Recurrent Neural Networks

Danna Gurari

University of Texas at Austin
Spring 2021

@A https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachinelLearning/CourseContent.html



Review

* Last week:
* History of Convolutional Neural Networks (CNNs)
* CNNs — Convolutional Layers
* CNNs — Pooling Layers
* Deep Features

* Assignments (Canvas):
* Project proposal due tonight
* Project outline due next week

e Questions?



Today’s Topics

* Machine Learning for Sequential Data
e Recurrent Neural Networks (RNNs)

* Training Deep Neural Networks: Hardware & Software



Today’s Topics

* Machine Learning for Sequential Data



Sequence Definition: Data of Arbitrary Length

e.g., Document
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e.g., Images

e.g., Time-Series Data

Dow Jones Industrial Average
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e.g., sentences, audio samples, brain waves, radio waves, air temperature




P 'O pe rt| es Of Seq uences ? * Elements of a sequence occur in a certain order

* Elements depend on each other

e.g., Document e.g., Images
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e.g., sentences, audio samples, brain waves, radio waves, air temperature



Seq U e N Ce SO U rces * Elements of a sequence occur in a certain order

* Elements depend on each other

AUDIO

IMAGES

TEXT

=

‘

A e N

- el . o '
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Audio Spectrogram Image pixels Word, context, or

document vectors

https://www.tensorflow.org/tutorials/representation/word2vec



https://www.tensorflow.org/tutorials/representation/word2vec

Sequence Applications: One-to-Many

* Input: fixed-size
* Output: sequence

* e.g., image captioning

Features:
Feature Name

Description

Tags

Image Format
Image Dimensions

Clip Art Type

Is Adult Content: False — o 4 .
Categories: people_swimming e - Ny P Line Drawing Type

Black & White Image

Value

{ "type": 0, "captions": [ { "text": "a man swimming in a pool of

water", "confidence": 0.7850108693093019 } ] }

[{"name": "water", "confidence": 0.9996442794799805 }, {
"name": “sport", "confidence": 0.9504992365837097 }, {
"name": "swimming", “confidence": 0.9062818288803101,
"hint": "sport" }, { "name": "pool", "confidence":
0.8787588477134705 }, { "name": "water sport", "confidence":
0.631849467754364, "hint": "sport" } ]

jpeg

1500 x 1155

0 Non-clipart

0 Non-LineDrawing

False

Captions: https://www.microsoft.com/cognitive-services/en-us/computer-vision-api




Sequence Applications: Many-to-One

* Input: sequence
e Output: fixed-size

* e.g., sentiment analysis
(hate? love?, etc)

B CRITIC REVIEWS FOR STAR WARS: THE LAST JEDI

All Critics (371) | Top Critics (51) | Fresh (336) | Rotten (35)

‘ What's most interesting to me about The
Last Jedi is Luke's return as the mentor
rather than the student, grappling with his
failure in this new role, and later aspiring
to be the wise and patient teacher.

December 26, 2017 | Rating: 3/4 | Full Review...

Fanatics will love it; for the rest of us, it's a
tolerably good time.

December 15, 2017 | Rating: B | Full Review...

N

Leah Pickett
Chicago Reader

\J Peter Rainer
r Christian Science Monitor

https://www.rottentomatoes.com/m/star_wars_the_last_jedi




Sequence Applications: Many-to-Many

* Input: sequence
* Output: sequence

* e.g., language translation

English - detected~ $ o) & Chinese (Traditional)~ I_E] «)

Today is fun. SKIREM -

Jintian hen yduqu.



