Popular Transformers

Danna Gurari University of Colorado Boulder Spring 2022

https://home.cs.colorado.edu/~DrG/Courses/NeuralNetworksAndDeepLearning/AboutCourse.html

Review

- Last lecture:
 - Transformer overview
 - Self-attention
 - Multi-head attention
 - Common transformer ingredients
 - Pioneering transformer: machine translation
- Assignments (Canvas):
 - Lab assignment 3 due earlier today
 - Problem set 4 due next week
- Questions?

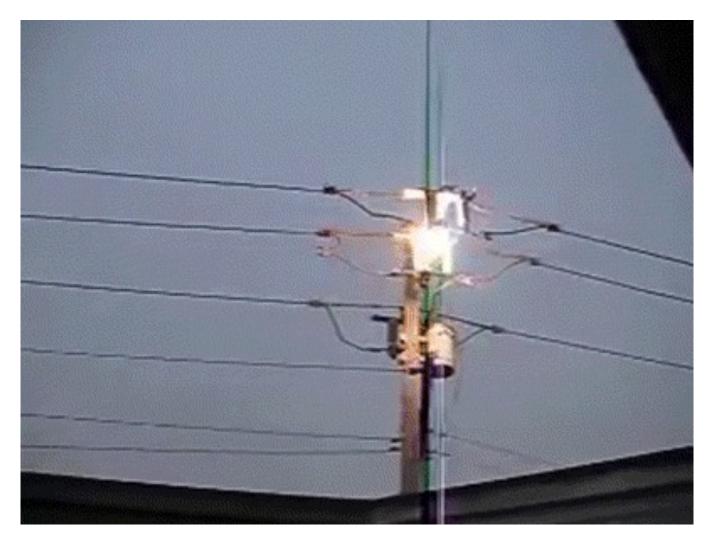
Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

Explosion of Transformers in Society



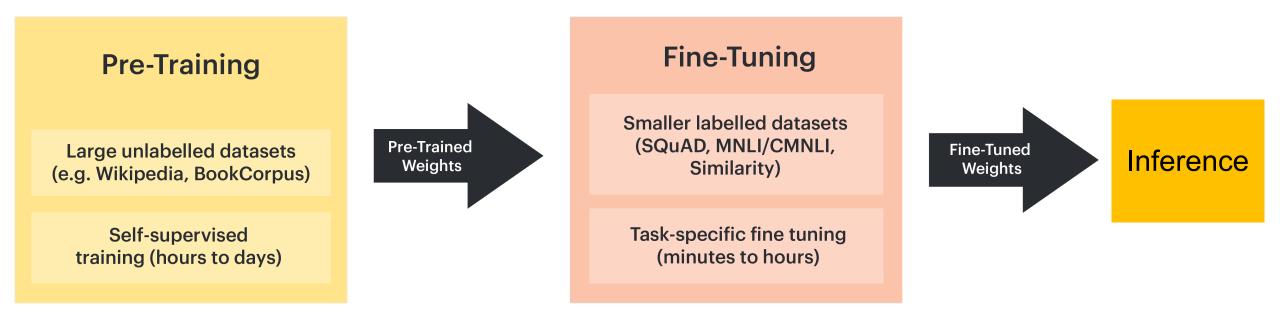
https://www.pinterest.com/pin/521784306804400819/

Popularity of Transformers in Society

Search term

https://trends.google.com/trends/explore

Today's Focus: Methods that Perform Pretraining and then Fine-tuning



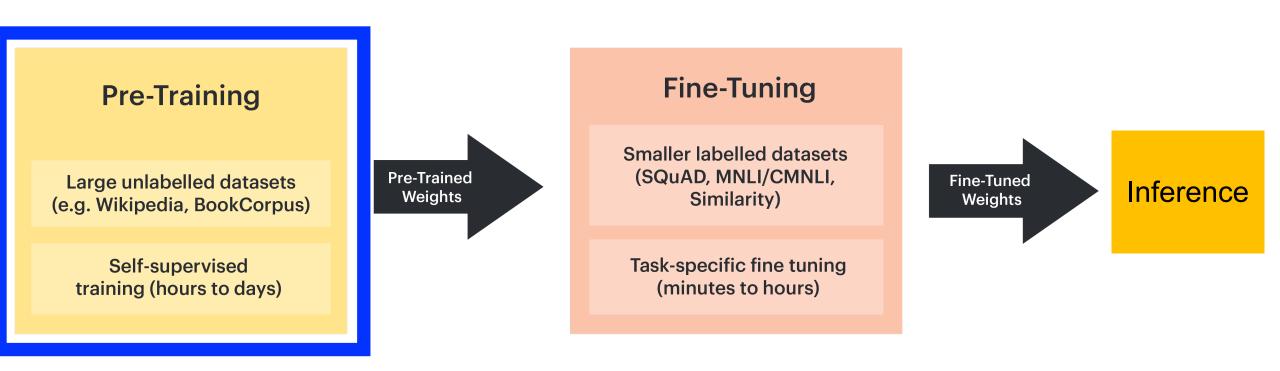
Transformers can provide better embeddings for downstream tasks since they capture context (unlike context-free embeddings such as word2vec)

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

GPT: Generative Pre-Training



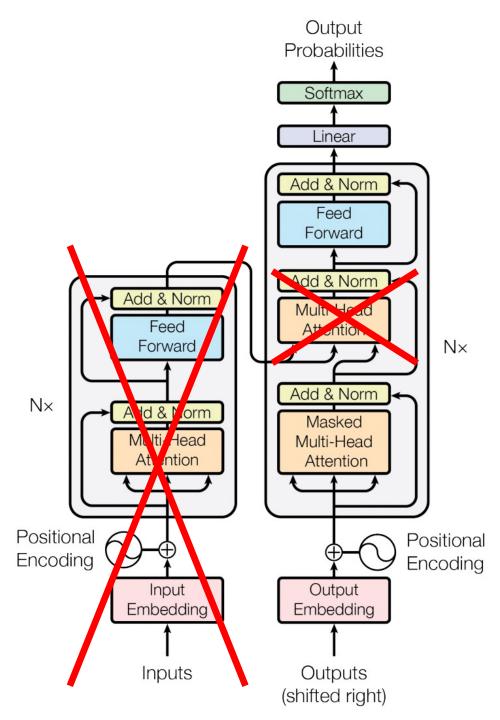
https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Task: Predict Next Word Given Previous Ones

e.g.,

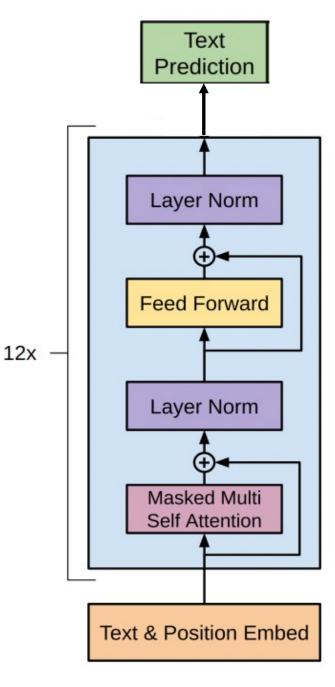
- 1. Background music from a _____
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____

