Neural Network Architecture and Training

Danna Gurari
University of Texas at Austin
Spring 2021

Review

- Last week:
- Natural Language Processing
- Computer Vision
- Feature Representation
- Dimensionality Reduction
- Assignments (Canvas):
- Problem set 5 due tonight
- Project pre-proposal due tonight
- Lab assignment 3 due in two weeks
- Questions?

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

Recall: Historical Context of ML Models

Recall: Rise \& Fall of Perceptron (Artificial Neuron)

Frank Rosenblatt (Psychologist)
"[The perceptron is] the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... [It] is expected to be finished in about a year at a cost of \$100,000."

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

Recall: Rise \& Fall of Perceptron (Artificial Neuron)

Python Machine Learning; Raschka \& Mirjalili

Recall: Rise \& Fall of Perceptron (Artificial Neuron)

Cannot solve XOR problem and so separate 1s from 0s with a perceptron (linear function):

Neural Networks: Connected Neurons

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

Today's Topic: Neural Networks

Neural Network

- Also called "multilayer perceptron"
- This is a 2-layer neural network (i.e., count number of hidden layers plus output layer and exclude input layer)
"hidden layer" uses outputs of units (i.e., neurons) and provides them as inputs to other units (i.e., neurons)

Neural Network

hidden layer

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

hidden layer

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

hidden layer

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

hidden layer

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

hidden layer

- How does this relate to a perceptron?

- Unit: takes as input a weighted sum and applies a non-linear (activation) function

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

- How does this relate to a perceptron?

- Training goal: learn model weights

Python Machine Learning; Raschka \& Mirjalili http://cs231n.github.io/neural-networks-1/

Neural Network

How many weights are in this model?

- Input to Hidden Layer:
- $3 \times 4=12$
- Hidden Layer to Output Layer
- $4 \times 2=8$
- Total:
- $12+8=20$

Neural Network

How many parameters are there to learn?

- Number of weights:
- 20
- Number of biases:
- $4+2=6$
- Total:
- 26

Neural Network

How many layers are in this network?

- 3 (number of hidden layers plus output layer; input layer excluded when counting)

Neural Network

How many weights are in this model?

- Input to Hidden Layer 1:
- $3 \times 4=12$
- Hidden Layer 1 to Hidden Layer 2:
- $4 \times 4=16$
- Hidden Layer 2 to Output Layer
- $4 \times 1=4$
- Total:
- $12+16+4=32$

Neural Network

How many parameters are there to learn?

- Number of weights:
- 32
- Number of biases:
- $4+4+1=9$
- Total
- 41

Fully Connected, Feed Forward Neural Networks

- What does it mean for a model to be fully connected?
- Each unit provides input to each unit in the next layer
- What does it mean for a model to be feed forward?
- Each layer serves as input to the next layer with no loops

Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions

Key Observation: feedforward networks are just functions chained together e.g.,

- What is function for h_{1} ?

$$
\text { - } h_{1}=w_{1} x_{1}+w_{3} x_{2}+b_{1}
$$

- What is function for h_{2} ?
- $h_{2}=w_{2} x_{1}+w_{4} x_{2}+b_{2}$
- What is function for y ?
- $y=h_{1} w_{5}+h_{2} w_{6}+b_{3}$
- $v=\left(w_{1} x_{1}+w_{2} x_{2}+b_{1}\right) w_{5}+\left(w_{2} x_{1}+w_{1} x_{2}+b_{2}\right) w_{6}+b_{3}$
- $\mathrm{y}=\mathrm{w}_{1} \mathrm{w}_{5} \mathrm{x}_{1}+\mathrm{w}_{3} \mathrm{w}_{5} \mathrm{x}_{2}+\mathrm{w}_{5} \mathrm{~b}_{1}+\mathrm{w}_{2} \mathrm{w}_{6} \mathrm{x}_{1}+\mathrm{w}_{4} \mathrm{w}_{6} \mathrm{x}_{2}+\mathrm{w}_{6} \mathrm{~b}_{2}+\mathrm{b}_{3}$

A chain of LINEAR functions at any depth is still a LINEAR function!

Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions

Key Observation: feedforward networks are just functions chained together e.g.,

- What is function for h_{1} ?

$$
\text { - } h_{1}=w_{1} x_{1}+w_{3} x_{2}+b_{1}
$$

- What is function for h_{2} ?
- $h_{2}=w_{2} x_{1}+w_{4} x_{2}+b_{2}$
- What is function for y ?
- $y=h_{1} w_{5}+h_{2} w_{6}+b_{3}$

Constant x linear function $=$ linear function
A chain of LINEAR functions at any depth is still a LINEAR function!

Solution to Model Non-Linear Functions: Non-Linear Activation Functions

- Each unit applies a non-linear "activation" function to the weighted input to mimic a neuron firing

Solution to Model Non-Linear Functions: Non-Linear Activation Functions

- e.g., $\operatorname{ReLU}(z)=\max (0, z)$

Image Source: https://medium.com/@sonish.sivarajkumar/relu-most-popular-activation-function-for-deep-neural-networks-10160af37dda

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with these parameters:

INPUT		OUTPUT
A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear Example: Revisiting XOR problem

- Non-linear function: separate 1s from 0s:

- Approach: Use ReLU activation function $(\operatorname{ReLU}(z)=\max (0, z))$ with this model:

Neural networks can solve XOR problem... and so model non-linear functions!

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

Output Units

- Matches the neural network to the task it must perform; e.g.,
- Linear regression
- Binary classification
- Multi-class classification
- Multi-label classification

Figure Credit: http://cs231n.github.io/neural-networks-1/

Sigmoid (for Binary Classification)

Sigmoid (for Multilabel Classification)

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :

$$
\phi_{\text {softmax }}\left(z^{(i)}\right)=\frac{e^{z^{(i)}}}{\sum_{j=0}^{k} e^{z_{k}^{(i)}}}
$$

- e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :
- e.g.,

$$
\phi_{\text {softmax }}\left(z^{(i)}\right)=\frac{e^{z^{(i)}}}{\sum_{j=0}^{k} e_{k}^{e_{k}^{(i)}}}
$$

	Scoring Function
Dog	-3.44
Cat	1.16
Boat	-0.81
Airplane	3.91

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :

$$
\phi_{\text {softmax }}\left(z^{(i)}\right)=\frac{e^{z^{(i)}}}{\sum_{j=0}^{k} e^{z_{k}^{(i)}}}
$$

- e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :
- e.g.,

Normalization

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :

$$
\phi_{\text {softmax }}\left(z^{(i)}\right)=\frac{e^{z^{(i)}}}{\sum_{j=0}^{k} e^{z_{k}^{(i)}}}
$$

- e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

- Generalization of sigmoid that converts the input into a probability distribution that sums to 1 :
- e.g.,

$$
\phi_{\text {softmax }}\left(z^{(i)}\right)=\frac{e^{z^{(i)}}}{\sum_{j=0}^{k} e_{k}^{(i)}}
$$

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

Group Discussion Questions

- How many model parameters must be learned for the network below?
- Assuming you apply a sigmoid function at the final layer with the output values specified below, which label(s) will be classified as present versus not?
- What label will be classified if you instead apply a softmax function to the output values?

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

Recall: What to Learn in Neural Network?

- Learn:
- weights connecting units
- bias for each unit
- e.g., 2 layer neural network:
- Algorithm decides how to use each layer to produce the output; for this reason, layers are called "hidden"

Neural Network: How to Learn?