Sequence Applications

1. What are other examples of “one-to-many” applications?
2. What are other examples of “many-to-one” applications?

3. What are other examples of “many-to-many” applications?



Today’s Topics

e Recurrent Neural Networks (RNNs)



Recall: Feedforward Neural Networks
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Problem: many model parameters!
Problem: no memory of past since weights learned independently

Each layer serves as input to the next layer with no loops

Figure Source: http://cs231n.github.io/neural-networks-1/
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Recurrent Neural Networks (RNNs)

* Main idea: use hidden state to capture information about the past

0 0
Feedforward Network O Recurrent Network
Each layer receives input from Each layer receives input
the previous layer with no loops from the previous layer
V V
and the output from the W
S previous time step :)
U U T
X X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Recurrent Neural Networks (RNNs)

* Main idea: use hidden state to capture information about the past

Recurrence formula applied Recurrent Network 6
at every time step: Each layer receives input
Model parameters from the previous layer
and the output from the
. . . . previous time step
Old Input at '
state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 1

* Main idea: use hidden state to capture information about the past

O
f%jv

X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 1

* Main idea: use hidden state to capture information about the past

0
6

V

T . V S
S N N t_I
OD | W O

O s
U U

X xt-l

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 2

* Main idea: use hidden state to capture information about the past

0

O 0; - 0,

VT % 1%

S i W St 1 St
® > —>0~—>0
T Unfold T

U U U
X x x

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 3

* Main idea: use hidden state to capture information about the past

0
O Ot—l 0 0t+1
v ” % 1% VT
S W Stl St St+]
d» —»—0->0==0
Unfold T
U U U U
X x x XH

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: And So On...

* Main idea: use hidden state to capture information about the past

(0) Ot-1 % 7y
Yl w 1 I VTS
o3 = oGO
Unfold
U TU U TU
% X, X, X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* Main idea: use hidden state to capture information about the past

Recurrence formula applied
at every time step:

Model parameters

fsca] %

New Old Input at
state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* Main idea: use hidden state to capture information about the past

Recurrence formula applied
at every time step:

Model parameters

fsca] %

New Old Input at
state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

 All layers share the same model parameters (U, V, W)
 What is different between the layers?

0

O

i,
SCT)D Unfold >

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* When unfolded, a RNN is a deep feedforward network with shared weights!

0

O O 1

§
SOO Unfold %I %ro

t+1

<

ki

X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

* Overcomes problem that weights of each layer are learned independently by using previous hidden state

* Overcomes problem that model has many parameters since weights are shared across layers

0

O
v

W

S

o§, S

Unfold

U

X X 1 % Xtel

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

e Retains information about past inputs for an amount of time that depends on the model’s weights
and input data rather than a fixed duration selected a priori

O
VT -
O:> Unfold >

U

X X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN Example: Predict Sequence of Characters

* Goal: predict next character in text

* Training Data: sequence of characters represented as one-hot vectors



RNN Example: Predict Sequence of Characters;
e.g., To Write a Wikipedia Page

—‘l ‘Ll‘c

Training Input

Predicted Output

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]l],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



RNN Example: Predict Sequence of Characters;
e.g., To Write Like Shakespeare

Training Input (All Works of Shakespeare)
" o 5 8

" TEMPEST.

oA usprimus,Seena prima.

‘e

s

- ¢!

: A rempeffsons woife of Thunder wnd Lightumg beard: En-

ter a Ship-mafler, and a Botefwaine.
M. affer.

B 2‘ Orte-fwaine,
1B Ld  Botef. Beere Mafter: What cheere?
[B) Maff. Good - Spezke to th'Mariners : fall

TG0

: >too’s, yarely , orweiun our {clues a ground,
beftirre, beftirre. Exit,
Enter CMariners.

Botef. Heigh my hearts, cheerely, cheerely my hares :
yare, yare : Take in thetoppe-fale : Tend to th’Mafters
whiftie : Blow till thou bus(t thy winde , if roome ¢ -
nough, '

Enter Alonfo, Sebaflian, Arthonio, Ferdinando,
Gonzalo,and others,

Alon. Good Botelwaine haue care: where's the Ma.
fter 2 Play the men.

Bore[. I praynow keepe below,
Amz.-“l;hg{'c isthe }«Fﬂﬂcr, Bofon?

Bore[.Doyounot heare him? you marre our labour,

Keepe your Cabines : you do afsift the florme,
Gorz. Nay, good be patient, it

Botef. When the Scais: hence, what cares thefe roa-

rers for the name of King ? to Cabine; filence : trouble

z vsnot. :

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ https://github.com/martin-gorner/tensorflow-rnn-shakespeare

vpon thishowling: they are lowder thenthe weather,
or our office: yet againe ? What do you heere? Shal we
giue ore and drowne,haue you aminde to finke ?