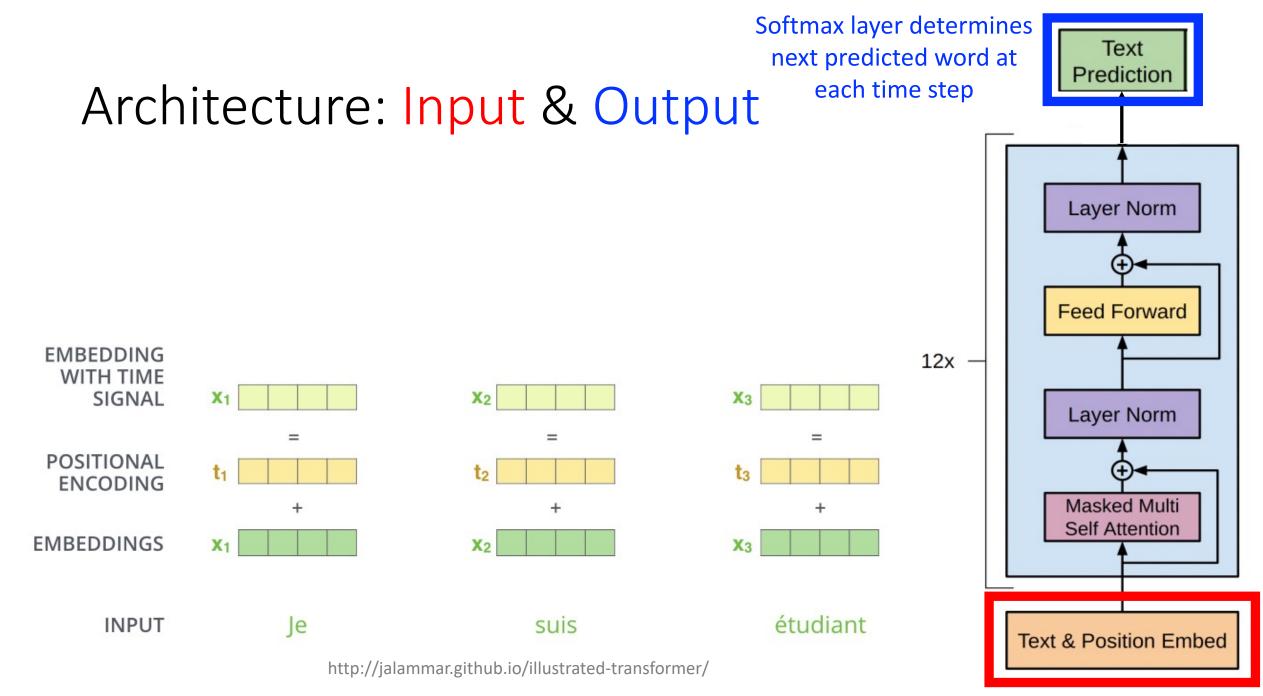
Architecture: Decoder from Pioneering Transformer



Vaswani et al. Attention Is All You Need. Neurips 2017.

Architecture

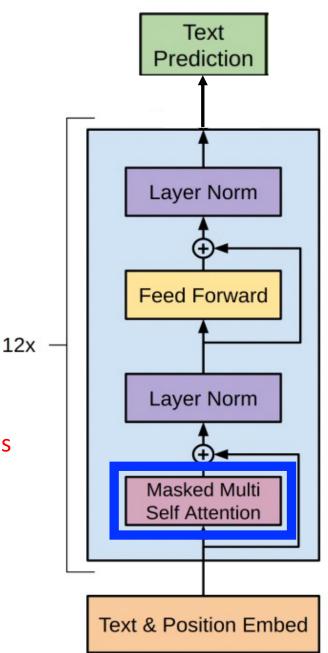




Architecture: Masked Attention

Limit each word's new representation to only reflect earlier words (mimics inference time when only previous tokens can be seen):

https://stackoverflow.com/questions/64799622/how-is-thegpts-masked-self-attention-is-utilized-on-fine-tuning-inference



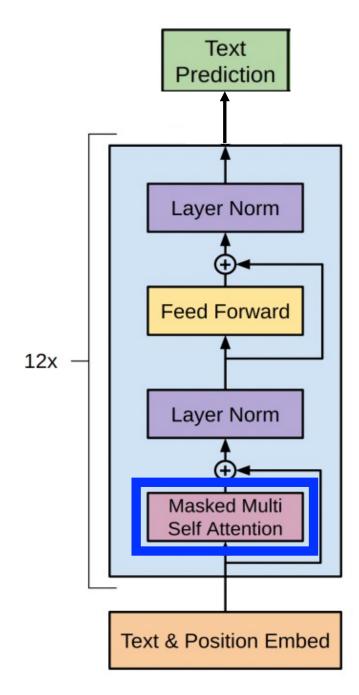
Architecture: Masked Attention

Limit each word's new representation to only reflect earlier words (mimics inference time when only previous tokens can be seen):

Query x Key

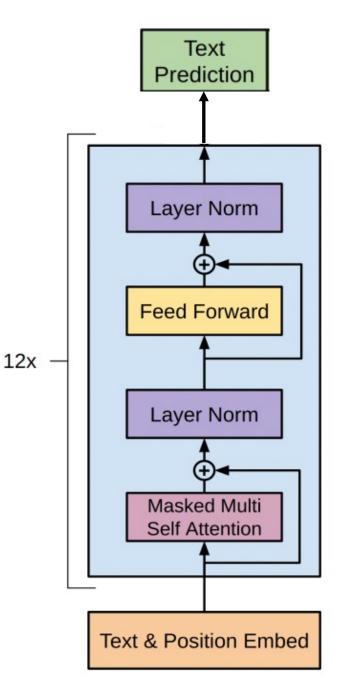
	\ 1 2 3 4 5 6	
	1 0 0 0 0 0 0	Masked out scores are represented as
	2 • • • • • • • •	negative infinity so the softmax result
Query	3 • • • • • • •	(i.e., attention weight) returns 0
	4 • • • 0 0 0	
	5 • • • • 0 0	
	6 • • • • • 0	

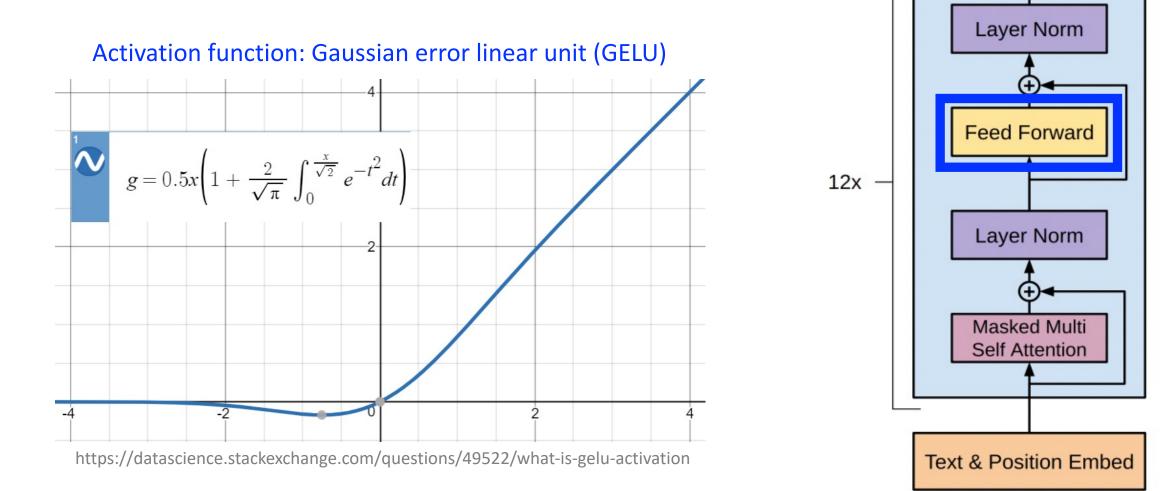
https://stackoverflow.com/questions/64799622/how-is-thegpts-masked-self-attention-is-utilized-on-fine-tuning-inference



