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Today’s Topics

* Applications
 History of neural networks and deep learning
* How does a machine learn?

* Course logistics



Today’s Topics

* Applications



Key Motivation

Systems that support humans by either
improving upon existing human capabilities
or providing new capabilities
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Solutions — Information Retrieval
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Solutions — Recognition

(Fraud)



Solutions — Robotics

(Self-driving Vehicles) (Medical Surgery) (Manufacturing)



Solutions — Recommendation Systems
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Solutions — Advertising

machine learning
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Ad - https://pg-p.ctme.caltech.edu/
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Become an Al & ML Expert in 7 months. Learn from the World's Best Instructors. Enroll Now!




Solutions — Home Virtual Assistants

e.g., Amazon’s Echo with Alexa e.g., Google Home



Today’s Topics

 History of neural networks and deep learning



Origins: Computers
1945

First programmable
machine

ENIAC (Electronic Numerical Integrator and
Computer) created during World War |l
(could compute 5,000 additions in one second)

First programmers



Origins: Conceptual Framework
1945 1950

First programmable
machine

Turing test

Alan Turing
(1912-1954)

\. /
- B
C

Turing Test: can “C” decide whether text
responses come from a machine or human



Origins: Conceptual Framework

1945 1950 1956
e EEEE———

First programmable

machine Al birth

Turing test

T T

IN THIS BUILDING DURING-THE-SUMMER OF 1956

| JOUN McCARTHY (DARTMOUTH COLLEGE), MARVIN L. MINSKY (MIT)
NATHANIEL ROCHESTER (IBM), AND CLAUDE SHANNON (BELL LABORATORIES)
CONDUCTED
| THE DARTMOUTH SUMMER RESEARCH PROJECT |
ON ARTIFICIAL INTELLIGENCE

FIRST USE OF THE TERM “ARTIFICIAL INTELLIGENCE"
FOUNDING OF ARTIFICIAL INTELLIGENCE AS A RESEARCH DISCIPLINE
“To proceed on the basis of the conjecture
that every aspect of learning or any other feature of intelligence

an in principle be so precisely described that a machine can be made to simulate it

IN COMMEMORATION OF THE PROJECT'S 50th ANNIVERSARY
JULY 13, 2006

“Artificial intelligence” established as a field at a workshop



Origins: Conceptual Framework

1945 1950 1956
e B e —————————

First programmable

machine Al birth

Turing test

Workshop Proposal:

solve kinds of problems now reserved for humans

“Artificial intelligence” established as a field at a workshop


https://en.wikipedia.org/wiki/Hanover,_New_Hampshire

Origins: Conceptual Framework
1945 1950 1956

—ft—eo—F—n—

First programmable oirth  Birth of field " n
machine Al birt irt o. -|e S such as speec
recognition, natural language
Turing test processing, and computer vision

What human intelligence ﬁ =
might computers imitate?




Origins: Conceptual Framework

1945 1950 1956 1959
(O s (s e e—————————————————————————

First programmable Machine
machine learning
Turing test Artificial Intelligence

(machines that do
“intelligent” things)

Al researcher Arthur Samuel coins the term
“machine learning” as:

Machine Learning
(algorithms that “learn”

for themselves)

“Field of study that gives computers the ability
to learn without being explicitly programmed.”



Motivation for Machines that “Learn”

* Process for hand-crafted rules:

Launch!
Studythe | ot \write rules Evaluate
problem
‘ &
Analyze <
errors

https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html



Motivation for Machines that “Learn”: Class Task

e.g., What rules would you use to answer: “Is a person in the image?”




Motivation for Machines that “Learn”

e.g., are these lines parallel?




Motivation for Machines that “Learn”

e.g., are these lines parallel?