Sebaf. A poxc o’yeur throat,you bawling, blafphe-
mous incharitable Dog.

Botef. Worke you then.

<Anth. Hang cur,hang,you whorefon infolent Noyfe-

maker,we are Jeffe afraid tobe drownde,then thou 2rr.

Goxz. I'le warranthim for drowning, though the
Ship were no fironger then 3 Nurs-{hicH, snd as leaky as
an vnftanched wench,

Bote[. Lay herahold,a hold, fet hertwo courfes off
to Sea againe,lay her off,

Enter Mariners wee,
Mari. All loft,to prayers,to prayers;all Ioft,
Botef. What muft our mouths be cold ?
Gonz.The King,and Prince,at prayers;let’s affift them,
for our cafe is as theirs.
Sebaf. I'am out of patience.
An. We are meerly cheated of our lines by drunkards,

This wide-chopt-rafcall,would thoumighft lye drow.
' ning thewathing of ten Tides. '

Gonz,Hee'l be hang’d yer, :
Though cuery drop of water fweare againftie, -
And gapeacwidft to eluchim, A confuled norfawithin.

Predicted Output

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never f£f¢
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.



RNN Example: Predict Sequence of Characters;

e.g., To Write Code

Training Input (C code on GitHub)
/%
* Bad block management

* — Heavily based on MD badblocks code from Neil Brown
* Copyright (c) 2015, Intel Corporation.

* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.

* This program is distributed in the hope it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.

*/

#include <linux/badblocks.h>
#include <linux/seqlock.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/slab.h>

Predicted Output

static int indicate_policy(void)

{

}

int error;
if (fd == MARN EPT) {

ernel Dianx wilil coeld 1T TO userspace

if (ss->segment < mem total)
unblock_graph_and set blocked();
else
ret = 1;
goto bail;
}
segaddr = in_SB(in.addr);
selector = seqg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;

}

rw->name = "Getjbbregs";

bprm self clearl(&iv->version);

regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_ SECONDS << 12;

return segtable;

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ https://github.com/martin-gorner/tensorflow-rnn-shakespeare



RNN Example: Predict Sequence of Characters;
e.g., To Write Facebook Messages

Training Input Predicted Output

1. The meaning of life is to find them? Oh, | don’t know if | would be able to
publish a paper on that be climbing today, but it will definitely know what that
Facebook messages from... makes sense. I'm sure they wanted to socialis that | am bringing or

2. What a cruel twist of fate, that we should be persuate that &' And cook :D | will
think that’s mean | think | need to go to the phoebe? That's awesome though
Haha, sorry, | don't know if it was more time to clas for it's badass though | jus

Hendrik J.
Weideman

3. The fact of the matter is just the world to invite your stuff? | don’t know how to
right it wouldn’t be as offriving for anything, so that would be awesome, thanks
) | have no idea... She would get to worry about it :P And |

4. At the very least, you should remember that as a house of a perfect problems &
Yeah :D | wonder how perfect for this trank though So it's probably foltower
before the bathers will be fine and haven’'t want to make it worse Thanks for

one of https://hjweide.github.io/char-rnn



https://hjweide.github.io/char-rnn

Example: Predict Sequence of Characters

* Goal: predict next character in text

* Prediction: feed training sequence of one-hot encoded characters; e.g., “hello
* For simplicity, assume the following vocabulary (i.e., character set): {h, e, |, o}

1

What is our input at time step 1?

1 0 0 0
 What is our input at time step 2? 0 1 0 0
_ _ _ 0 0 1 1
* What is our input at time step 3?
0 0 0 0
 What is our input at time step 4? h e | |
 And so on...

