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Review

* Last week:
* Machine Learning for Sequential Data
e Recurrent Neural Networks (RNNs)
* Training Deep Neural Networks: Hardware & Software

* Assignments (Canvas):
* Project proposal due yesterday
* Project outline due next week
* Prototype of final project system due next week

e Questions?



Today’s Topics

* Machine Learning for Unlabeled Data
* Autoencoders

* Clustering

* Guest: Dr. Suyog Jain from PathAl



Today’s Topics

* Machine Learning for Unlabeled Data



How Have I\/achmes Learned So Far in this Class?
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- Expensive
- Relatively Slow
- Disconnect from Human Learning

PIaces (2014) MS COCO (2014) V|sual Genome (2016)
Slide Credit: http://vision.cs.utexas.edu/slides/mit-ibm-august2018.pdf



Intuition: How Do Humans Learn?

With Supervision No Supervision

https://pixabay.com/en/toddler-learning-book-child-423227/
https://www.maxpixel.net/Father-Child-Family-Dad-Baby-Daughter-3046495



Intuition: How Do Humans Learn?

* Experience (Unsupervised):
* |dea: learn to group objects into one class by seeing many of them

* Supervision:
* |dea: learn to group objects into one class because someone tells us to



Recall: Types of Learning Tasks

. What is this?
* Unsupervised

* No label given for training data

e Supervised
* Label given for training data: e.g., “cat

”




Recall: Types of Learning Tasks

. What is this?
* Unsupervised

* No label given for training data

e Supervised
e Label given for training data: e.g., “berimbau”




Recall: Types of Learning Tasks

Is this email spam?

* Unsupervised
* No label given for training data

Confidential letter sh

? David-Khoza@mmoscacsv.cc
to |~

e Supervised
* Label given for training data: e.g., “yes”




Goal: Learn from Experience To Organize Data

https://pixabay.com/en/toddler-learning-book-child-423227/
https://www.maxpixel.net/Father-Child-Family-Dad-Baby-Daughter-3046495



Real-World Applications: Customer Segmentation

Segmentation and Messaging

Customer 1. Value 2. Value 3. Value
Segmentation Proposition Proposition Proposlition
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https://www.flickr.com/photos/42565140@N04,/3923873188/



Real-World Applications: Recommendations
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https://medium.com/@navdeepsingh_2336/scala-machine-learning-projects-recommendation-systems-d41d9eebbb06



Real-World Applications: Social Network Analysis

https://www.flickr.com/photos/marc_smith/5529685600



Real-World Applications: Fraud Detection

ROL O

https://www.lejeune.marines.mil/News/Article/511667/protect-yourself-from-credit-card-fraud/



Breakout Discussion: Real-World Applications

What are other possible applications
for using unsupervised learning?



Today’s Topics

 Autoencoders



Autoencoder Architecture

* Learn to copy the input to the output
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Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/



Autoencoder Architecture

* Consists of two parts: o
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Figure Credit: https://www.datacamp.com/community/tutorials/autoencoder-keras-tutorial



Autoencoder Architecture

e Given this input 620 x 426 image (264,120 pixels):
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 What would a perfect autoencoder predict?
e Itself

 What number of nodes are in the final layer? ’ '
* 264,120

X

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/



Autoencoder Training

How do you train a neural network?



Autoencoder Training

Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate error gradients backward
3. Update each weight using calculated gradients



Autoencoder

What are useful applications for autoencoders?

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/



Autoencoders: Dimensionality Reduction

* Intuition: which number sequence is easier to remember?
« A:30,27,22,11,6,8,7,2
* B: 30, 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5

* B: need learn only two rules

 If even, divide by 2
* If odd, multiply by 3 and add 1
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Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/



Autoencoders: Feature Extraction

e e.g., training data:
e 1image taken from 10 million YouTube videos
* Each image is in color and 200x200 pixels

* What features do you think it learned? lﬂ“ﬁgum

Quoc V. Le et al., Building High-level Features Using Large Scale Unsupervised Learning; 2013.



Autoencoders: Feature Extraction

* e.g., features learned include:

human face cat face human body

Quoc V. Le et al., Building High-level Features Using Large Scale Unsupervised Learning; 2013.