Motivation for Machines that “Learn”

1. Itis hard to hand-craft a complete set of rules

2. We, as humans, may not devise the best rules for a machine since our brains
(unconsciously) pre-process the data we sense



Origins: Neural Networks with Deep Learning

1945 1950 1956 1959 1986
First programmable Machine Neural networks with effective
machine Al learning “deep learning” strategy
Turing test

Artificial Intelligence
(machines that do
“intelligent” things)

Machine Learning
(algorithms that “learn”

for themselves)

Neural
Networks
-



Motivation for Neural Networks (NNs) Over
Other Machine Learning (ML) Approaches

INPUT e.g., Is a person present? OUTPUT

/ OTHER ML APPROACH: HAND-CRAFTED FEATURES \

4 Feature Extraction ) é Prediction )
\ % J =
[]

What features would help predict yes/no? f A

ety

— > Yes

J

7\
.
e.g., corners, lines, and model of expected body parts as connected shapes ﬁ ii\

e.g., Pedro F Felzenszwalb and Daniel P Huttenlocher, 1JCV 2004



Motivation for Neural Networks (NNs) Over
Other Machine Learning (ML) Approaches

INPUT e.g., Is a person present? OUTPUT

HER ML APPROACH: HAND-CRAFTED FEATLLS

sdiction

I m — > Yes
\

g
s1q

Feature EXTr&
?

».

Challenging to hand-craft features!



Motivation for Neural Networks (NNs) Over
Other Machine Learning (ML) Approaches

INPUT e.g., Is a person present? OUTPUT

HER ML APPROACH: HAND-CRAFTED FEATLLS

Feature ExTraugan odiction

2

— > Yes

».

NN APPROACH: REPRESENTATION LEARNING Course scope

4 Feature Extraction ) Prediction

@ ||
&




Origins: Rises/Falls of Neural Network Popularity
1945 1950 1956 1959 1986

First programma

Machine Neural networks with effective
machine '

“deep learning” strategy

Turing test

0.000250

0.000200 H

Neural networks are not new and

0.000150}- - - - - - - PN TR SO W —
have been called many names:

0.000100_.......§ ............... :

0.000050} - - - - - .- s

0.000000 4

1940 1950 1960 1970 1980 1990 2000
Year
lan Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016

(according to Google Books)




Origins: Rises/Falls of Neural Network Popularity
1945 1950 1956 1959 1986 2012

with effective Wave 3: rise of

”

First programmable Machine Neural n
machine learning “deep learning” strategy “deep learni

Turing test
(Google Trends)

Jan 2012

M deep learning 1
10

machine learning ote

Jan 1, 2004 2010 May 1, 2016

Machine learning popularity has paralleled rise of deep learning popularity




Today’s Topics

e How does a machine learn?



General Idea

An algorithm learns from data
patterns that will be used to
make a prediction



General Idea

An algorithm learns from data
patterns that will be used to
make a prediction



Typical Algorithm Design

* Unsupervised Learning * Supervised Learning

* |dentify patterns by * |dentify patterns by studying structured
observing unstructured data data with labels of expected outputs




Types of “Unsupervised” Learning Tasks

Clustering

Feature 2

————_§

’—-——

Anomaly Detect

Feature 2 _
New instances

ion

Feature

Feature 1

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Value

Types of “Supervised” Learning Tasks

Regression
(predict continuous value)

0,0
® O
@0
OOOO
O
O

O

efe s 00 D°

OO0 OO [e)

%80 00

Value?

Classification
(predict discrete value)

Training set

@,\ Label@\

Instance

&

& <3

New instance

L

Feature 1

D> P

New instance

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Typical Supervised Learning Algorithm Design

* Model-based classification approach
e e.g., create model to separate x from o

A X O O
X X O O O O Class volunteer:
X, | X O 0O O O 1) Draw a straight line (linear equation)
¥ O X X O 2) Draw a parabola (quadratic equation)
X O 00O % 3) Draw any curve
X X X Models with increasing
X > representational capacity

1

Figure source: https://medium.com/greyatom/what-is-underfitting-and-
overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76



Algorithm Scope for Course: Last 65 Years

1945 1950 19%6 1959 1986 2012
First programmable Machine Neural networks with Wave 3: rise of
machine A learning effective learning strategy “deep learning”

Turing test

Analogous to
understanding how
houses we live-in work:

We study older algorithms because modern deep learning
algorithms rely on techniques developed over the past 65 years.