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Predict Sequence of Characters

Recall activation functions: use tanh as activation function

Sigmoid Tanh RelLU

o
o — N w — o (=2 ~J e

+
8 8 6 4 =2 0 2 4 B8 8 8 6 4 =2 0 2 4 & 8

o(z) = 1+ex;13(—z) tanh(z) = 2’;2&3;::5%:3 ReLU(z) = max(0, z)

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Predict Sequence of Characters

Initialize to random value: 0.567001

h: = tanh (Wm ht_ll-

wxh 1
0.287027| 0.84606| 0.572392| 0.486813 x 0 0.287027
0.902874| 0.871522] 0.691079| 0.18998 0 0.902874
0 0.537524
0.537524| 0.09224| 0.558159| 0.491528 ~
h
f Ut
_) 0.287027359 0.567001
Ht = TANH 0.902874425 0.567001
0.537523791 0.567001
Wxh
-— 0.693168
- 0.899554
(-1 0.802118

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Predict Sequence of Characters

Initialize to random value: 0.427043

he = tanh [Wifhes HWonx:

Initialized to random value: 0.567001

wxh 0
0.287027| 0.84606| 0.572392| 0.486813 -
0.902874| 0.871522| 0.691079| 0.18998 g
0.537524| 0.09224| 0.558159| 0.491528 -
f h . h \
(J TANH 0.427043 0.899554 + 0.567001
0.802118 0.567001
Wxh
0.93653372
.
x — 0.94910403
-1 0.76234056

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Predict Sequence of Characters

h h

f -1 t r+1
f f
Tth Wxh Wxh
xt—l xl xt+1

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Prediction (Many-To-One)

yt+l
WhyT
§ h h
-1 t r+1
f f f
Tth Wxh Tth
xt—l xt xt+1

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Prediction (Many-To-Many)

Y Y, y
Why T T
ht | hl ht+1
f
Tth Wxh Tth
X x xt+1

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Prediction for Time Step 2

why
. 0.37168| 0.974829459| 0.830034886
__— 0.39141| 0.282585823| 0.659835709

0.64985| 0.09821557| 0.334287084

y f] y f4] 0.91266] 0.32581642| 0.144630018
yt
Why @ Why 1.90607732
h h 1.13779113
f t—1 r+1 0.95666016
—l O —— — —l 1.27422602
. f f |
0.419748
TWXh Wxh Wxh Applying softmax, | o oo
to compute letter
X X X probabilities: 016242
t—1 t t+1 0.223141

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Prediction for Time Step 2

Y Y, y
Given our vocabulary
Why is {h, e, |, o}, what
h_, n h . letter is predicted?
— O Q — 0" —

0.419748

Tw Wxh TWXh Applying softmax, 0.194682
to compute letter '

X X X probabilities: 0.162423

0.223141

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



RNN Variants: Different Number of Hidden Layers

depth

A

time

Experimental evidence suggests deeper
models can perform better:

- Graves et al.; Speech Recognition with
Deep Recurrent Neural Networks; 2013.

- Pascanu et al.; How to Construct Deep
Recurrent Neural Networks; 2014.

http://cs231n.stanford.edu/slides/2016/winter1516_lecturel0.pdf



RNN: Training

1.

3.

4.

Forward pass: make prediction

Compute prediction error (with respect to a loss function)

Backpropagate error to all model parameters

* Note: Since weight is same across all time steps, can combine gradients from
all time steps

Update all model parameters



RNN: Vanishing Gradient Problem

* Problem: training to learn long-term dependencies
* e.g., language: “In 2004, | started college” vs “I started college in 2004”

SHONCHON®
Hidden
Layer

O O O O O O
Time 1 2 3 4 5 6 7
- e.g, dE/IW =0E/dy3 "dy3/dh3 ‘dh3/ay2 "ay2/dh1
* Vanishing gradient: a product of numbers less than 1 shrinks to zero

* Exploding gradient: a product of numbers greater than 1 explodes to infinity
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
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RNN Variants: Mitigate Vanishing Gradients

* Long Short Term Memory (LSTM): modification of basic RNN architecture

* Introduces preservation of memory over time

hy.1

* Forget gate: determines
which previous states to
remember (i.e. forget
gate output near 1) and

h, which to forget (i.e. forget
gate output near 0)

input input
v vy gate

X, tanh o

Figure Credit: http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/



RNN Variants: Mitigate Vanishing Gradients

* Gated Recurrent Unit (GRU): simplification of LSTM unit to merge
forget and input gates JIt]