Training

- Dataset: 800M words from BooksCorpus (>7,000 books)
- Optimizer: Adam
- Training duration: 100 epochs





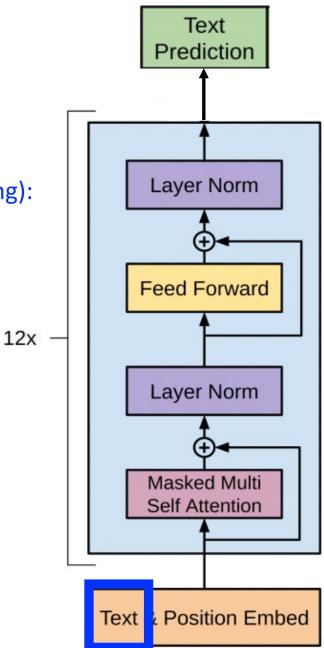
Radford et al. Improving Language Understanding by Generative Pre-Training. Technical Report 2018.

Text Prediction

Avoid out of vocabulary tokens with subword tokenization (byte pair encoding):

- 1. Identify all tokens in the training data with their frequency
- 2. Define vocabulary size; e.g., 14
- 3. Add all characters in the tokenized input to the vocabulary; e.g.,

Character sequence	Cost
Cost	2
best	2
menu	1
me n	1
c a m e l	1



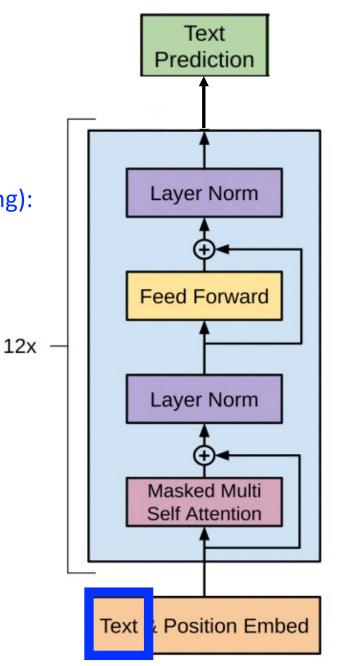
https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Avoid out of vocabulary tokens with subword tokenization (byte pair encoding):

- 1. Identify all tokens in the training data with their frequency
- 2. Define vocabulary size; e.g., 14
- 3. Add all characters in the tokenized input to the vocabulary; e.g.,
- 4. Until vocabulary is filled, add merged highest frequency symbol pairs

e.g., What are the highest frequency symbol pairs?

Character sequence	Cost	Vocabulary	
Cost	2	a, b, c, e, l, m, n, o,	
best	2	s, t, u	
menu	1		
men	1		
camel	1		



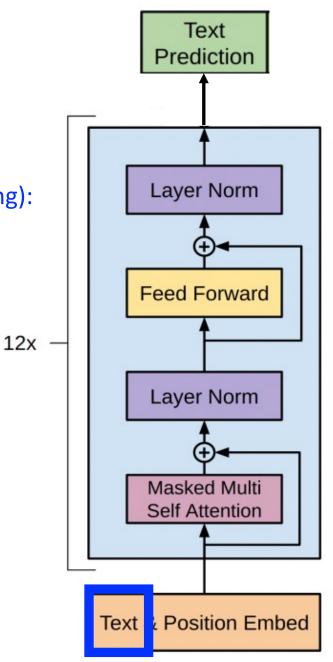
https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Avoid out of vocabulary tokens with subword tokenization (byte pair encoding):

- Identify all tokens in the training data with their frequency 1.
- Define vocabulary size; e.g., 14 2.

- Add all characters in the tokenized input to the vocabulary; e.g., 3.
- Until vocabulary is filled, add merged highest frequency symbol pairs 4.

	Character sequence	Cost	Vocabulary
e.g., What are the	Cost	2	a, b, c, e, l, m, n, o, s, t, u, st
highest frequency	best	2	
symbol pairs?	me'n u	1	
	m e n	1	
	c a m e l	1	

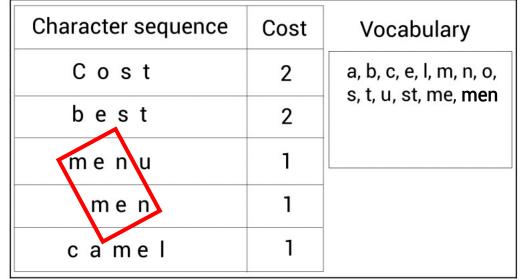


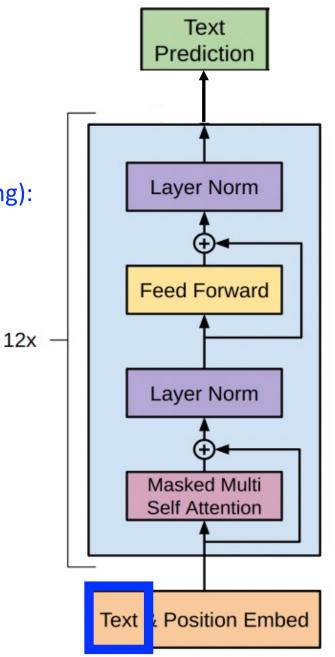
https://static.packt-cdn.com/downloads/9781838821593 ColorImages.pdf

Avoid out of vocabulary tokens with subword tokenization (byte pair encoding):

- 1. Identify all tokens in the training data with their frequency
- 2. Define vocabulary size; e.g., 14
- 3. Add all characters in the tokenized input to the vocabulary; e.g.,
- 4. Until vocabulary is filled, add merged highest frequency symbol pairs

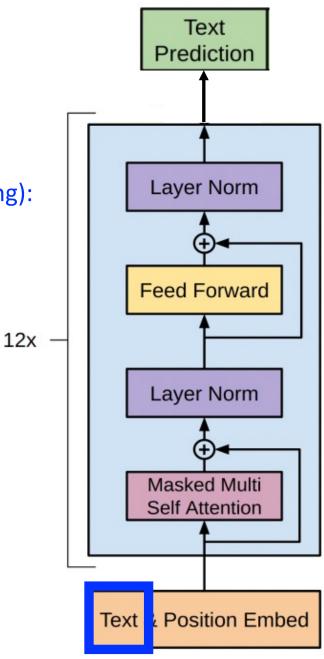
e.g., What are the highest frequency symbol pairs?



