Ensemble Learning

Danna Gurari

University of Texas at Austin Spring 2021

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Review

- Last week:
 - Evaluating Machine Learning Models Using Cross-Validation
 - Naïve Bayes
 - Support Vector Machines
- Assignments (Canvas):
 - Problem set 4 due tonight
 - Lab assignment 2 due next week
 - Project pre-proposal due in two weeks (finding a partner ideas)
- Questions?

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning

Recall: Binary vs Multiclass Classification

Binary: distinguish 2 classes

Multiclass: distinguish 3+ classes

Recall: Binary vs Multiclass Classification

Binary: distinguish 2 classes

Multiclass: distinguish 3+ classes

Perceptron Adaline Support Vector Machine Nearest Neighbor Decision Tree Naïve Bayes

One-vs-All (aka, One-vs-Rest): Applying Binary Classification Methods for Multiclass Classification

• Given 'N' classes, train 'N' different classifiers: a single classifier trained per class, with the samples of that class as positive samples and all other samples as negatives; e.g.,

One-vs-All (aka, One-vs-Rest): Limitation

 Often leads to unbalanced distributions during learning; i.e., when the set of negatives is much larger than the set of positives

One-vs-All (aka, One-vs-Rest): Class Assignment

• (Imperfect) Approach: use from N classifiers the most confident match; this requires a real-valued confidence score for its decision

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning

Classifier Confidence: Beyond Classification

- Indicate both the predicted class and uncertainty about the choice
- When and why might you want to know about the uncertainty?
 - e.g., weather forecast: 25% chance it will rain today
 - e.g., medical treatment: when unconfident, start a patient on a drug at a lower dose and decide later whether to change the medication or dose

Classifier Confidence: How to Measure for K-Nearest Neighbors?

• Proportion of neighbors with label y; e.g.,

When K=3:

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Classifier Confidence: How to Measure for Decision Trees?

Proportion of training samples with label y in the leaf where for the test sample;
 e.g.,

Classifier Confidence: How to Measure for Naïve Bayes?

• Conditional probability P (Y|X) for the most probable class

Classifier Confidence: How to Measure for Support Vector Machines?

• Distance to the hyperplane: e.g.,

http://chem-eng.utoronto.ca/~datamining/dmc/support_vector_machine.htm

Classifier Confidence vs Probability

- Classifiers can make mistakes in estimating their confidence level
- External calibration procedures can address this issue (e.g., using calibration curves/reliability diagrams)

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning

Classification from a Classifier's Confidence

- Observation: A threshold must be chosen to define the point at which the example belongs to a class or not
- Motivation: how to choose the threshold?
 - Default is 0.5
 - Yet, it can tuned to avoid different types of errors

Review: Confusion Matrix for Binary Classification

Receiver Operating Characteristic (ROC) curve

Summarizes performance based on the positive class - A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Receiver Operating Characteristic (ROC) curve

To create, vary prediction threshold and compute TPR and FPR for each threshold

Summarizes performance based on the positive class - A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Receiver Operating Characteristic (ROC) curve

What is the coordinate for a perfect predictor?

Summarizes performance based on the positive class - A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

ROC Curve: Area Under Curve (AUC)

Which of the first three methods performs best overall?

Summarizes performance based on the positive class - A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$
$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Python Machine Learning; Raschkka & Mirjalili

ROC Curve: Multiclass Classification

https://stackoverflow.com/questions/56090541/how-to-plot-precision-and-recall-of-multiclass-classifier

Precision-Recall (PR) Curve

Predicted class

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Precision-Recall (PR) Curve

To create, vary prediction threshold and compute precision and recall for each threshold

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Precision-Recall (PR) Curve

What is the coordinate for a perfect predictor?

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

PR Curve: Area Under Curve (AUC)

• Which classifier is the best?

PR Curve: Multiclass Classification

https://stackoverflow.com/questions/56090541/how-to-plot-precision-and-recall-of-multiclass-classifier

Group Discussion: Evaluation Curves

1. Assume you are building a classifier for these applications:

- Detecting offensive content online
- Medical diagnoses
- Detecting shoplifters
- Deciding whether a person is guilty of a crime

What classifier threshold would you choose for each application and why?

