Convolutional Neural Networks

Danna Gurari

University of Texas at Austin Spring 2020

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Zoom Overview & New Policies

- Class is recorded and will be shared only with students in this course
 - In case of technical glitches, etc.
- Zoom viewing options: e.g., gallery view
- Interactive zoom functionalities we will use today and going forward:
 - Unmute/mute your connection
 - Raise your hand if: "You are a student in this class"
 - Say yes or no to: "This is my first class in Zoom ever"
 - Send chat message sharing: "What city you are connecting from"
 - Submit response to poll question
 - Share in a breakout room about "a current success/struggle with the shelter-in-place lifestyle"
- Beyond class:
 - Student Resources: <u>https://www.ischool.utexas.edu/ischool-student-town-hall-03262020</u>
 - Student Resources: <u>https://onestop.utexas.edu/keep-learning/</u>

Review

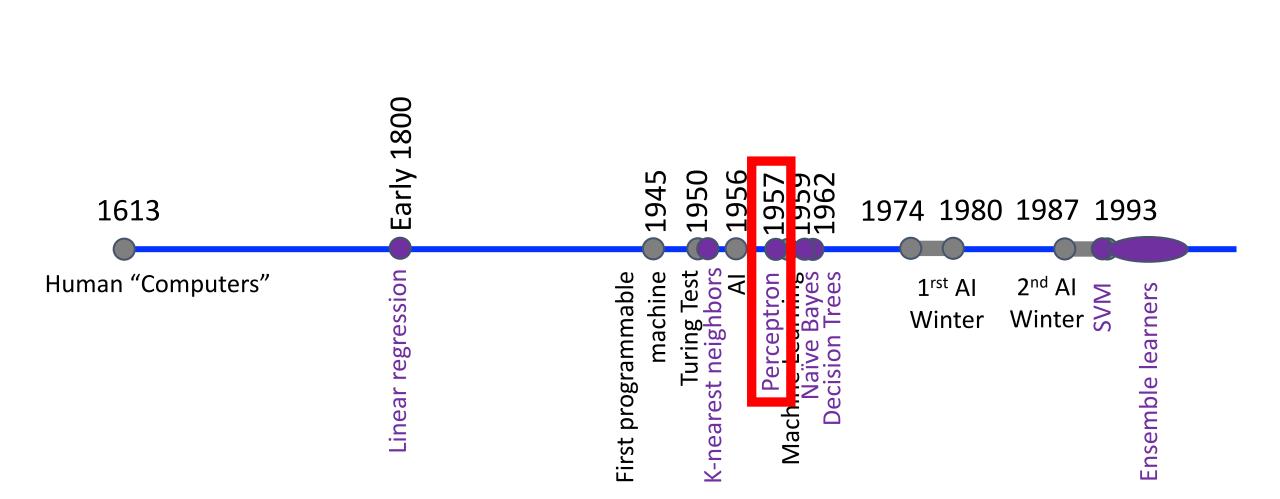
- Last class:
 - History of Neural Networks
 - Neural Network Architecture Hidden Layers and Solving XOR Problem
 - Neural Network Architecture Output Units
 - Training a Neural Network Optimization
 - Training a Neural Network Activation Functions & Loss Functions
- Assignments (Canvas):
 - Lab assignment 3 due yesterday
 - Project pre-proposal due next week (email me if you want help to find partner)
- Questions?

Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google

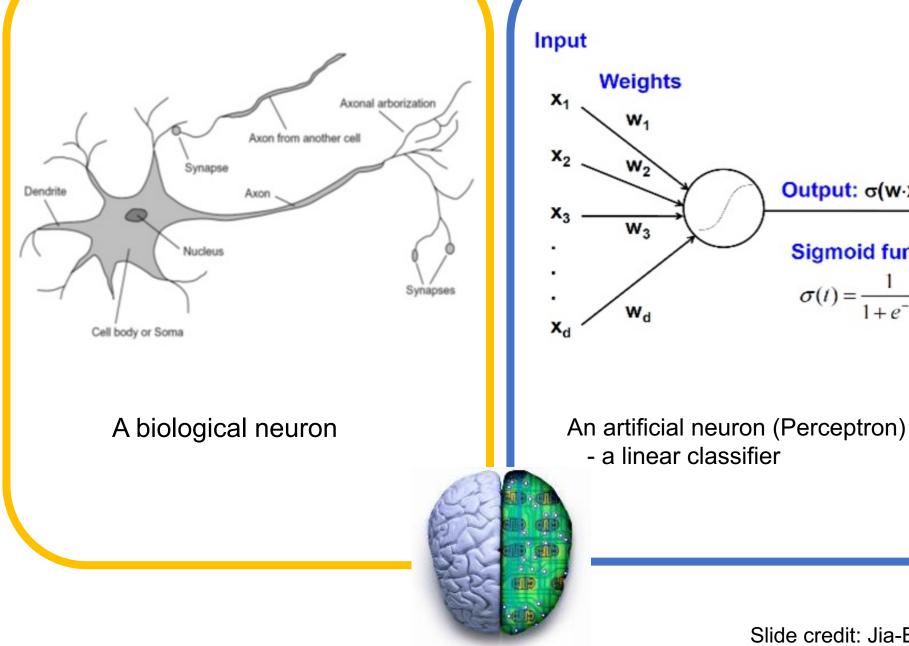
Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google