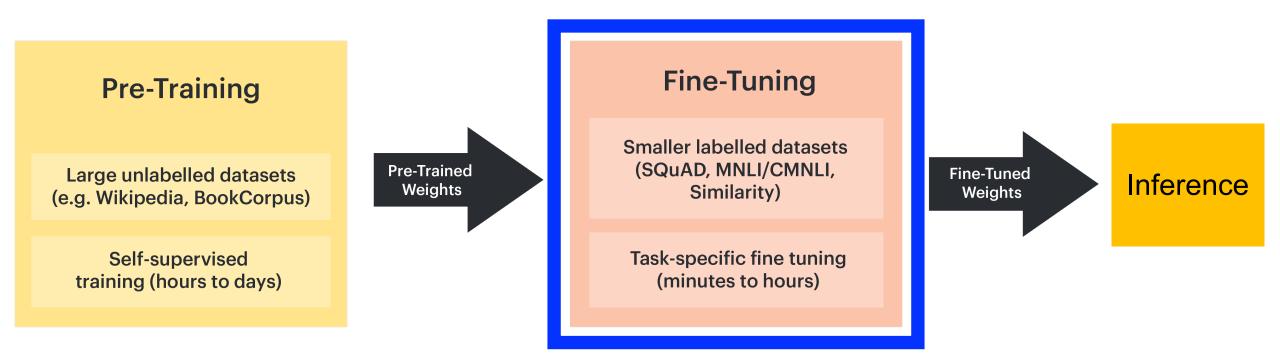


https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Avoid out of vocabulary tokens with subword tokenization (byte pair encoding): - 40,000 merges used

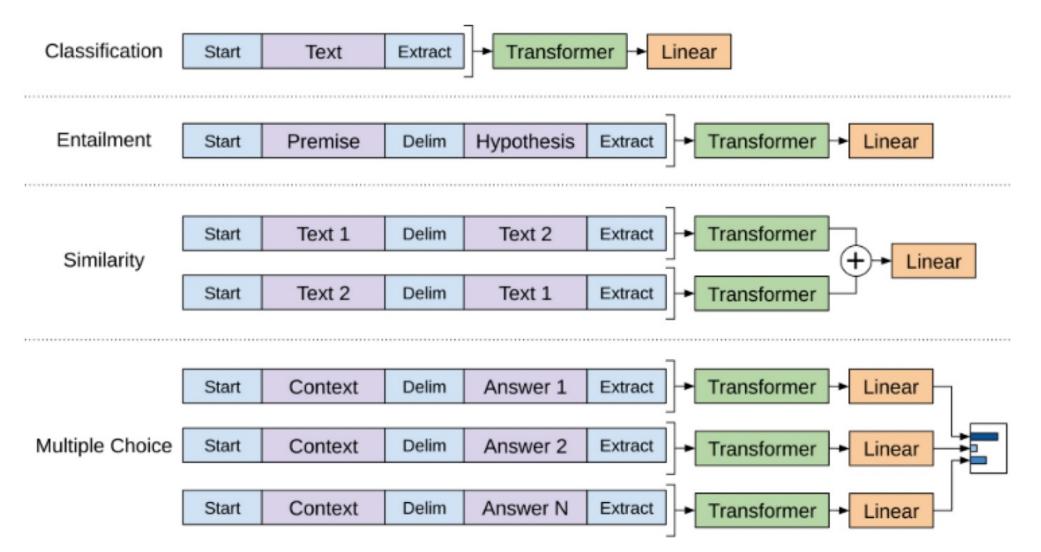


GPT: Generative Pre-Training



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

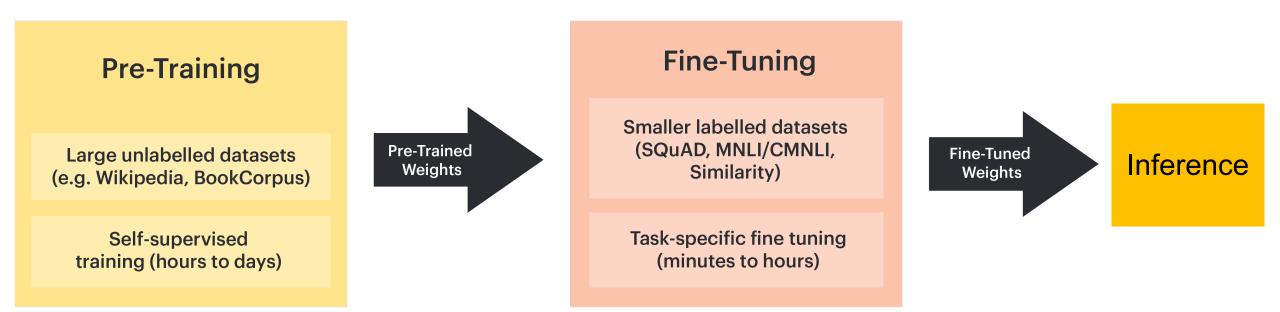
Fine-Tuning (Softmax Output Layers)



Experimental Findings

Achieved the best performance on 9 NLP dataset challenges

GPT: Generative Pre-Training



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Today's Topics

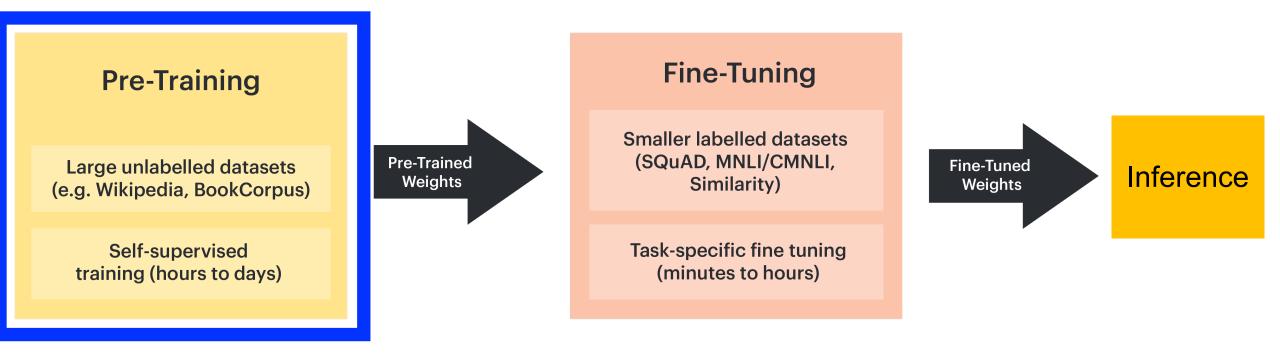
- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

Motivation: Choose a Pretraining Task That Is Not Unidirectional

GPT's prediction of the next word given previous ones is unidirectional (left-to-right)

- 1. Background music from a _____
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____