(a) Forward pass

- Repeat until stopping criterion met:
(b) Backward pass

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass \qquad

- Repeat until stopping criterion met:

1. Forward pass:

 propagate training data through network to make prediction2. Backward pass: using predicted output, calculate gradients backward
(b) Backward pass

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass \qquad

1. Define "loss" function, which quantifies the model's errors on training data
e.g., (Predicted - Actual) ${ }^{2}$

- Note it is a function of the weights in the network

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass \qquad

2. Backpropagation calculates gradient of the loss function with respect to the neural network's weights to propagate error backwards

- From output of network to input, it measures the error contribution of each connection
(b) Backward pass

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass

(b) Backward pass

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass

- Update weights by taking an opposite step towards the gradient for each layer

$$
W^{(l)}=W_{\text {learning rate }}^{(l)}-\boldsymbol{\eta}^{(l)}
$$

(b) Backward pass

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass

(b) Backward pass

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

(a) Forward pass \qquad

- What stopping criterion to use when training?
- Weight changes are incredibly small
- Percentage of misclassified example is below some threshold
- Finished a pre-specified number of epochs
- ...
(b) Backward pass

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Gradient Descent Learning Approach

- Recall: solves mathematical problems by updating estimates of the solution via an iterative process to "optimize" a function
- e.g., minimize or maximize an objective function $f(x)$ by altering x

- When minimizing the objective function, it also is often called interchangeably the cost function, loss function, or error function.

Key Challenge: How to Compute Gradient?

Equation for calculating gradients depends on:

1) Loss function

2) Network activation function

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network Training: Backpropagation

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

Neural Network Training: Backpropagation

- Backpropagation idea: chain: $x=f(w), y=f(x), z=f(y)$

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Example: Choose Neural Network Architecture

Sigmoid Activation
Function

Example from: Jiawei Han and Micheline Kamber; Data Mining.

Example: Choose Loss Function for Training

Example: Resolve How to Compute Gradient? (Output Layer)

Example from: Jiawei Han and Micheline Kamber; Data Mining.

Example: Resolve How to Compute Gradient? (Output Layer)

t is a constant value:

$$
\frac{\partial E}{\partial w_{j k}}=\frac{\partial}{\partial w_{j k}}\left(t_{k}-o_{k}\right)^{2}
$$

Using the following chain rule :

$$
\frac{\partial E}{\partial o_{k}}=-2\left(t_{k}-o_{k}\right)
$$

Sigmoid activation function: $\sigma(x)=\frac{1}{1+e^{-x}}$

$$
\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial o_{k}} * \frac{o_{k}}{\partial w_{j k}}
$$

$$
\begin{aligned}
\frac{d \sigma(x)}{d x} & =\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} \\
\frac{d \sigma(x)}{d x} & =\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right) \\
\frac{d \sigma(x)}{d x} & =(1-\sigma(x)) \sigma(x)
\end{aligned}
$$

Example: Resolve How to Compute Gradient? (Output Layer)

t is a constant value:

$$
\frac{\partial E}{\partial w_{j k}}=\frac{\partial}{\partial w_{j k}}\left(t_{k}-o_{k}\right)^{2}
$$

Using the following chain rule :

$$
\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial o_{k}} * \frac{o_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial o_{k}}=-2\left(t_{k}-o_{k}\right)
$$

$$
\text { Sigmoid activation function: } \sigma(x)=\frac{1}{1+e^{-x}}
$$

$$
\frac{d \sigma(x)}{d x}=(1-\sigma(x)) \sigma(x)
$$

We can rewrite our function as follows:
For efficiency, compute last

$$
\frac{\partial E}{\partial w_{j k}}=-2\left(t_{k}-o_{k}\right) \quad \operatorname{sigmoid}\left(\sum_{j} w_{j k} * o_{j}\right) *\left(1-\operatorname{sigmoid}\left(\sum_{j} w_{j k} * o_{j}\right)\right) * o_{j}
$$

Example: Resolve How to Compute Gradient?

 (Output Layer)

$\frac{d \sigma(x)}{d x}=(1-\sigma(x)) \sigma(x)$

Key Observation: Possible because activation function and loss function are differentiable!!!