Autoencoders: Unsupervised Pretraining

 Why use unsupervised pretraining?
* Little training data is available
* Too costly and slow to collect labels for exclusive supervised training

* e.g., add layer after highest layer of pretrained autoencoder network
(fine-tuning)

Quoc V. Le et al., Building High-level FeaturesUsing Large Scale Unsupervised Learning; 2013.



Autoencoders: Generative Models
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lan Goodfellow et al; Adversarial Autoencoders; 2016



Today’s Topics

* Clustering



Clustering
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Find groupings such that entities in a group will be similar to each

another and different from the entities in other groups.

Raschka and Mirjalili; Python Machine Learning



. Key Questions

Clustering

A.
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* How many data clusters to create?

* What “algorithm” to use to partition the data?

Raschka and Mirjalili; Python Machine Learning



Breakout Discussion

* How many data clusters to create?
* What “algorithm” to use to partition the data?

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



How Many Clusters?
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Types of Clustering

* Partitional Clustering

* A division of data objects into non-overlapping subsets (clusters) such that each data object
is in exactly one subset

e Hierarchical clustering
* A set of nested clusters organized as a hierarchical tree

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



K-Means Clustering

Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

[ 1 S S s B N N

until The centroids don’t change

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



K-Means Clustering

Iteration 1 Iteration 2 Iteration 3
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



K-Means Clustering: Weaknesses?

e Sensitive to initial centroids: different outcomes for same data
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf
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K-Means Clustering: Weaknesses?

 Not robust when clusters have different sizes:
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



K-Means Clustering: Weaknesses?

 Not robust when clusters have different densities:
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



K-Means Clustering: Weaknesses?

* Not robust when clusters have different globular shapes:
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Hierarchical Clustering

 Set of nested clusters organized in hierarchical tree by merging/splitting

* Dendrogram visualization: shows sequence of merges/splits
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Hierarchical Clustering: Two Main Approaches

* Agglomerative:
e Start with points as individual clusters
* At each step, merge closest pair of clusters until only one cluster (or k clusters) left

* Divisive:
e Start with one, all-inclusive cluster

* At each step, split a cluster until each cluster contains an individual point (or there
are k clusters)

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Agglomerative Clustering: First Step

e Start with clusters of individual points and a proximity matrix
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Agglomerative Clustering: Intermediate Step

e Start with clusters of individual points
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf




Agglomerative Clustering: Intermediate Step

» After several merging steps, we have some clusters
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf
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Agglomerative Clustering: Intermediate Step

* Merge two closest clusters (C2 and C5)
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



How to Measure Inter-Cluster Distance?
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



How to Measure Inter-Cluster Distance?

* Minimum distance

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Minimum Distance: Strengths/Weaknesses?

* Can handle non-elliptical shapes: sy RO SR %
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



How to Measure Inter-Cluster Distance?

* Minimum distance
e Maximum distance

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Maximum Distance: Strengths/Weaknesses?

* Less susceptible to noise and outliers: ../

* Tends to break large clusters:
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Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf
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How to Measure Inter-Cluster Distance?

* Minimum distance
e Maximum distance

* Group average

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



How to Measure Inter-Cluster Distance?

* Minimum distance
* Maximum distance
* Group average

e Distance Between Centroids

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Hierarchical Clustering: Strengths?

* Any number of clusters can be obtained by ‘cutting’ the dendrogram

at the proper level
I
L
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* They may correspond to meaningful taxonomies

* Example in biological sciences (e.g., animal kingdom, phylogeny
reconstruction, ...)

Slide adapted from: https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap7 basic_cluster_analysis.pdf



Discussion

1. How is k-means clustering different from the K nearest neighbor
algorithm?

2. After being disappointed with its service, Netflix hires you to build a
new movie recommendations service. How would you design an
unsupervised learning approach? And how would you evaluate your
method?



Google Form: Guest Speaker & Class Feedback

* Google form

e Guest: Dr. Suyog Jain, Senior Machine Learning Scientist at PathAl
(http://suyogjain.com/): list one question for him for today’s visit

* Class feedback: Provide feedback about what, if anything, you would like to
see improved with our remote learning course

* Then, take a short break.
* Class resumes at 4:50pm CST.


http://suyogjain.com/

Today’s Topics



