Unsupervised Learning

Danna Gurari

University of Texas at Austin Spring 2020

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Review

- Last week:
 - Machine Learning for Sequential Data
 - Recurrent Neural Networks (RNNs)
 - Training Deep Neural Networks: Hardware & Software
- Assignments (Canvas):
 - Project proposal due yesterday
 - Project outline due next week
 - Prototype of final project system due next week
- Questions?

Today's Topics

- Machine Learning for Unlabeled Data
- Autoencoders
- Clustering
- Guest: Dr. Suyog Jain from PathAl

Today's Topics

- Machine Learning for Unlabeled Data
- Autoencoders
- Clustering
- Guest: Dr. Suyog Jain from PathAl

How Have Machines Learned So Far in this Class?

Places (2014)

MS COCO (2014)

Visual Genome (2016)

Slide Credit: http://vision.cs.utexas.edu/slides/mit-ibm-august2018.pdf

Why Not Rely On Large Labelled Datasets?

Expensive
Relatively Slow
Disconnect from Human Learning

Places (2014)

La

MS COCO (2014)

Visual Genome (2016)

Slide Credit: http://vision.cs.utexas.edu/slides/mit-ibm-august2018.pdf

Intuition: How Do Humans Learn?

With Supervision

No Supervision

https://pixabay.com/en/toddler-learning-book-child-423227/ https://www.maxpixel.net/Father-Child-Family-Dad-Baby-Daughter-3046495

Intuition: How Do Humans Learn?

- Experience (Unsupervised):
 - Idea: learn to group objects into one class by seeing many of them
- Supervision:
 - Idea: learn to group objects into one class because someone tells us to

Recall: Types of Learning Tasks

- Unsupervised
 - No label given for training data

- Supervised
 - Label given for training data: e.g., "cat"

Recall: Types of Learning Tasks

- Unsupervised
 - No label given for training data

- Supervised
 - Label given for training data: e.g., "berimbau"

Recall: Types of Learning Tasks

- Unsupervised
 - No label given for training data

Confidential letter sh

David-Khoza@mmoscacsv.cc to

- Supervised
 - Label given for training data: e.g., "yes"

Goal: Learn from Experience To Organize Data

https://pixabay.com/en/toddler-learning-book-child-423227/ https://www.maxpixel.net/Father-Child-Family-Dad-Baby-Daughter-3046495

Real-World Applications: Customer Segmentation

Customer Segmentation	1. Value Proposition	2. Value Proposition	3. Value Proposition
	NESSAGING	MESSAGING	MESSAGING
	CHANNELS	CHANNELS	CHANNELS
CFO	MESSAGING		MESSAGING
	CHANNELS		CHANNELS
Controller	MESSAGING	MESSAGING	
	CHANNELS	CHANNELS	NA

https://www.flickr.com/photos/42565140@N04/3923873188/

Real-World Applications: Recommendations

https://medium.com/@navdeepsingh_2336/scala-machine-learning-projects-recommendation-systems-d41d9eebbb06

Real-World Applications: Social Network Analysis

https://www.flickr.com/photos/marc_smith/5529685600

Real-World Applications: Fraud Detection

https://www.lejeune.marines.mil/News/Article/511667/protect-yourself-from-credit-card-fraud/

Breakout Discussion: Real-World Applications

What are other possible applications for using unsupervised learning?

Today's Topics

- Machine Learning for Unlabeled Data
- Autoencoders
- Clustering
- Guest: Dr. Suyog Jain from PathAl

Autoencoder Architecture

• Learn to copy the input to the output

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/

Autoencoder Architecture

- Consists of two parts:
 - Encoder: compresses inputs to an internal representation
 - **Decoder**: tries to reconstruct the input from the internal representation

Figure Credit: https://www.datacamp.com/community/tutorials/autoencoder-keras-tutorial

Autoencoder Architecture

• Given this input 620 x 426 image (264,120 pixels):

- What would a perfect autoencoder predict?
 - Itself
- What number of nodes are in the final layer?
 - 264,120

ĩ

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/

Х

Autoencoder Training

How do you train a neural network?

Autoencoder Training

Repeat until stopping criterion met:

- 1. Forward pass: propagate training data through network to make prediction
- 2. Backward pass: using predicted output, calculate error gradients backward
- 3. Update each weight using calculated gradients

Autoencoder

What are useful applications for autoencoders?