BERT: Bidirectional Encoder Representation from Transformer

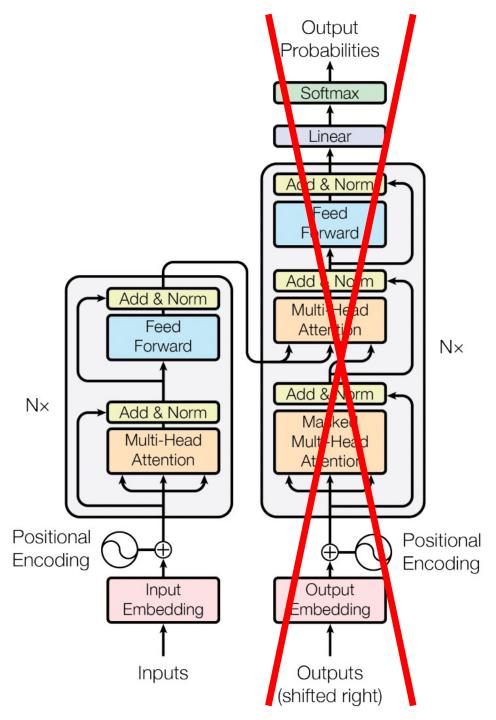


https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Two Tasks

- 1. Predict masked token (key contribution)
- 2. Predict if one sentence follows a second sentence (augments understanding of how sentences relate)

Architecture: Encoder from Pioneering Transformer



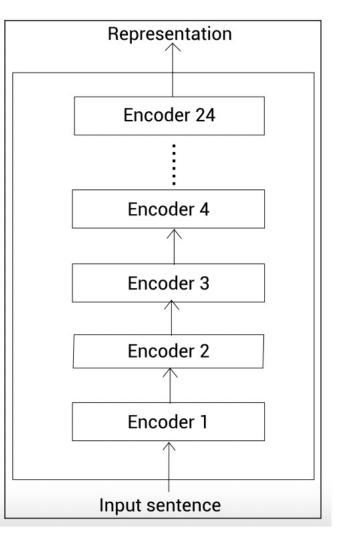
Vaswani et al. Attention Is All You Need. Neurips 2017.

Architecture: Variants

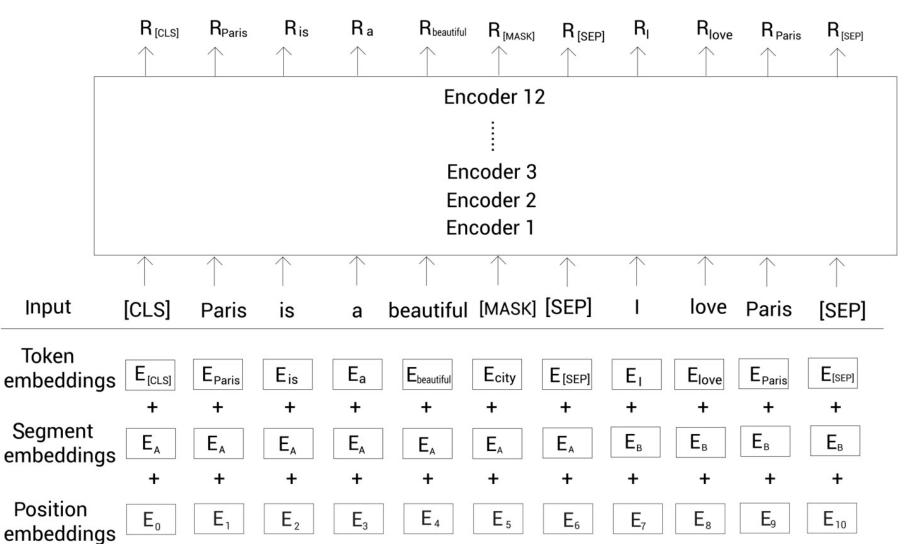
BERT-large (H = 1024)

- L = number of stacked encoders
- H = number of hidden units in feedforward layer

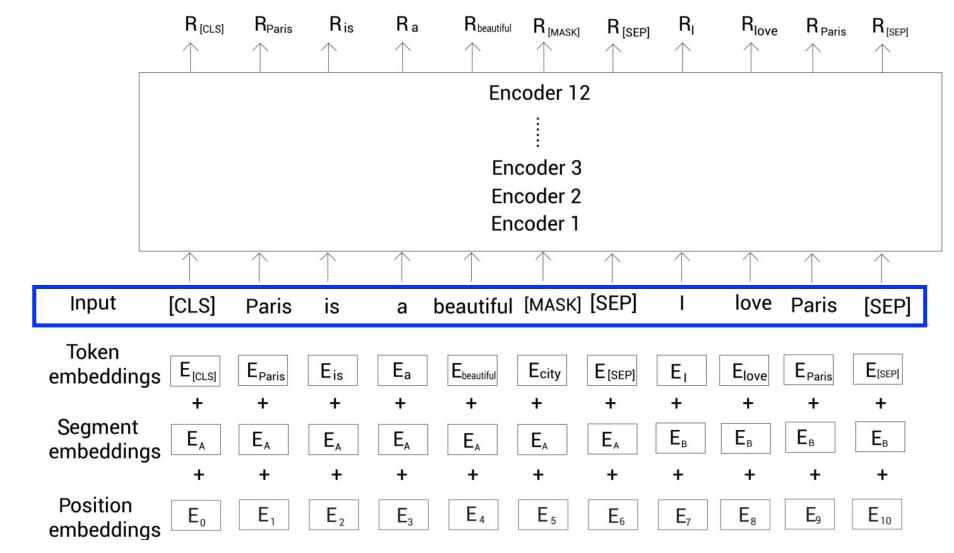
	H=128	H=256	H=512	H=768
L=2	2/128 (BERT-tiny)	2/256	2/512	2/768
L=4	4/128	4/256(BERT-mini)	4/512 (BERT-small)	4/768
L=6	6/128	6/256	6/512	6/768
L=8	8/128	8/256	8/512 (BERT-medium)	8/768
L=10	10/128	10/256	10/512	10/768
L=12	12/128	12/256	12/512	12/768(BERT-base)



Architecture: BERT-Base (Matches Size of GPT)