Example: Resolve How to Compute Gradient? (Output Layer)

Example: How to Compute Gradient? (Hidden Layer)

Example: Initialize Values (Weights, Biases)

Example: Input Training Example

Example: Step 1 - Forward Pass

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 1 - Forward Pass

Example: Step 1 - Forward Pass

Input to node 5:

$$
\begin{aligned}
& \mathrm{i}_{5}=(1 \times-0.3+0 \times 0.1+1 \times 0.2)+0.2 \\
& \mathrm{i}_{5}=0.1
\end{aligned}
$$

Output of node 5 (sigmoid function):

$$
\begin{aligned}
& \mathrm{O}_{5}=\operatorname{sigmoid}(0.1) \\
& \mathrm{O}_{5}=1 /\left(1+\mathrm{e}^{-0.1}\right) \\
& \mathrm{O}_{5}=0.525
\end{aligned}
$$

Example: Step 1 - Forward Pass

Example: Step 2 - Backward Pass

(a) Forward pass \qquad

- Repeat until stopping criterion met:

1. Forward pass:

 propagate training data through network to make prediction2. Backward pass: using predicted output, calculate gradients backward

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 2 - Backward Pass

Example: Step 3 - Update Weights

(a) Forward pass \longrightarrow

(b) Backward pass

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 3 - Update Weights

Repeat Steps 1-3 With New Examples

Repeat Steps 1-3 With New Examples

- Repeat until stopping criterion met:

1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Training Challenge: Train Faster!!!

- Can take hours, days, weeks, months, or more to train millions of parameters...

Weight Updates: How to Speed Up Training?

- Demo at http://cs231n.github.io/neural-networks-3/\#update

Train Faster: How to Update Using Gradient?

- Vanilla Approach: x += - learning_rate * dx

Recall: steps get smaller as gradient gets smaller

http://cs231n.github.io/neural-networks-3/\#update Figure from: https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

Train Faster: How to Update Using Gradient?

- Momentum optimization:
- Analogy: roll a ball down a hill and it will pick up momentum

Figure from: https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5

Train Faster: How to Update Using Gradient?

- Momentum optimization:
- Analogy: roll a ball down a hill and it will pick up momentum

Gradient is used for acceleration rather than speed
Values range from 0 to 1 (larger values mean greater friction)

```
v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position
```

- What are advantages and disadvantages?
- Can roll past local minima ©
- It may roll past optimum and oscillate around it $*$
- Another hyperparameter to tune $;$

Train Faster: How to Update Using Gradient?

- Adapt learning rate per-parameter
- e.g., AdaGrad: decays faster when dimensions are steeper

```
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

- e.g., RMSprop:

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

- e.g., Adam:

```
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)
```


Train Faster: How to Update Learning Rate?

- Step decay:
- Reduce the learning rate by some factor every few epochs.
- Exponential decay
- 1/t decay

Monitor Loss During Training

- What should happen to the loss function value during training?

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions
- Lab

Recall: Non-Linear Activation Functions

- Each unit applies a non-linear "activation" function to the weighted input to mimic a neuron firing

Non-Linear Activation Functions

- Each unit applies a non-linear "activation" function to the weighted input to mimic a neuron firing

Sigmoid

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

Tanh

$\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)} \operatorname{ReLU}(z)=\max (0, z)$

Non-Linear Activation Functions

Figure Credit: https://adventuresinmachinelearning.com/vanishing-gradient-problem-tensorflow/

Non-Linear Activation Functions

Use activation functions that don't have small derivative values
e.g., Variants of ReLU

Parametric ReLU: $y=a x$
e.g., Exponential Linear

$$
y=a\left(e^{x}-1\right)
$$

Figure Credit: https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7 Clevert et al. Fast and Accurate deep network learning by exponential linear units. 2015

Recall: Loss Functions

(a) Forward pass \qquad

- A loss function quantifies the dissatisfaction with a model's results on the training data.
-What loss function to use?

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Loss Functions

(a) Forward pass

- Mean squared error/L2 loss/ quadratic loss
- Mean absolute error/L1 loss
- Huber loss
- Cross entropy loss/logarithmic loss
- KL divergence loss
- Hinge loss
- Adversarial loss
- And many more options...
(b) Backward pass

Today's Topics

- History of Neural Networks
- Neural Network Architecture - Hidden Layers and Solving XOR Problem
- Neural Network Architecture - Output Units
- Training a Neural Network - Optimization
- Training a Neural Network - Activation Functions \& Loss Functions