Recall:

Recall:

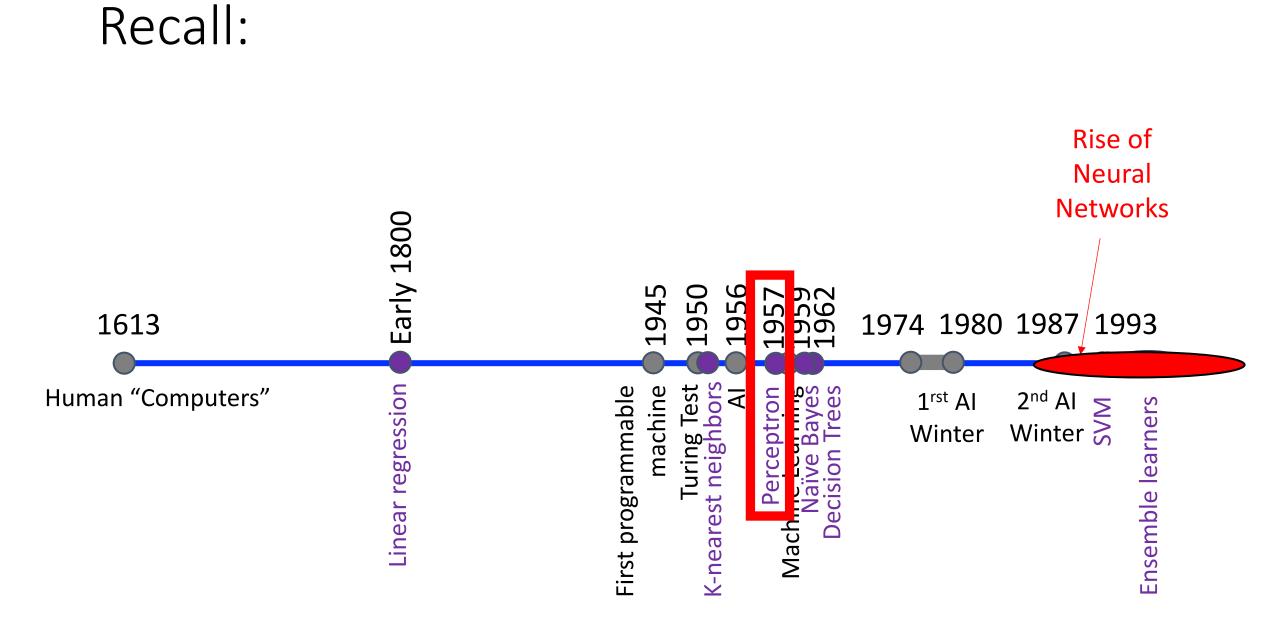


Slide credit: Jia-Bin Huang

Output: σ(w·x + b)

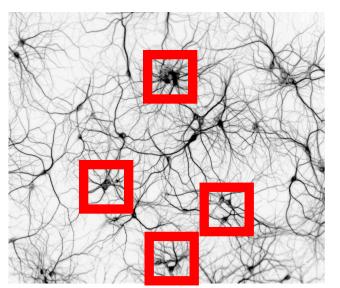
Sigmoid function:

 $\sigma(t) = \frac{1}{1 + e^{-t}}$



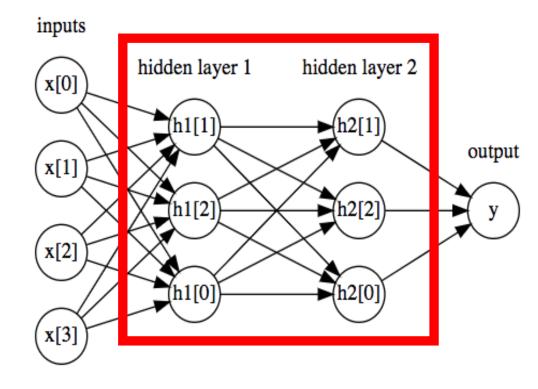
Recall:

Biological Neural Network:



http://www.rzagabe.com/2014/11/03/anintroduction-to-artificial-neural-networks.html

Artificial Neural Network:



https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Motivation: How Vision System Works