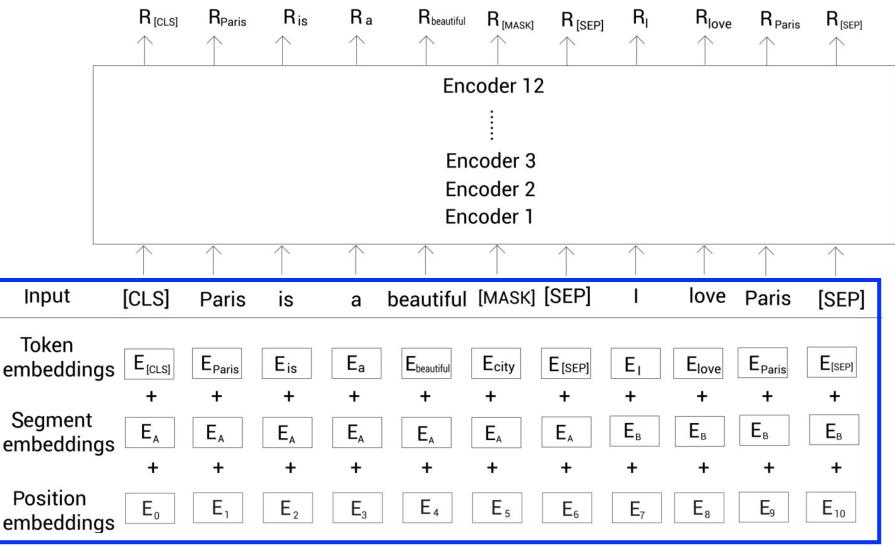


Architecture: Input



Two input sentences with [CLS] at the start and [SEP] between sentences

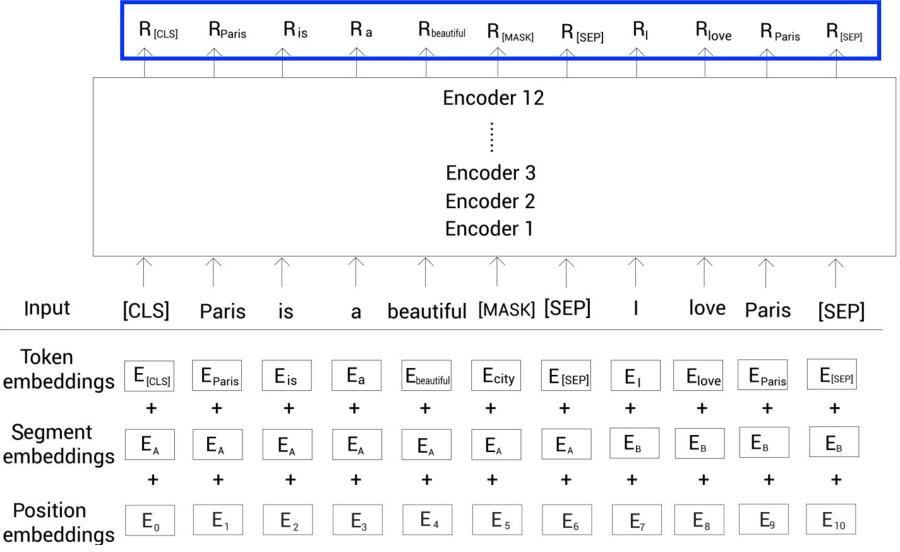
Architecture: Input



Input is addition of a segment embedding to the token and position embeddings (helps differentiate which tokens belong to which sentence)

Architecture: Output

New representation of each input that accounts for context

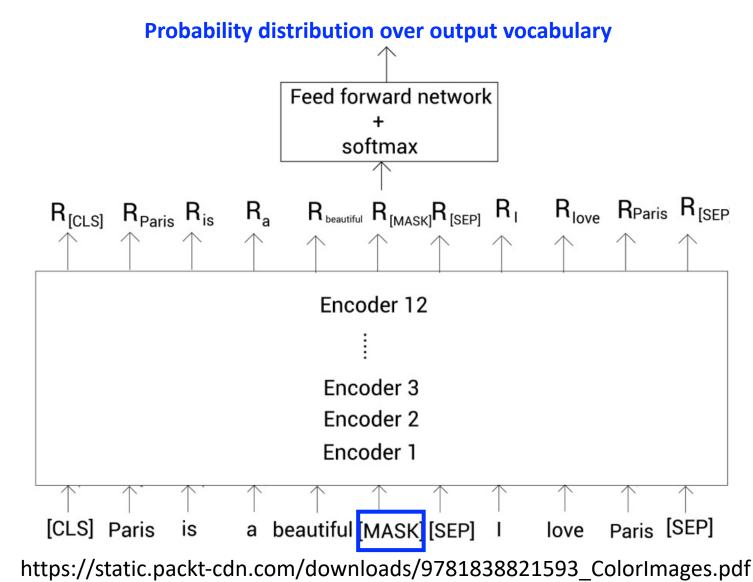


Architecture: Predicting Masked Token Task

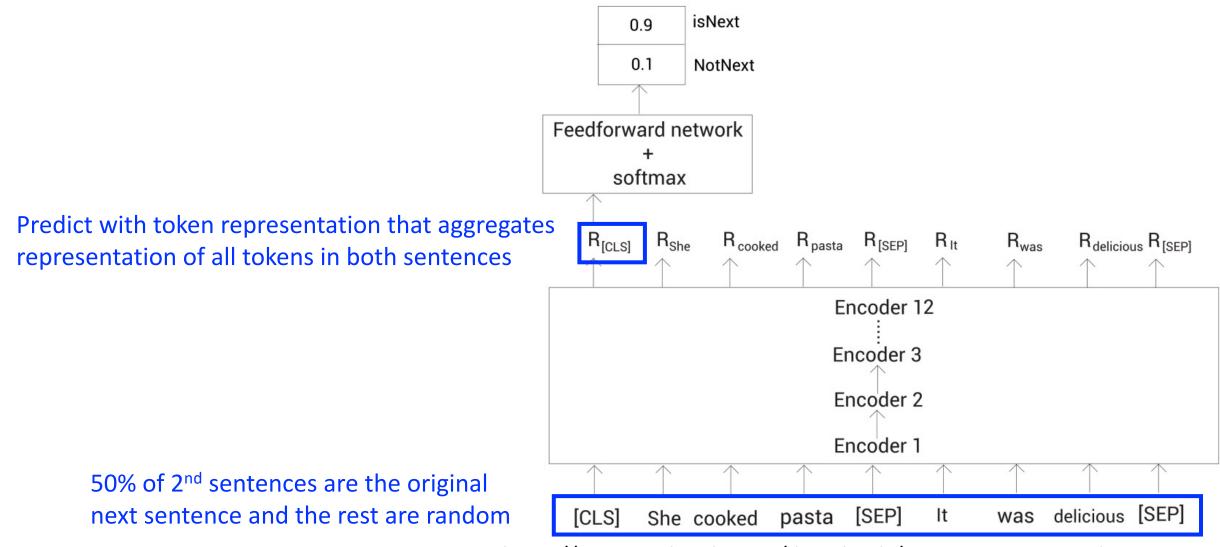
15% of random tokens from sequence masked

- 80% use [MASK]
- 10% use a random token

10% are unchanged
Multiple masking options
encourage the model to pay
attention to each token separately



Architecture: Predict if Next Sentence Task

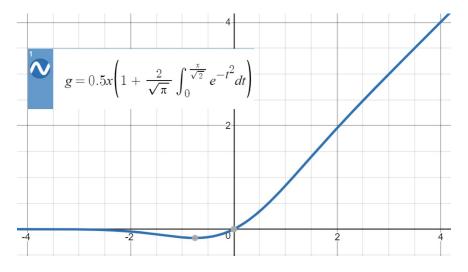


Training

- Dataset: 2,500M words in Wikipedia + 800M words in BooksCorpus used for GPT
- Optimizer: Adam
- Training loss: sums over losses from predicting masked words and if next sentence