+ A—L h[t]

a1
x<_\ z[t]rﬁl hIt]

h[t-1] > f X

T

> j; > J taJnh
- f_‘ J
X[t]

https://en.wikipedia.org/wiki/Gated_recurrent_unit

K. Chou et al; Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; 2014



Group Discussion: Empirical Model Comparison

1. What is the best model to use and why?
2. What is a good number of layers and why?
3. What is a good number of neurons and why?

LSTM RNN GRU
Layers 1 2 3 1 2 3 1 2 3
Size War and Peace Dataset

64 1.449 1442 1540|1446 1.401 1.396|1.398 1.373 1.472
128 1.277 1.227 1.279(1.417 1.286 1.277|1.230 1.226 1.253
256 1.189 1.137 1.1411.342 1.256 1.239|1.198 1.164 1.138
512 1.161 1.092 1.082| - - - 1.170 1.201 1.077

Linux Kernel Dataset

64 1.355 1.331 1.366|1.407 1.371 1.383|1.335 1.298 1.357
128 1.149 1.128 1.177|1.241 1.120 1.220|1.154 1.125 1.150
256 1.026 0.972 0.998 |1.171 1.116 1.116 |1.039 0.991 1.026
512 0952 0.840 0.846| - - - 10.943 0.861 0.829

A. Karpathy, J. Johnson, and L. Fei-Fei; Visualizing and Understanding Recurrent Networks; 2016




Today’s Topics

* Training Deep Neural Networks: Hardware & Software



Recall: Machine Learning Analogous to a Love Story
of Partnering Up and Road Tripping Somewhere

An algorithm learns from data
patterns that a final model will
use to make a prediction




Recall: Machine Learning Analogous to a Love Story
of Partnering Up and Road Tripping Somewhere

Key Issue: How Fast Will It Take to Get There?




Challenge: Training Neural Network Requires Many
Computations (e.g., millions of model parameters)

(a) Forward pass - * Re.pE?t until stopping
- criterion met:
1
OE /8w, 1. Forward pass:

propagate training
data through network
to make prediction

2. Backward pass: using
predicted output,
calculate gradients
backward

3. Update each weight
using calculated
gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018



Recall: Machine Learning Analogous to a Love Story
of Partnering Up and Road Tripping Somewhere

Idea: Train Algorithms Using
GPUs (think Porsche) Instead of CPUs (think Golf Cart)




Hardware: CPU versus GPU

Spot the CPU!

(central processing unit)

”
aird
e 5]
A
Aot
55

http://cs231n.stanford.edu/slides/2018/cs231n_2018_ lecture08.pdf



Hardware: CPU versus GPU

Spot the GPUSs!

(graphics processing unit)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_ lecture08.pdf



Hardware: CPU versus GPU

* Graphical Processing Units: accelerates computational workloads due
to MANY more processing cores

CPU GPU

https://www.researchgate.net/figure/The-main-difference-between-CPUs-
and-GPUs-is-related-to-the-number-of-available-cores-A_fig7 273383346



Hardware: Training Models with GPUs

Model Data is here

IS here &
oy e = If you aren’t careful, training can
. . bottleneck on reading data and
o transferring to GPU!
" Solutions:

- Read all data into RAM

- Use SSD instead of HDD

- Use multiple CPU threads
to prefetch data

REN r"““0‘).%““’\\' R TR
oy LS ) LRSI ETANY, A
BT S RSRUINES e Y A



Hardware: CPU versus GPU

CPU
(Intel Core
i7-7700k)

GPU
(NVIDIA
GTX 1080 Ti)

TPU
NVIDIA
TITAN V

TPU
Google Cloud
TPU

Cores

4
(8 threads with
hyperthreading)