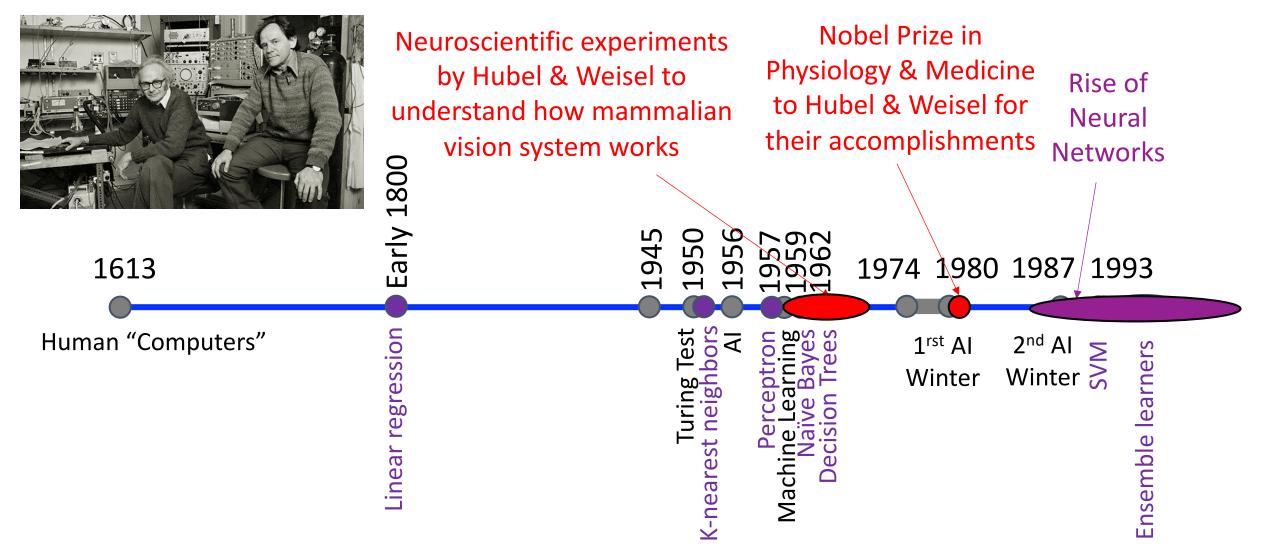
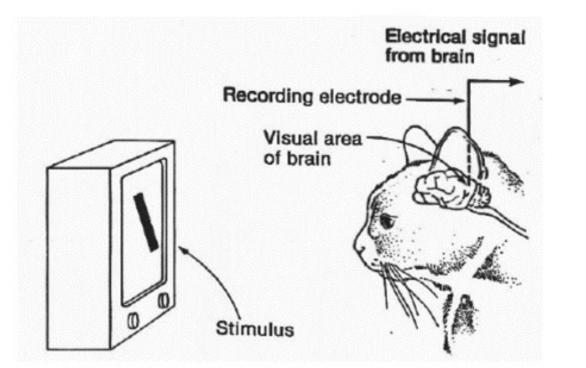


Image Source: https://braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel

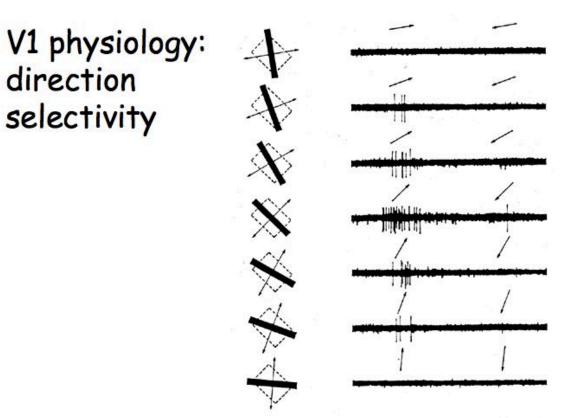
Motivation: How Vision System Works

Experiment Set-up:

Key Finding: response based on orientation of light stimulus



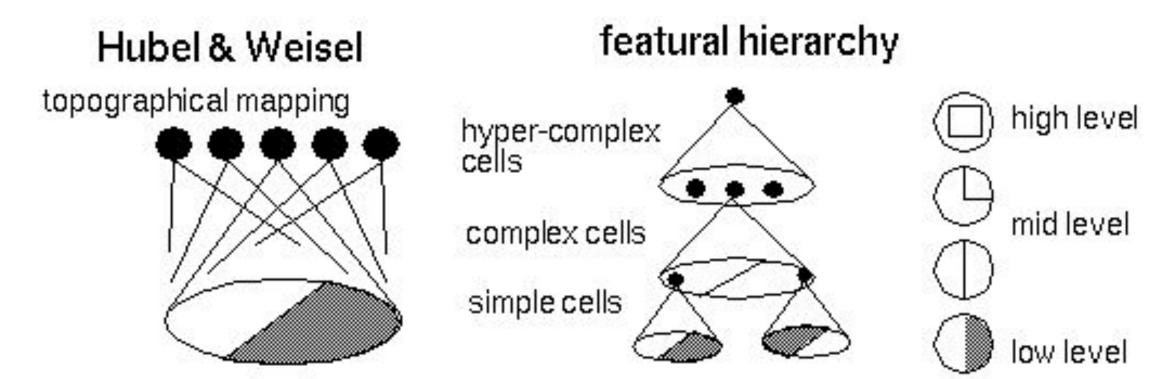
https://www.esantus.com/blog/2019/1/31/convolu tional-neural-networks-a-quick-guide-for-newbies