2. When would you choose to evaluate with a PR curve versus a ROC curve?

3. What is the area under the ROC and PR curves for a perfect classifier?

Assume the following thresholds were used to create the curve: 0, 0.25, 0.5, 0.75, 1.

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning

Idea: How Many Predictors to Use?

More than 1: Ensemble

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - n classifiers for binary classification task
 - Each classifier has same error rate *E*
 - Probability mass function indicates the probability of error from an ensemble: of classifiers $P(y \ge k) = \sum_{k}^{n} \binom{n}{k} \varepsilon^{k} (1 - \varepsilon)^{n-k} = \varepsilon_{ensemble}$ Error probability $1 - \varepsilon^{n-k} = \varepsilon_{ensemble}$ Number of classifiers

ways to choose k subsets from set of size n = 1. • e.g., n = 11, \mathcal{E} = 0.25; k = 6: probability of error is ~0.034 which is much lower than probability of error from a single algorithm (0.25)

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - n classifiers for binary classification task
 - Each classifier has same error rate *B*
 - How to Get Diverse Classifiers?

 $P(y \ge k) = \sum_{k}^{n} {\binom{n}{k}} \varepsilon^{k} (1 - \varepsilon)^{n-k} = \varepsilon_{ensemble}$

 e.g., n = 11, *E* = 0.25; k = 6: probability of error is ~0.034 which is much lower than probability of error from a single algorithm (0.25)

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - n classifiers for binary classification task
 - 1. Use different algorithms
 - Probability mass function indicates the probability of error from an ensemble:
 2. Use different features
 - 2. Use different training data

than probability of error from a single algorithm (0.25)

How to Predict with an Ensemble?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Resample data to train algorithm on different random subsets
- Boosting
 - Reweight data to train algorithms to specialize on different "hard" examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Historical Context of ML Models

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Majority Voting

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Majority Voting

Majority Voting: Binary Task

e.g., "Is it sunny today?"

Majority Voting: "Soft" (not "Hard")

Majority Voting: Soft Voting on Binary Task

e.g., "Is it sunny today?"

"Yes" (210/4 = 52.5% Yes)

Plurality Voting: Non-Binary Task

e.g., "What object is in the image?"

Majority Voting: Regression

e.g., "Is it sunny today?"

52.5% (average prediction)

Majority Voting: Example of Decision Boundary

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Bagging

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Training

• Build ensemble from "bootstrap samples" drawn with replacement

Breiman, Bagging Predictors, 1994. **C**_m Ho, Random Decision Forests, 1995. Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Training

- Build ensemble from "bootstrap samples" drawn with replacement
- e.g.,

Class Demo: - Pick a number from the bag

Breiman, Bagging Predictors, 1994.
 Ho, Random Decision Forests, 1995.
 Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Predicting

Prediction Model

Prediction Model

Prediction Model

Prediction Model

- Predict as done for "majority voting"
 - e.g., "hard" voting
 - e.g., "soft" voting
 - e.g., averaging values for regression

Bagging: Random Forest

- Build ensemble from "bootstrap samples" drawn with replacement
- e.g.,

Sample indices	Bagging round 1	Bagging round 2	•••
1	2	7	
2	2	3	
3	1	2	
4	3	1	
5	7	1	
6	2	7	
7	4	7	

Fit decision trees by also selecting random feature subsets

Breiman, Bagging Predictors, 1994. *C_m*Ho, Random Decision Forests, 1995. Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Intuition (Train an 8 detector)

Original dataset

Fellow et al., Deep Learning (chapter 7), 2016.

Bagging: Intuition (Train an 8 detector)

Original dataset

First resampled dataset

Fellow et al., Deep Learning (chapter 7), 2016.