3584

5120 CUDA,
640 Tensor

Clock

Speed

42 GHz System
RAM

16 GHz 11GB
GDDR5
X

1.5GHz 12GB
HBM2

? 64 GB
HBM

Memory Price

$339

$699

$2999

$6.50
per
hour

(TPU = Tensor Processing Unit)

Speed

~540 GFLOPs FP32

~11.4 TFLOPs FP32

~14 TFLOPs FP32

~112 TFLOP FP16

~180 TFLOP

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

TPU: Specialized
hardware for deep
learning

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture08.pdf



GPU Clusters (Google Cloud’s TPU Servers
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https://www.extremetech.com/extreme/249499-google-takes-swipe-nvidia-powerful-new-learning-capable-cloud-tpu



GPU Machines: Rent Versus Buy?

Rent from Cloud
(Microsoft Azure):

& ND6

6 vCPU 112 GiB RAM 11X P40 GPU

STARTING FROM POWERED BY

o
$1,511.10 <2
/per month

+ Add to estimate

Buy:

Basic

2x RTX 2080 Ti
2-Way NVLink
ntel i9-9820X (10 cores, 3.30 GHz)
2x RTX 2080 Ti (11 GB VRAM)
64 GB RAM
2 TB SSD
4 TB HDD

Starting at

¥7,059

Customize



Rise of “Deep Learning” Open Source Platforms

Motivation:
Can run OpenMP
on GPUs: support

Simplifies using
popular neural

network architectures:

OpenCL r CUDA " Automatic
pantL sippo ——t dmeremlation[']
Has Parallel
Recurrent  Convolutional
pretrained . . REWDBNs+ execution
nets nets
modeis {multi node)

https://en.wikipedia.org/wiki/Comparison_of deep learning software



Rise of “Deep Learning” Open Source Platforms

. torch theano  Caffe ¥ TensorFlow PYTORCH

(Collobert et al.) (Bastien et al.) (Jia et al.) (Abadi et al.) (Paszke et al.)

2011 2012 2013 2014 2016

Université f”‘\

de Montréal

Google

EEEEEEEEEEEEEEEEE

Popular Options Today




Rise of “Deep

Software Creator
rONNig Kevin Lok
8igbL Jason Dai
N Berkeley Vision and
Cafte

Learning Center
‘Skymind engineering
team; Deeplearmingd]

; originally

Adam Gibson

communi

Chainer Proferred Networks.
Darknet Joseph Redmon
Diib Davis King
DataMet (DMel) S.Chekanov
amegie Mellon
DyNet Cameg
Universty
Intel Data Analytic
intel
Intel Math Kemel Library intel

Frangois Chollet

MATLAB + Neural Network

MathWorks
Toolbox

Microsoft F

Microsoft Cogritive

Apache Software

Apache MxNet

Foundation
Artelnics

OpeniN Antelnics
PaddiePaddle Baidu
ML Vertex Al

Adam Paszke, Sam
Gross, Soumith Chintala.
Gregory Chanan

PyTorch

Apache SINGA

TensorFlow

Google Brain team

Hao Dong

Université de Montréal

Ronan Colloben, Koray
Kavukcuoglu, Clement
Farabet

Torch

Wolfram Res

VerAl

Software
ticensel?]
M
license
Apache
20

88D

Apache
20

M
license
Public

Domain

Boost
Software
License

Proprietary

M
license

Propietary

Apache
20

Proprietary

Proprietary

Propietary

Open
source

Yes

Yes

Yes

No

Yes

Yes

Yes.

Yes

No

Platform

Linux, macOS, Windows

Apache Spark

owsl?)

Windows!