Implementation Details: Mimics GPT

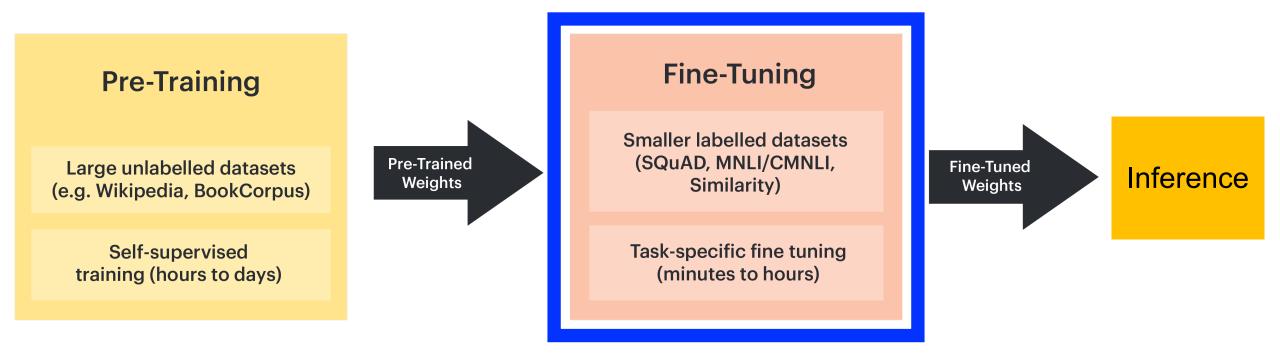
• Gaussian error linear unit (GELU) used as activation function in feedforward layers



https://datascience.stackexchange.com/ questions/49522/what-is-gelu-activation

• Avoids out of vocabulary tokens by using subword tokenization, with a different variant called WordPiece Tokenization

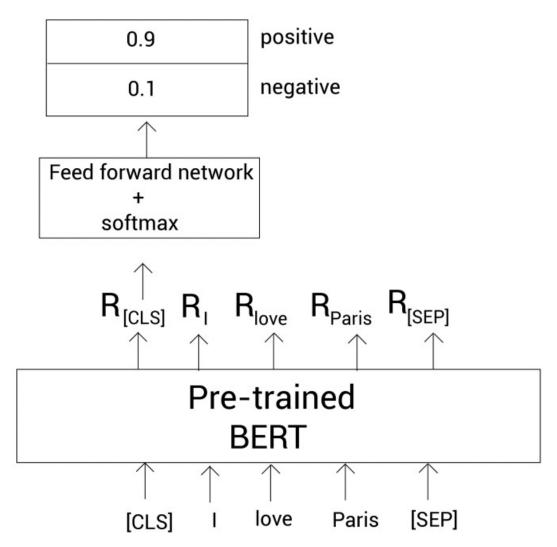
BERT: Bidirectional Encoder Representation from Transformer



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Fine-Tuning for Classification

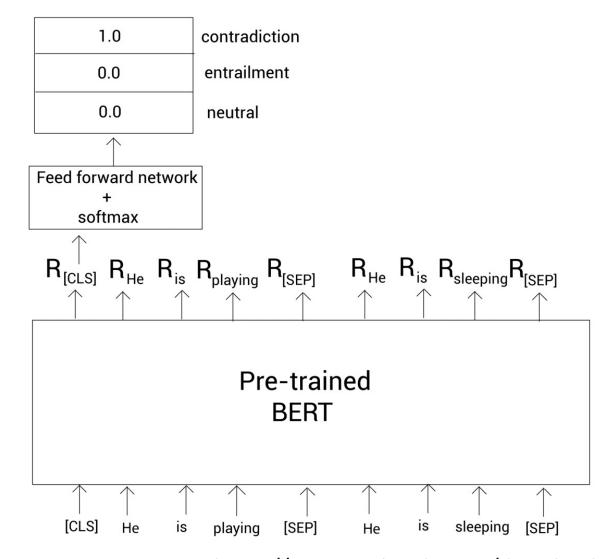
What is the difference between finetuning and using the pre-trained word embedding as classifier input?



Fine-Tuning for Natural Language Inference

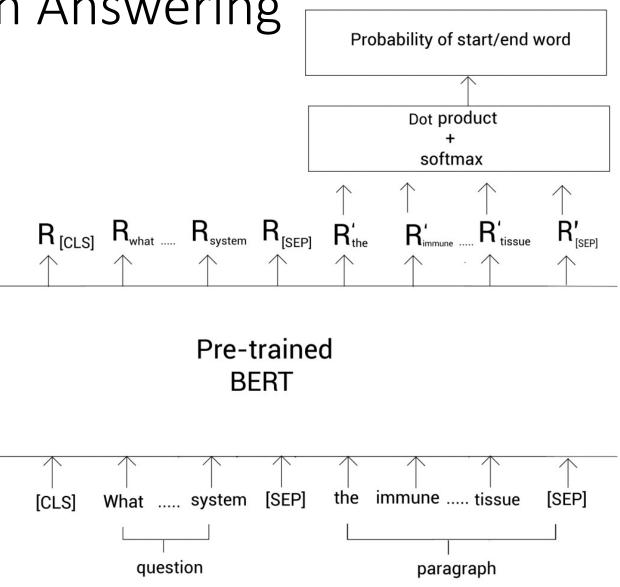
Premise	Hypothesis	Label
He is playing	He is sleeping	Contradiction
A soccer game with multiple males playing	Some men are playing sport	Entailment
An older and a younger man smiling	Two men are smiling at the dogs playing on the floor	Neutral

Fine-Tuning for Natural Language Inference

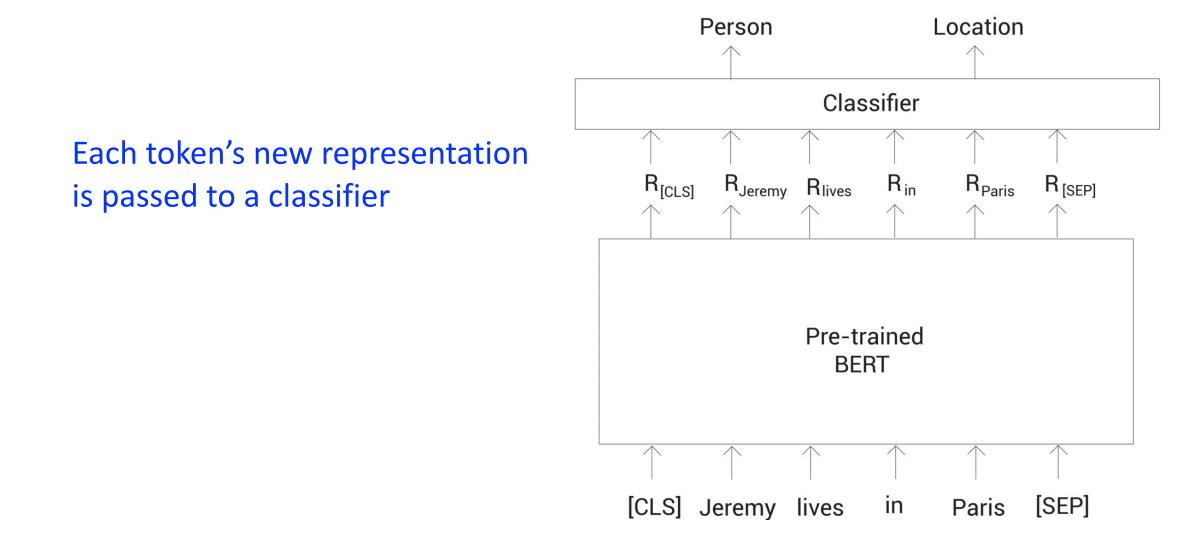


Fine-Tuning for Question Answering

To find indexes of the start and end words in the paragraph, two vector representations are learned that lead to the approximate softmax output when dot producted with each token