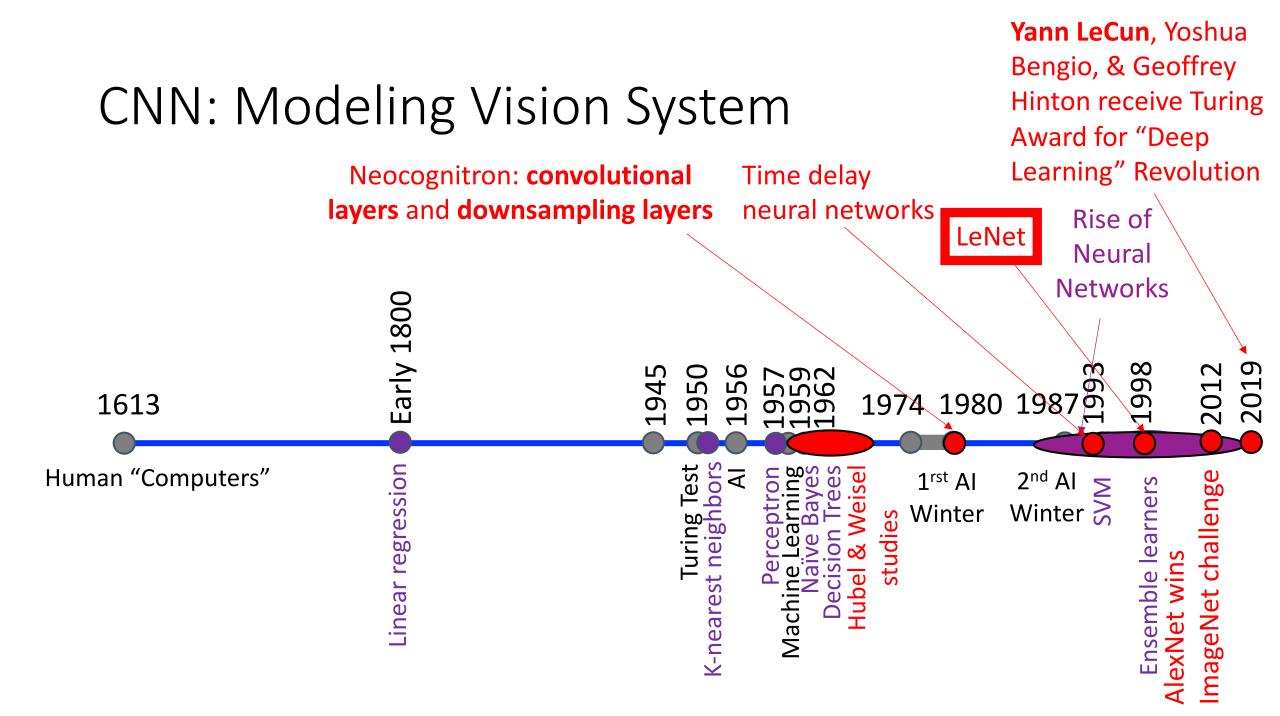
https://www.cns.nyu.edu/~david/courses /perception/lecturenotes/V1/lgn-V1.html

Motivation: How Vision System Works

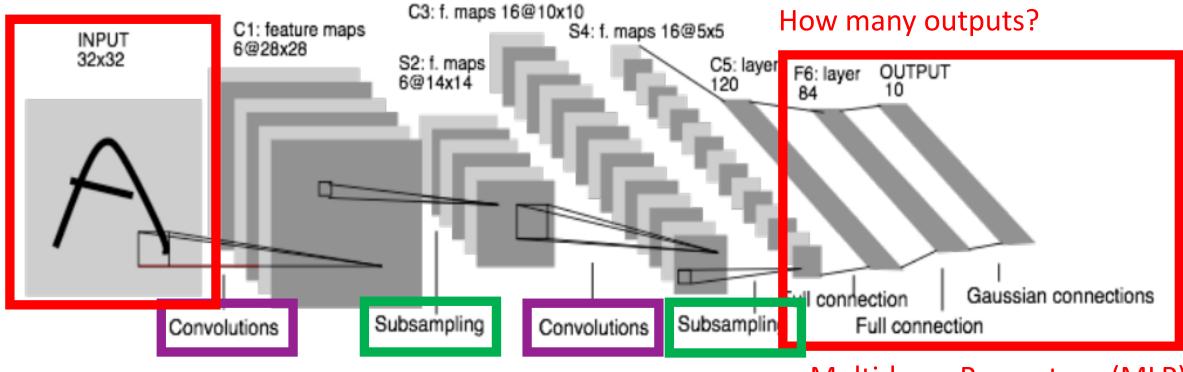
Key Finding: cells are organized as a hierarchy of feature detectors, with higher level features responding to patterns of activation in lower level cells