Algorithm Scope for Course: Last 65 Years

1945 1950 1936 1959

First programmable Machine Neural networks with Wave 3: rise of

machine A learning effective learning strategy “deep learning”
Turing test

Week Topic(s) Week Topic(s)

1 Introduction, Artificial neurons 9 Transformers

2 Feedforward neural networks (NN), NN training 10 Multimodal NN (vision + language)

3 NN training 11 Multimodal NN, Self-supervised learning, GANs

4 Convolutional neural networks (CNN), Introduction to CV 12 Few /zero-shot learning, Responsible/ethical learning

5 Training CNN algorithms 13 Deep learning in industry (guest speakers)

6 Regularization, Pretrained CNN features, Fine-tuning 14 Model compression, Efficient learning

4 Object detection, Semantic segmentation, Recurrent neural networks 15 NNs for speech processing & reinforcement learning

8 Introduction to natural language proecssing, Neural word embeddings, Attention 16 NN for information retrieval & course summary



General Idea

An algorithm learns from data
patterns that will be used to
make a prediction



e Audio
* Input?

e.g.,




Data Types: What a Machine Learns From? §
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Data Types: What a Machine Lea
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Data Types: What a Machine Learns From?

Confidential letter sh

* Audio ,
? David-Khoza@mmoscacsv.com
* Input? 0 <

* [mages
* Input?

* Video 2 Attachments
* Input? e.g.

* Text
* Input?



* Audio
* Input?

* [mages
* Input?
* Video e
* Input?
* Text el
* Input? e
* Multi-modal ol

* Input? - combination of the above
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Data Types: Many Public Datasets Available

* Dataset creation is beyond the scope of this class

* We will benefit from other people’s efforts:
* Google Dataset Search
e Amazon’s AWS datasets
e Kaggle datasets
* Wikipedia’s list
e UCIrvine Machine Learning Repository
* Quora.com
e Reddit
* Dataportals.org
* Opendatamonitor.eu
* Quandl.com



https://toolbox.google.com/datasetsearch
https://registry.opendata.aws/
https://www.kaggle.com/datasets?utm_medium=paid&utm_source=google.com&utm_campaign=datasets+houseads&gclid=CjwKCAjw5ZPcBRBkEiwA-avvk6JRO6FPQD1IXBS64jDWm5JgItdhEgqg384y5koDY4CyGW-OX4ws1xoCXbwQAvD_BwE&dclid=CLfZq4WikN0CFRwCrQYdqY4HOQ
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
http://archive.ics.uci.edu/ml/index.php

General Idea

An algorithm learns from data
patterns that will be used to
make a prediction



Why Are Neural Networks and Deep Learning
So Popular? — Its Success in Practice!

It’s success was realized with the relatively recent onset of:
1. Big data: originally, often from the Internet

2. Better hardware: faster hardware and more storage enabled
practically fast “deep learning”



Neural Networks: Key Ingredients for Success

An algorithm learns from data
on a processor the patterns that
will be used to make a prediction

Analogous to a Love Story of Partnering Up and Road Tripping Somewhere



Key Challenge 1: How Long Does Learning Take?

An algorithm learns from data
on a processor the patterns that
will be used to make a prediction

Analogous to a Love Story of Partnering Up and Road Tripping Somewhere



Key Challenge 1: How Long Does Learning Take?

e.g., Train Algorithms Using
GPUs (think Porsche) Instead of CPUs (think Golf Cart)




Key Challenge 2: Where Will You Go?

%— dlrlnmravec banan ¥ +% Folloy
Google Photos, y'all fucked up. My friend's
not a gorilla.

0K BEXit

Nikon

Two kids bought their mom a
camera for Mother's Day...
when they took portrait pictures
of each other, a message
flashed across the screen
asking, "Did someone blink?"

Using Twitter to call out Google's algorithmic bias

https://www.theverge.com/2
015/7/1/8880363/google-
apologizes-photos-app-tags-
two-black-people-gorillas

http://content.time.com/time/busines
s/article/0,8599,1954643,00.html



Today’s Topics

* Course logistics



Introductions

Instructor: Danna Gurari; aka, Dr. G Teaching assistant: Samreen Anjum Teaching assistant: Lucas Hayne

(preferred pronouns: she/her) (preferred pronouns: she/her) (preferred pronouns: he/him)




Introductions

NameCoach: share your
name pronunciation in
Canvas

To record your name:

1. Find NameCoach in
Canvas courses page

2. Click on record button
to start

3. Review recording by
clicking on play button

BigBlueButton
Collaborations
Chat

Attendance

My Media

Web Grading Sync

New Analytics

n NameCoach| 1.