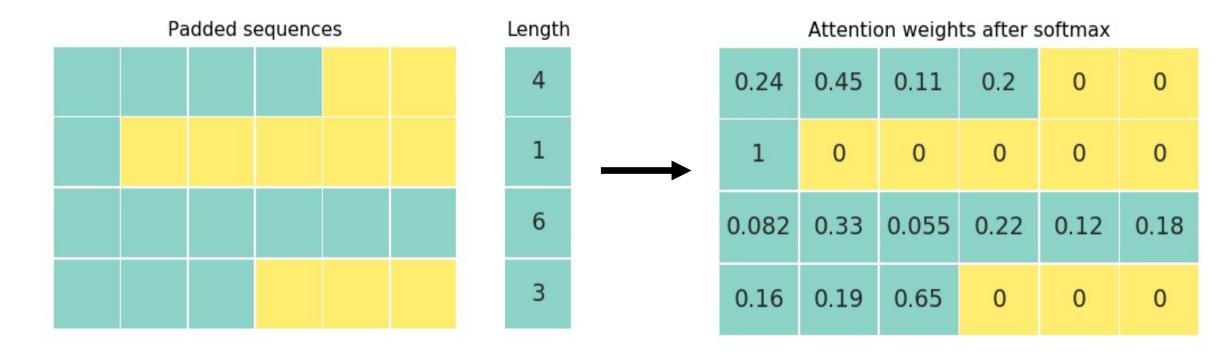


Fine-Tuning for Named Entity Recognition



Implementation Detail

- Padding supports the use of variable input length
 - Uses attention vector of 1s and 0s, with the latter at indices of [PAD] tokens



http://juditacs.github.io/2018/12/27/masked-attention.html

Achieved the best performance on 11 NLP dataset challenges

]	Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

What can we infer from these results?

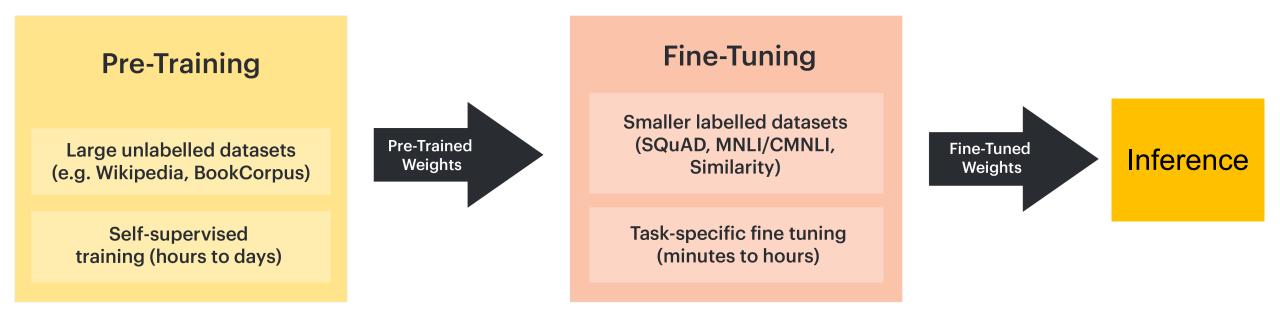
]	Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Next sentence prediction (NSP) supports slight improvements

]	Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

We observe a performance boost when using bidirectional pretraining instead of unidirectional pretraining (LTR)

BERT: Bidirectional Encoder Representation from Transformer



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender* ebender@uw.edu University of Washington Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA Timnit Gebru* timnit@blackinai.org Black in AI Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

Context: original Transformer paper and BERT published by Google

warned that big, messy Al systems would generate racist, unfair results. Google brought her in to prevent that fate. Then it forced her out. Can Big Tech handle criticism from within? BY TOM SIMONITE

https://www.wired.com/story/googletimnit-gebru-ai-what-really-happened/

Transformers' Financial Cost; e.g., To Train BERT, How Much Do You Think it Costs in US Dollars?

THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Or Sharir AI21 Labs ors@ai21.com

Barak Peleg AI21 Labs barakp@ai21.com Yoav Shoham AI21 Labs yoavs@ai21.com

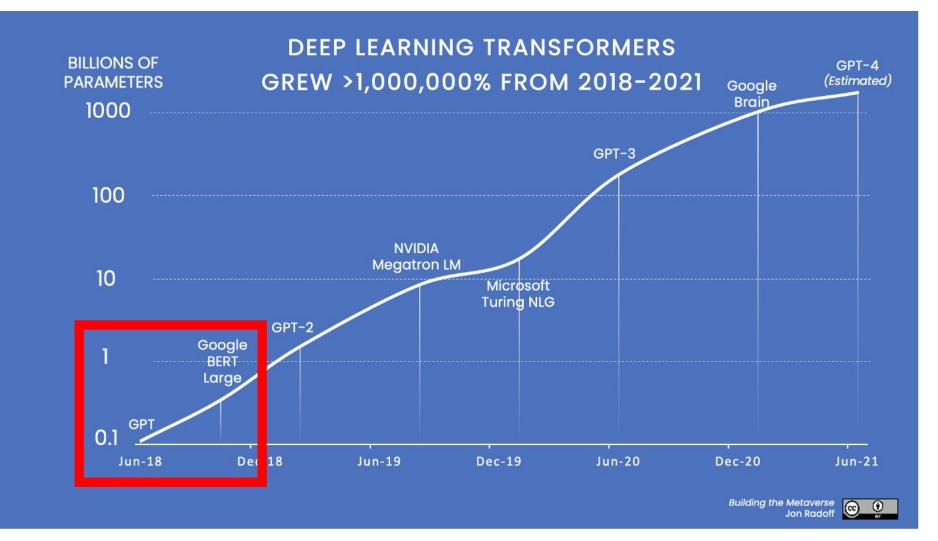
- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)

Transformers' Environmental Cost

- Does training a BERT base model require as much energy as:
 - a) Microwaving food for 7 minutes
 - b) Heating your home for a day
 - c) Driving 100 miles
 - d) A trans-American flight

Bender et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big. FAT 2021.

Transformers: Huge and Growing in Size



https://medium.com/building-the-metaverse/the-metaverse-and-artificial-intelligence-ai-577343895411

Transformers' Societal Cost; e.g., BERT

- Influence of training data: 2,500M words in Wikipedia + 800M words in BooksCorpus
 - Who does and who does not contribute to such data repositories?
 - e.g., "recent surveys of Wikipedians find that only 8.8–15% are women or girls"
 - e.g., "Internet access itself is not evenly distributed, resulting in Internet data overrepresenting younger users and those from developed countries"
 - What kind of biases might be found in such data repositories?
 - e.g., "BERT associates phrases referencing persons with disabilities with more negative sentiment words, and that gun violence, homelessness, and drug addiction are overrepresented in texts discussing mental illness"
 - Given that "unsupervised pre-training is an integral part of many language understanding systems" (BERT paper: Devlin et al. arXiv 2018), how do we do this responsibly?

Bender et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big. FAT 2021.

Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

Today's Topics

- Explosion of transformers
- GPT
- BERT
- Limitations of transformer models
- Programming tutorial