Source: https://bruceoutdoors.files.wordpress.com/2017/08/hubel.jpg



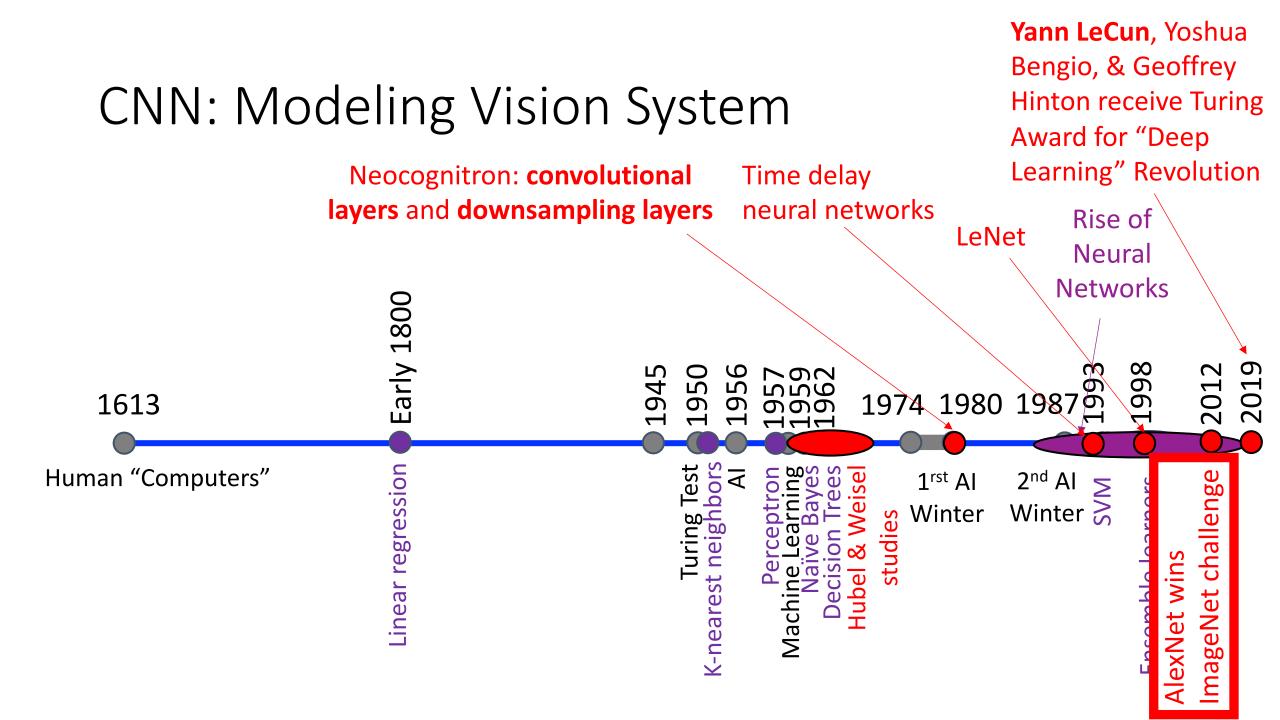
CNN: Modeling Vision System



Multi-layer Perceptron (MLP)

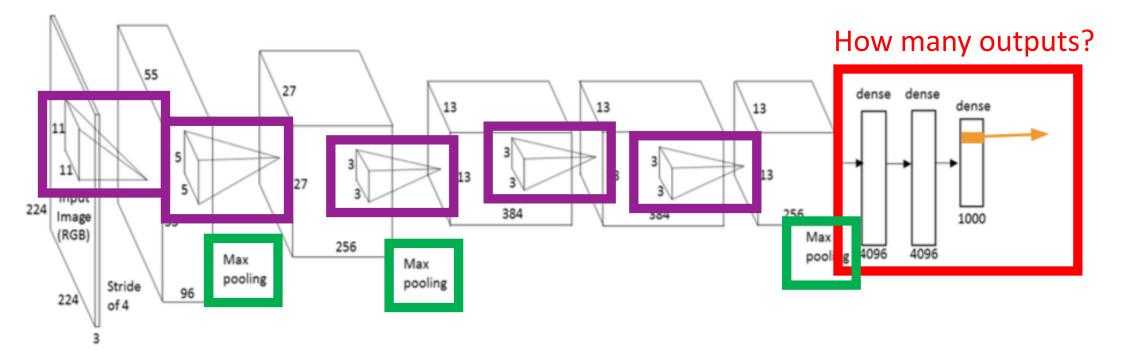
Slide Credit: https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998



CNN: Modeling Vision System

- AlexNet extracts useful features of lower dimension prior to passing it to MLP with:
 - Convolutional layers
 - Pooling Layers

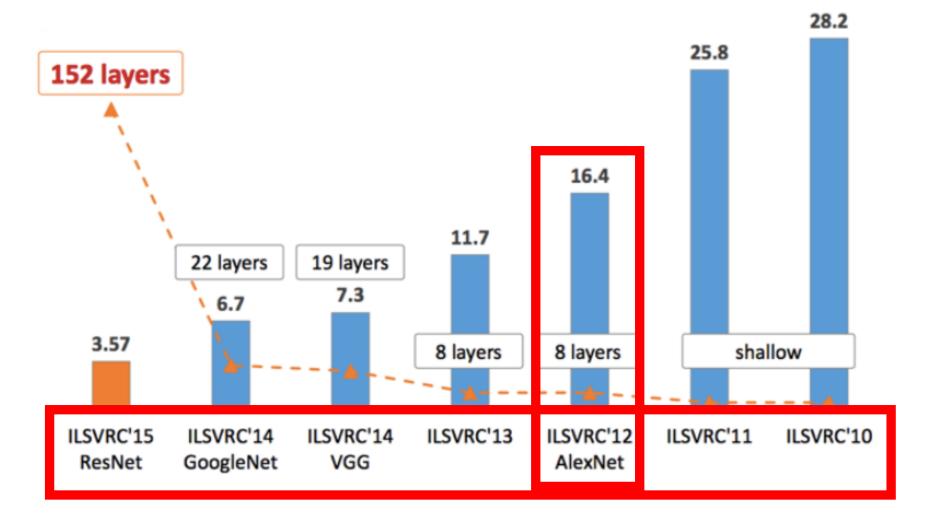


Slide Credit: https://www.slideshare.net/xavigiro/saliency-prediction-using-deep-learning-techniques A. Krizhevsky, I. Sutskever, G. E. Hinton "ImageNet classification with deep convolutional neural networks"

