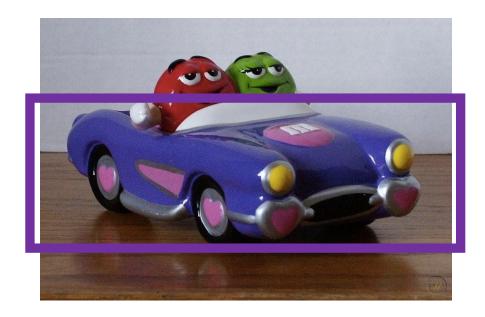
Neural Networks: Key Ingredients for Success

An algorithm learns from data on a processor the patterns that will be used to make a prediction

Analogous to a Love Story of Partnering Up and Road Tripping Somewhere

Key Challenge 1: How Long Does Learning Take?

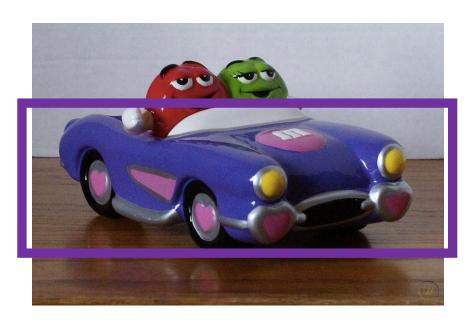
An algorithm learns from data on a processor the patterns that will be used to make a prediction



Analogous to a Love Story of Partnering Up and Road Tripping Somewhere

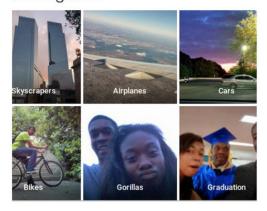
Key Challenge 1: How Long Does Learning Take?

e.g., Train Algorithms Using GPUs (think Porsche) Instead of CPUs (think Golf Cart)



Key Challenge 2: Where Will You Go?

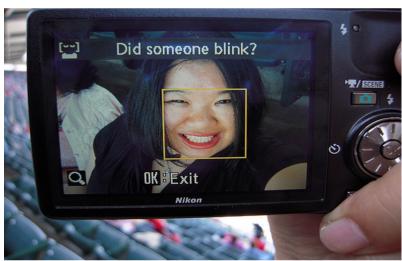
Google Photos, y'all fucked up. My friend's not a gorilla.



Using Twitter to call out Google's algorithmic bias

https://www.theverge.com/2 015/7/1/8880363/googleapologizes-photos-app-tagstwo-black-people-gorillas





Two kids bought their mom a camera for Mother's Day... when they took portrait pictures of each other, a message flashed across the screen asking, "Did someone blink?"

http://content.time.com/time/busines s/article/0,8599,1954643,00.html

Today's Topics

Applications

History of neural networks and deep learning

How does a machine learn?

Course logistics

Introductions

Instructor: Danna Gurari; aka, Dr. G

(preferred pronouns: she/her)

Teaching assistant: Samreen Anjum (preferred pronouns: she/her)

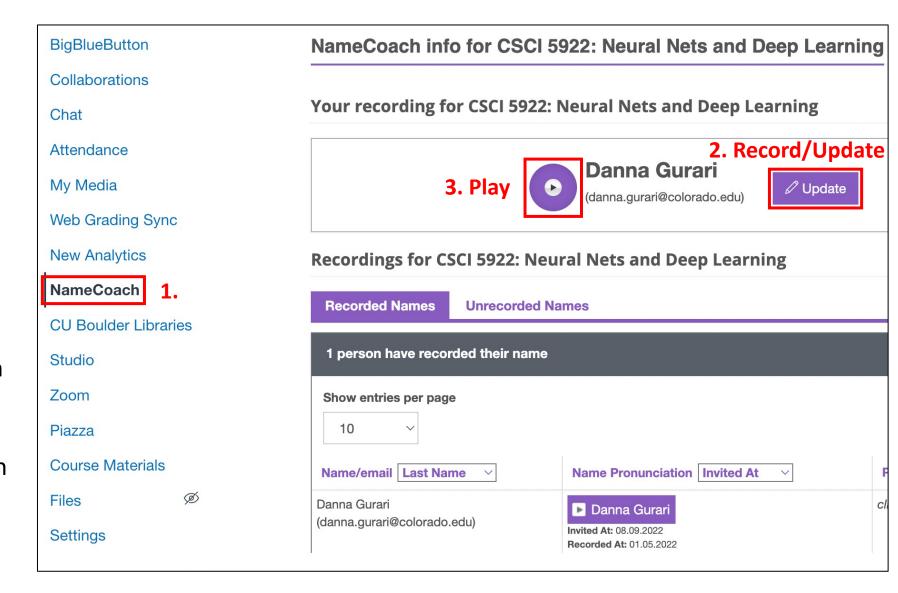
Teaching assistant: Lucas Hayne (preferred pronouns: he/him)

Introductions

NameCoach: share your name pronunciation in Canvas

To record your name:

- Find NameCoach in Canvas courses page
- 2. Click on record button to start
- 3. Review recording by clicking on play button



Course Objectives

- Understand the key concepts for designing deep learning models:
 - 1. Characterize the process to train and test deep learning algorithms
 - 2. Identify the challenges for designing modern deep learning algorithms that can harness today's 'big' data
 - 3. Recognize strengths and weaknesses of different deep learning algorithms