Bagging: Intuition (Train an 8 detector)

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Boosting

- Key idea: sequentially train predictors that each try to correctly predict examples that were hard for previous predictors
- Original Algorithm:
 - Train classifier 1: use random subset of examples without replacement
 - Train classifier 2: use a second random subset of examples without replacement and add 50% of examples misclassified by classifier 1
 - Train classifier 3: use examples that classifiers 1 and 2 disagree on
 - Predict using majority vote from 3 classifiers

3

 X_{2}

•

 X_2

Assign equal weights to all examples

- Assign larger weights to previous misclassifications
- Assign smaller weights to previous correct classifications
- Freund and Schapire, Experiments with a New Boosting Algorithm, 1996.

Assign larger weights to training samples C₁ and C₂ disagree on

 X_1

majority vote

Predict with weighted

Assign smaller weights to previous correct classifications

Sample indices	×	У	Weights	γ̂(x <= 3.0)?	Correct?	Updated weights	Round 2: update weights
1	1.0	1	0.1	1	Yes	0.072	
2	2.0	1	0.1	1	Yes	0.072	
3	3.0	1	0.1	1	Yes	0.072	
4	4.0	-1	0.1	-1	Yes	0.072	
5	5.0	-1	0.1	-1	Yes	0.072	
6	6.0	-1	0.1	-1	Yes	0.072	
7	7.0	1	0.1	-1	No	0.167	
8	8.0	1	0.1	-1	No	0.167	
9	9.0	1	0.1	-1	No	0.167	
10	10.0	-1	0.1	-1	Yes	0.072	

e.g., 1d dataset

Round 1: training data, weights, predictions

e.g., 1d dataset

Compute error rate (sum misclassified examples' weights): 1.

$$\varepsilon = 0.1 \times 0 + 0.1 \times 1 + 0.1 \times 1$$

$$+0.1 \times 1 + 0.1 \times 0 = \frac{3}{10} = 0.3$$

2. Compute coefficient used to update weights and make majority vote prediction: $\alpha_j = 0.5 \log\left(\frac{1-\varepsilon}{\varepsilon}\right) \approx 0.424$

$$\boldsymbol{w} \coloneqq \boldsymbol{w} \times \exp\left(-\boldsymbol{\alpha}_{j} \times \hat{\boldsymbol{y}} \times \boldsymbol{y}\right)$$

Correct predictions will decrease weight and vice versa

 $0.1 \times \exp(-0.424 \times 1 \times 1) \approx 0.065$ $0.1 \times \exp(-0.424 \times (-1) \times (1)) \approx 0.153$

 $w := \frac{w}{\sum_{i} w_i}$ Normalize weights to sum to 1: 4. $\sum_{i} w_i = 7 \times 0.065 + 3 \times 0.153 = 0.914$

Correct?	Updated
	weights
Yes	0.072
No	0.167
No	0.167
No	0.167
Yes	0.072

0.065/0.914

0.153/0.914

To predict, use α calculated for each classifier as its weight when voting with all trained classifiers.

Idea: value the prediction of each classifier based on the accuracies they had on the training dataset.

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Stacked Generalization, aka Stacking

- Train meta-learner to learn the optimal weighting of each classifiers' predictions for making the final prediction
- Algorithm:
 - 1. Split dataset into three disjoint sets.
 - 2. Train several base learners on the first partition.
 - 3. Test the base learners on the second partition and third partition.
 - 4. Train meta-learner on second partition using classifiers' predictions as features
 - 5. Evaluate meta-learner on third prediction using classifiers' predictions as features

David, H. Wolpert, Stacked Generalization, 1992.

Tutorial: http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/

Ensemble Learner Won Netflix Prize "Challenge"

- In 2009 challenge, winning team won \$1 million using ensemble approach:
 - <u>https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf</u>
 - Dataset: 5-star ratings on 17770 movies from 480189 "anonymous" users collected by Netflix over ~7 years. In total, the number of ratings is 100,480,507.

- Netflix did not use ensemble recommendation system. Why?
 - "We evaluated some of the new methods offline but the additional accuracy gains that we measured did not seem to justify the engineering effort needed to bring them into a production environment" - <u>https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429</u>
 - Computationally slow and complex from using "sequential" training of learners

Yehuda Koren, The BellKor Solution to the Netflix Grand Prize, 2009.

Today's Topics

- One-vs-all multiclass classification
- Classifier confidence
- Evaluation: ROC and PR-curves
- Ensemble learning