ImageNet: Predict Category from 1000 Options

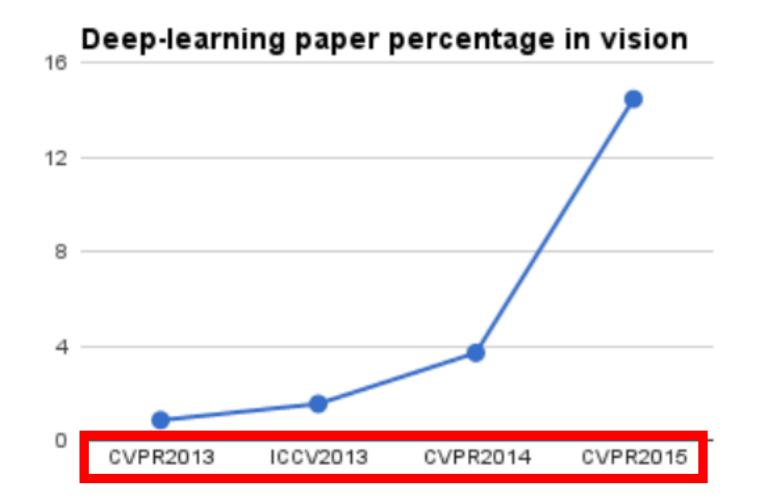
https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11

ILSVRC: Top CNN Models Over Time

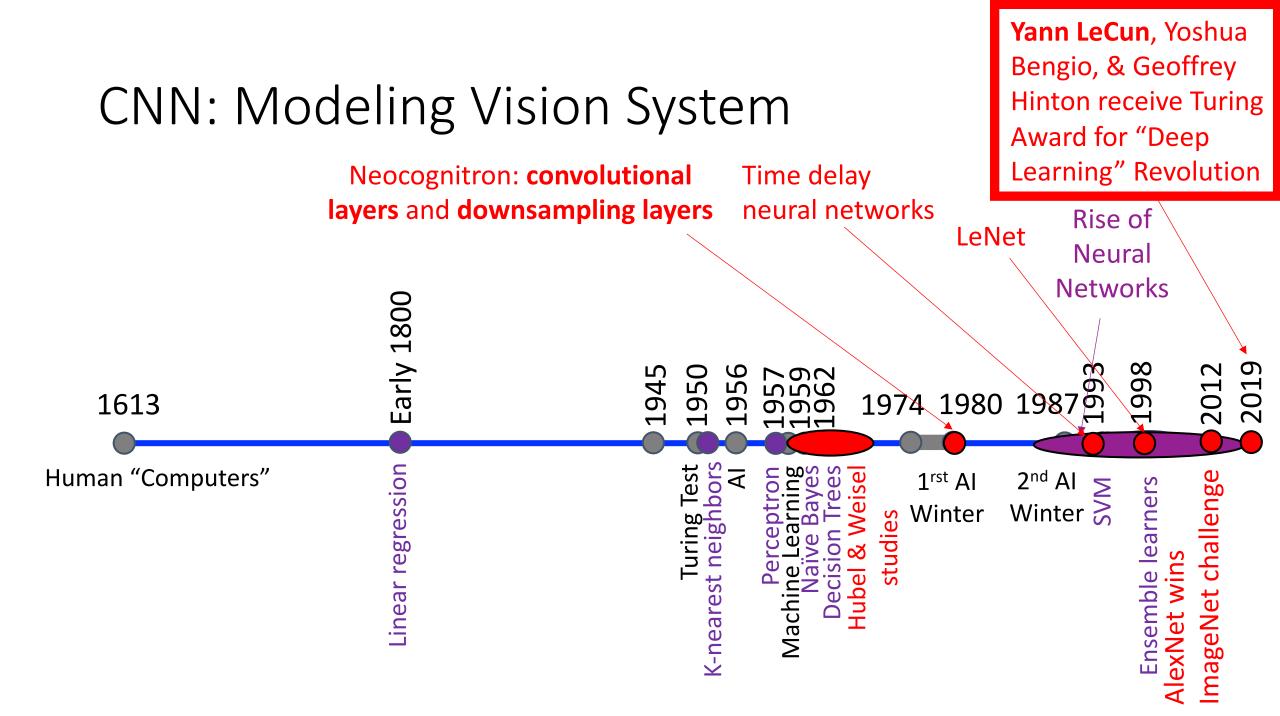


https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

CNN: Modeling Vision System



Slide Credit: https://www.slideshare.net/xavigiro/saliency-prediction-using-deep-learning-techniques



Note: Initial Resistance to this "Revolution"

Yann LeCun's letter to CVPR organizer about 2012 submission: (Paper ratings: "Definitely Reject," "Borderline", "Weakly Reject")

"... I was very sure that this paper was going to get good reviews because: 1) it has two simple and generally applicable ideas for segmentation ("purity tree" and "optimal cover"); 2) it uses no hand-crafted features (it's all learned all the way through. Incredibly, this was seen as a negative point by the reviewers!); 3) it beats all published results on 3 standard datasets for scene parsing; 4) it's an order of magnitude faster than the competing methods.