CU Boulder Libraries
Studio

Zoom

Piazza

Course Materials
Files &

Settings

NameCoach info for CSCI 5922: Neural Nets and Deep Learning

Your recording for CSCI 5922: Neural Nets and Deep Learning

2. Record/Update

Danna Gurari
3' Play (danna.gurari@colorado.edu)
Recordings for CSCI 5922: Neural Nets and Deep Learning

Recorded Names Unrecorded Names
1 person have recorded their name

Show entries per page

10 b

Name Pronunciation | Invited At v F

B Danna Gurari cl

Invited At: 08.09.2022
Recorded At: 01.05.2022

Name/email | Last Name V|

Danna Gurari
(danna.gurari@colorado.edu)




Course Objectives

e Understand the key concepts for designing deep learning models:
1. Characterize the process to train and test deep learning algorithms

2. ldentify the challenges for designing modern deep learning algorithms that
can harness today’s ‘big’ data

3. Recognize strengths and weaknesses of different deep learning algorithms

* Apply deep learning models to perform various Al tasks:
1. Experiment with deep learning libraries, including scikit-learn and Keras

2. Evaluate deep learning algorithms for tasks in various application domains,
including for analyzing text and images



Course Objectives

* Conduct and communicate a novel project:
1. Propose a novel project idea (this will be an iterative process)
2. Design and execute experiments to support the proposed idea
3. Create a presentation about the project
4. Write a report about the project



Course Overview

 Website

* https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeeplearning/
AboutCourse.html

* Syllabus on website

% of Final Class Grade

Problem Sets 25%
Lab Assignments 35%
Final Project 40%

* Grading:



https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/AboutCourse.html

Q&A: “What are the assignments?”

3 problem sets (first assignment due next week)

4 lab assignments

* Final project
* Proposal
e QOutline
* Presentation
* Final report

Grading policies:
* Late policy: Penalized 1% per hour for up to 2 hours and no credit afterwards

* Regrade requests: Must be submitted within 2 weeks of receiving the grade to the TA,
Samreen Anjum. After the allotted time frame, regrade requests will not be considered.

Grading timeline
e Due to many students (100+) and 2 graders, expect to receive grades ~1 week after submission



Q&A: “Do | have the appropriate
pre-requisites/background?”

* You are expected to have programming competency as well as
experience with probability/statistics and linear algebra.



Q&A: “What are required textbooks?”

(available online for free) (available online for free when connected
to CU Boulder’s network or VPN)

Uday Kamath - John Liu - James Whitaker

Deep Learning

for NLP
and Speech
Recognition




Q&A: “How Do | Contact You for Questions?”

* Questions for Instructor: | will stay after each class lecture to answer questions.

* Piazza: We encourage you to first post any questions to Piazza. This can benefit other students,
who may have similar questions, to see the answers posted on Piazza and it also allows peers to
answer your questions. You can post questions to Piazza from Canvas.

» Office Hours: The TAs will host office hours every day from Monday to Friday. To attend, please
enter your name on the office hours spreadsheet shared in Canvas and Piazza and then join the
video meeting link shared on Canvas.

* Appointments: Email the TA to make an appointment or solicit an answer. Please note that at
least 24 hours notice will typically be needed before the TA will be able to meet. The TA will

involve the instructor for any items she is unable to address.

* Regrade requests: All requests must be emailed to the TA, Samreen Anjum, within 2 weeks of
receiving the grade to be considered.



My Experience Related to Deep Learning

2007-2010 2010-2015 2015-2017 2017-Present
Software developer and PhD student designing Postdoctoral fellow Assistant professor
project manager computer vision methods conducting research  overseeing research projects
helping to record and to segment and track cells projects related to vision related to many vision and
analyze visible and in images and videos and language problems language problems

infrared video
e.g., image classification,
object detection, semantic
segmentation, object
tracking, image captioning,
visual guestion answering,
style transfer, image
inpainting, and image search

Source: Boulder Imaging

Is it edible or
poisonous?



My Experience Related to Deep Learning

2007-2010 2010-2015 2015-2017 2017-Present
Software developer and PhD student designing Postdoctoral fellow Assistant professor
project manager computer vision methods conducting research  overseeing research projects
helping to record and to segment and track cells projects related to vision related to many vision and
analyze visible and in images and videos and language problems language problems

infrared video

e.g., image classification,
object detection, semantic

Source: Boulder Imaging style transfer, image

inpainting, and image search

Is it edible or
poisonous?



What is My “Why” for Teaching You...

WHY?

To guide and witness you
discover more about
your potential and your
passions




Today’s Topics