Linux

Linux, macOS, Windows,
Android (Cross-platiorm)

Linux, macOS, Windows

Cross-F

Cross

Linux, macOS, Windows

Linux, macos,
on Intel CPU

Wind

Linux, macOS, W
on Intel CPUL

Linux, macOS, Windows

Linux, macOS, Window

Windows, Linux!26)
(macOS via Docker on
roadmag)

Linux, mac0s
wiindows,351136] oy
a¥7ios,

Androi

JavaScri

Linux, macOS, Windows

Cross-platiomm

Linux, macOS, Windows

Linux, macOS, Window

Linux, macOS, Wind

Linux, macOS, Window

Linux

Windows,

Linux

Windows, 52) Android

Cross-platform

/5. MacOS, Linw

Cloud computing

Linux, Web-based

Written in

Python

Scala

Python

Small C++.

core korary

Ca+, Python
Ct+, Python

Python

- Openttp | cuon Automatic
niertece support T uPPort | diterentistion!!]'| P
Python Yes

Scala, Python No
Python, MATLAB, C++ Yes Under developments] Yes Yes
Java, Scala, Clojure o) . Computationsl
) - S YesloI)
Python Kotin = On roadmep = Graph
Python No Nol1OI1) Yes Yes
C. Python Yes Nol'2 Yes Yes
[ Yes No Yes Yes
No No No No
Co+, Pytnon Nel13] Yes Yes
Ce+. Python, Javal 14 Yes No No Yes.
i) Yes!17) No No Yes
Only if
- Canuse Theano or
using
fthon, R Tensorfiow as Yes Yes
Theano as
backends
backend
Train with Parallel
Computing Toolbox and
MATLAS No No No
generate CUDA code
with GPU Coderl?)
n (Keras), G+,
Command lin27)
Yes!30! No Yes. Yes
BrainSorpt® (NETon | 1
roadmag'?%)
C+, Python, Julia
Matiab, JavaSeript, Go, R, Yes On roadmag!®) Yes Yes!*0)
S
Graphical use Yes No No ?
Cor Yes No Yes ?
Python No Yes Yes Yes
Keras, Python, G+, C No Yes Yes Yes
Via separately
Python Yes maintained Yes Yes
packagel*3I44145]
Python, C++, Java No No Yes ?
On roagmap!*®] but :
No already with SYCL(**! Yes Yes!50)
support
On roadmapl®®] but
Python No already with SyCL(4®) Yes Yes!53)
support
Python (Keras) Yes. Under development!5) Yes Yesl58I(57]
e, Lo T, iy Tird party Through Twiter's
library for Yes “Toexes) Yes(681(67] o 68
) implementations! Autograd
C+i0pencL/®
Waltram Language Yes No Yes Yes
Graphical user
S No No Yes Yes

rning”

No

Yes!19]

Yesl22123)

Yesi®1)

Yea$1)

Yes

YesiS1)

Yes!4!

Theough
Lasagne's

Recurrent
nets

Yes.

veslt]

vesl22]

Veal?2]

Yes

Yes

Open Source Platforms

il Bl B Excellent comparison:
il Bl el https://skymind.ai/wiki/comparison-
——— frameworks-dl4j-tensorflow-pytorch

Excellent comparison: https://arxiv.org/pdf/1511.06435.pdf
https://en.wikipedia.org/wiki/Comparison_of deep learning software



Microsoft Azure: Supported Platforms

e Caffe: A deep learning framework built for speed, expressivity, and modularity

e Caffe2: A cross-platform version of Caffe

e Microsoft Cognitive Toolkit: A deep learning software toolkit from Microsoft Research

e H20: An open-source big data platform and graphical user interface

e Keras: A high-level neural network APl in Python for Theano and TensorFlow

o MXNet: A flexible, efficient deep learning library with many language bindings

e NVIDIA DIGITS: A graphical system that simplifies common deep learning tasks

e PyTorch: A high-level Python library with support for dynamic networks

e TensorFlow: An open-source library for machine intelligence from Google

e Theano: A Python library for defining, optimizing, and efficiently evaluating mathematical expressions
involving multi-dimensional arrays

e Torch: A scientific computing framework with wide support for machine learning algorithms

e CUDA, cuDNN, and the NVIDIA driver

e Many sample Jupyter notebooks

https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro



GPU vs CPU Demo

* Using Keras in interactive Python notebooks



Today’s Topics



Google Form: Guest Speaker

e Guest: Dr. Cheryl Martin, Chief Data Scientist at Alegion
(https://www.alegion.com/company/leadership)

* Share one question for her for tomorrow’s visit



https://www.alegion.com/company/leadership