If that is not enough to get good reviews, I just don't know what is.

"Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers" rejected by CVPR but accepted by ICML'12

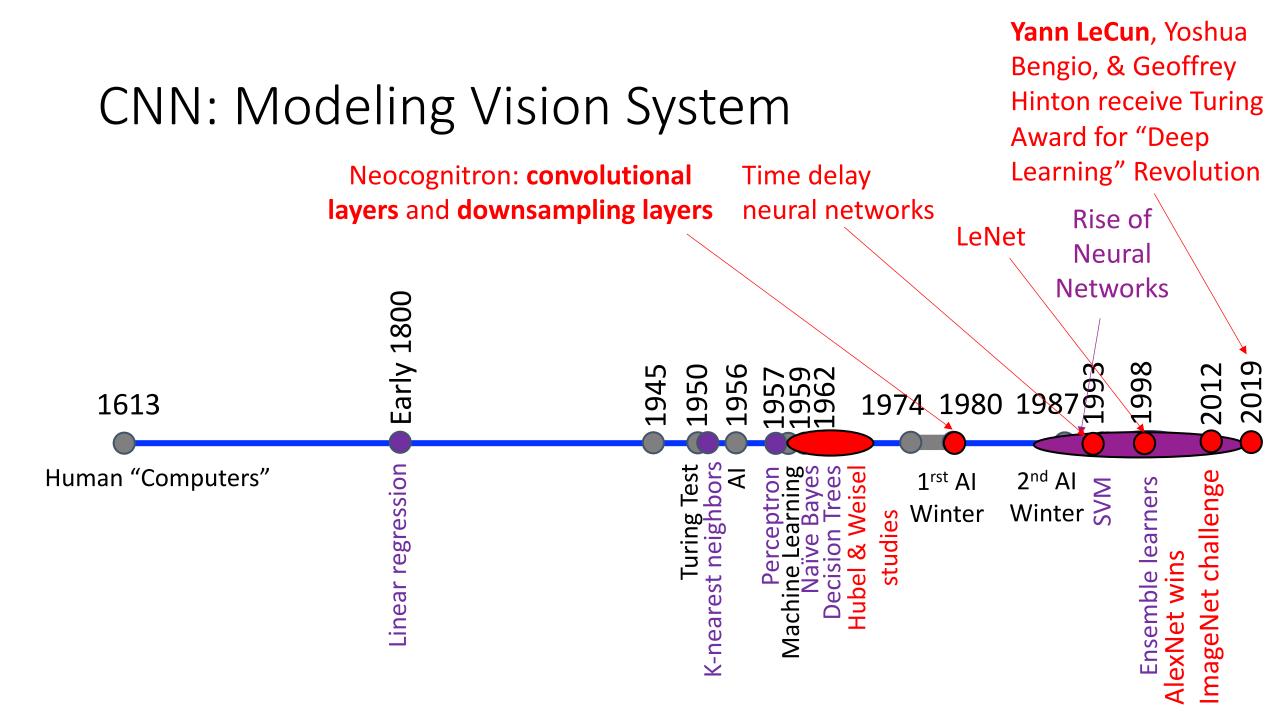
Note: Initial Resistance to this "Revolution"

Yann LeCun's Facebook post on March 28, 2019:

"The injustice of any award is that it has to pick a small number of winners. **But the winners** are merely the visible part of an iceberg and wouldn't come to the surface without the much-larger submerged part that supports it...

I am very thankful to all my mentors, collaborators, postdocs and students over the years. To a large extent, it is their work that the Turing Award rewards... I have been very fortunate to work with incredibly talented people over the years...

Mentors include Maurice Milgram & Françoise Soulié-Fogelman, my PhD advisors, Geoff Hinton with whom I did my postdoc, <u>Larry Jackel</u> and Rich Howard who hired me at Bell Labs, and <u>Lawrence Rabiner</u> my lab director at AT&T Labs..."