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/

Autoencoders: Dimensionality Reduction

- Intuition: which number sequence is easier to remember?
 - **A:** 30, 27, 22, 11, 6, 8, 7, 2
 - **B:** 30, 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5
- B: need learn only two rules
 - If even, divide by 2
 - If odd, multiply by 3 and add 1

ĩ

Figure Credit: https://lazyprogrammer.me/a-tutorial-on-autoencoders/

Autoencoders: Feature Extraction

- e.g., training data:
 - 1 image taken from 10 million YouTube videos
 - Each image is in color and 200x200 pixels

• What features do you think it learned?

Quoc V. Le et al., Building High-level Features Using Large Scale Unsupervised Learning; 2013.

Autoencoders: Feature Extraction

• e.g., features learned include:

Quoc V. Le et al., Building High-level Features Using Large Scale Unsupervised Learning; 2013.

Autoencoders: Unsupervised Pretraining

- Why use unsupervised pretraining?
 - Little training data is available
 - Too costly and slow to collect labels for exclusive supervised training
- e.g., add layer after highest layer of pretrained autoencoder network (fine-tuning)

Quoc V. Le et al., Building High-level FeaturesUsing Large Scale Unsupervised Learning; 2013.

Autoencoders: Generative Models

Today's Topics

- Machine Learning for Unlabeled Data
- Autoencoders
- Clustering
- Guest: Dr. Suyog Jain from PathAl

Find groupings such that entities in a group will be similar to each another and different from the entities in other groups.

Raschka and Mirjalili; Python Machine Learning

Clustering: Key Questions

- How many data clusters to create?
- What "algorithm" to use to partition the data?

Raschka and Mirjalili; Python Machine Learning

Breakout Discussion

- How many data clusters to create?
- What "algorithm" to use to partition the data?

How Many Clusters?

Two Clusters

Four Clusters

Number of clusters can be ambiguous.

Types of Clustering

- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

K-Means Clustering

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-Means Clustering

• Sensitive to initial centroids: different outcomes for same data

• Not robust when clusters have different sizes:

• Not robust when clusters have different densities:

• Not robust when clusters have different globular shapes:

Hierarchical Clustering

- Set of nested clusters organized in hierarchical tree by merging/splitting
- Dendrogram visualization: shows sequence of merges/splits

Hierarchical Clustering: Two Main Approaches

- Agglomerative:
 - Start with points as individual clusters
 - At each step, merge closest pair of clusters until only one cluster (or k clusters) left

- Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)

Agglomerative Clustering: First Step

• Start with clusters of individual points and a proximity matrix

Agglomerative Clustering: Intermediate Step

• Start with clusters of individual points

Agglomerative Clustering: Intermediate Step

• After several merging steps, we have some clusters

Agglomerative Clustering: Intermediate Step

• Merge two closest clusters (C2 and C5)

How to Measure Inter-Cluster Distance?

How to Measure Inter-Cluster Distance?

• Minimum distance

Minimum Distance: Strengths/Weaknesses?

• Can handle non-elliptical shapes:

• Sensitive to noise and outliers:

Original Points

Six Clusters

How to Measure Inter-Cluster Distance?

- Minimum distance
- Maximum distance

Maximum Distance: Strengths/Weaknesses?

• Less susceptible to noise and outliers:

• Tends to break large clusters:

Original Points

Two Clusters

How to Measure Inter-Cluster Distance?

- Minimum distance
- Maximum distance
- Group average

How to Measure Inter-Cluster Distance?

- Minimum distance
- Maximum distance
- Group average
- Distance Between Centroids

Hierarchical Clustering: Strengths?

 Any number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Discussion

- 1. How is k-means clustering different from the K nearest neighbor algorithm?
- 2. After being disappointed with its service, Netflix hires you to build a new movie recommendations service. How would you design an unsupervised learning approach? And how would you evaluate your method?

Google Form: Guest Speaker & Class Feedback

- Google form
 - Guest: Dr. Suyog Jain, Senior Machine Learning Scientist at PathAl (<u>http://suyogjain.com/</u>): list one question for him for today's visit
 - Class feedback: Provide feedback about what, if anything, you would like to see improved with our remote learning course
- Then, take a short break.
- Class resumes at 4:50pm CST.

Today's Topics

- Machine Learning for Unlabeled Data
- Autoencoders
- Clustering
- Guest: Dr. Suyog Jain from PathAl