- Apply deep learning models to perform various AI tasks:
 - 1. Experiment with deep learning libraries, including scikit-learn and Keras
 - 2. Evaluate deep learning algorithms for tasks in various application domains, including for analyzing text and images

Course Objectives

- Conduct and communicate a novel project:
 - 1. Propose a novel project idea (this will be an iterative process)
 - 2. Design and execute experiments to support the proposed idea
 - 3. Create a presentation about the project
 - 4. Write a report about the project

Course Overview

- Website
 - https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/ AboutCourse.html
- Syllabus on website

		% of Final Class Grade
• Grading :	Problem Sets Lab Assignments Final Project	$25\% \\ 35\% \\ 40\%$

Q&A: "What are the assignments?"

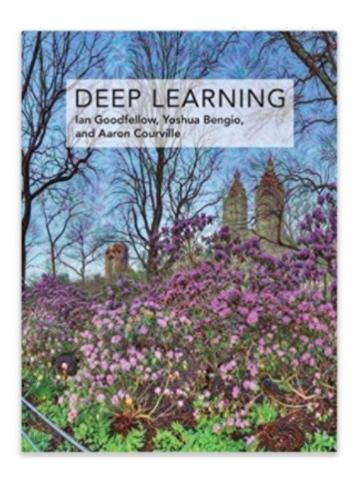
- 3 problem sets (first assignment due next week)
- 4 lab assignments
- Final project
 - Proposal
 - Outline
 - Presentation
 - Final report
- Grading policies:
 - Late policy: Penalized 1% per hour for up to 2 hours and no credit afterwards
 - Regrade requests: Must be submitted within 2 weeks of receiving the grade to the TA,
 Samreen Anjum. After the allotted time frame, regrade requests will not be considered.
- Grading timeline
 - Due to many students (100+) and 2 graders, expect to receive grades ~1 week after submission

Q&A: "Do I have the appropriate pre-requisites/background?"

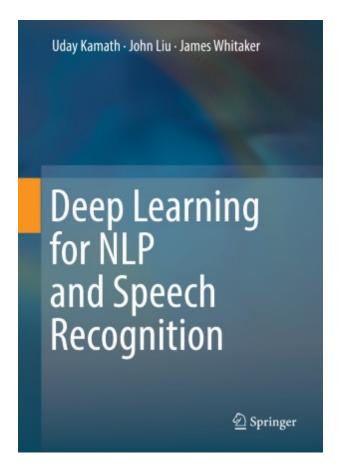
• You are expected to have programming competency as well as experience with probability/statistics and linear algebra.

Q&A: "What are required textbooks?"

(available online for free)



(available online for free when connected to CU Boulder's network or VPN)



Q&A: "How Do I Contact You for Questions?"

- Questions for Instructor: I will stay after each class lecture to answer questions.
- **Piazza:** We encourage you to first post any questions to Piazza. This can benefit other students, who may have similar questions, to see the answers posted on Piazza and it also allows peers to answer your questions. You can post questions to Piazza from Canvas.
- Office Hours: The TAs will host office hours every day from Monday to Friday. To attend, please enter your name on the office hours spreadsheet shared in Canvas and Piazza and then join the video meeting link shared on Canvas.
- **Appointments**: Email the TA to make an appointment or solicit an answer. Please note that at least 24 hours notice will typically be needed before the TA will be able to meet. The TA will involve the instructor for any items she is unable to address.
- Regrade requests: All requests must be emailed to the TA, Samreen Anjum, within 2 weeks of receiving the grade to be considered.

My Experience Related to Deep Learning

2007-2010

2010-2015

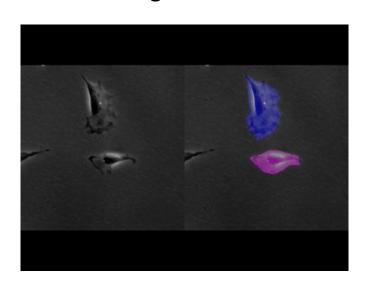
2015-2017

2017-Present

Software developer and project manager helping to record and analyze visible and infrared video

Source: Boulder Imaging

PhD student designing computer vision methods to segment and track cells in images and videos



Postdoctoral fellow conducting research projects related to vision and language problems

Is it edible or poisonous?

Assistant professor overseeing research projects related to many vision and language problems

e.g., image classification, object detection, semantic segmentation, object tracking, image captioning, visual question answering, style transfer, image inpainting, and image search

My Experience Related to Deep Learning

2007-2010

2010-2015

2015-2017

2017-Present

Software developer and project manager helping to record and analyze visible and infrared video

PhD student designing computer vision methods to segment and track cells in images and videos

Postdoctoral fellow conducting research projects related to vision and language problems

Assistant professor overseeing research projects related to many vision and language problems

Source: Boulder Imaging

e.g., image classification, object detection, semantic

20 publications involving deep learning

Is it edible or poisonous?

style transfer, image inpainting, and image search

What is My "Why" for Teaching You...

WHAT?

Deep Learning

HOW?

By empowering you to become proficient in one of my passions

WHY?

To guide and witness you discover more about your potential and your passions

Today's Topics

Applications

History of neural networks and deep learning

• How does a machine learn?

Course logistics

The End