CNN: Catalyst for Computer Vision Industry Boom

Self-driving cars

Self-driving vehicle on Mars

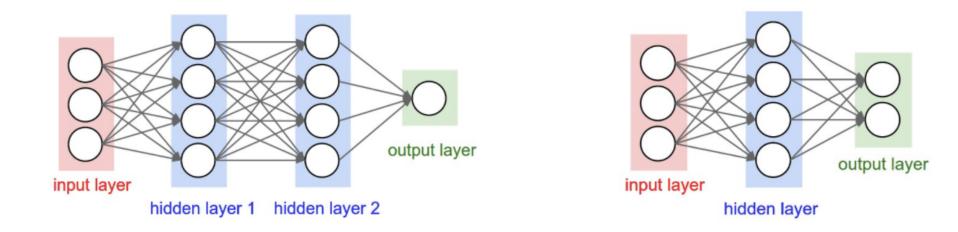
Guided surgery

Visual assistance for people who are blind

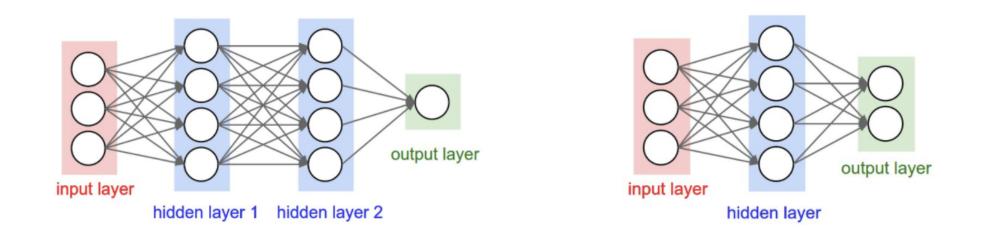
Security

Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google



Each node provides input to each node in the next layer



- Assume 2 layer model with 100 nodes per layer
 - e.g., how many weights are in a 640x480 image?
 - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
 - e.g., how many weights are in a 2048X1536 image (3.1 Megapixel image)?
 - 2048x1536x3x100 + 100x100 + 100x1 = 943,728,500

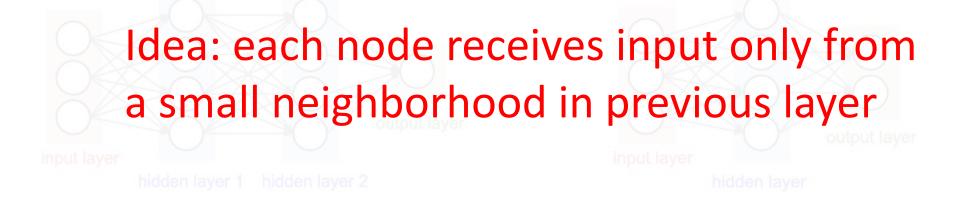
- Assume 2 layer model with 100 nodes per layer
 - e.g. how many weights are in a 640x480 image?
 - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
 - e.g. how many weights are in a 2048X1536 image (3.1 Megapixel image)?
 - 2048x1536x3x100 + 100x100 + 100x1 = 943,728,500

- Assume 2 layer model with 100 nodes per layer
 - e.g. how many weights are in a 640x480 image?
 - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
 - e.g. how many weights are in a 2048X1536 image (3.1 Megapixel image)?
 - 2048x1536x3x100 + 100x100 + 100x1 = 943,728,500

Many model parameters and so...
greater chance to overfit
increased training time
needs more training data

- Assume 2 layer model with 100 nodes per layer
 - e.g. how many weights are in a 640x480 image?
 - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
 - e.g. how many weights are in a 2048X1536 image (3.1 Megapixel image)?
 - 2048x1536x3x100 + 100x100 + 100x1 = 943,728,500

Convolutional Layer



- Assume 2 layer model with 100 nodes per layer
 - e.g. how many weights are in a 640x480 image?
 - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
 - e.g. how many weights are in a 2048X1536 image (3.1 Megapixel image)?
 - 2048x1536x3x100 + 100x100 + 100x1 = 943,728,500

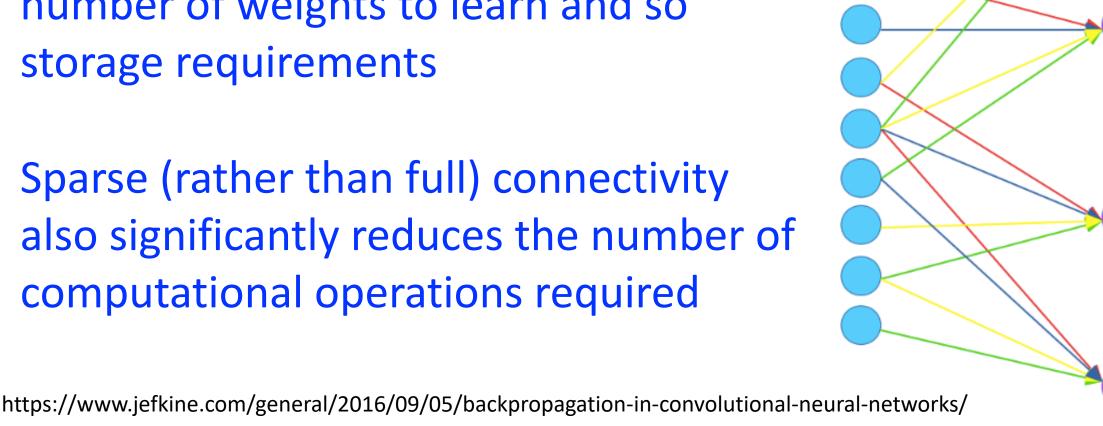
Convolutional Layer: Parameters to Learn

- For example, how many weights must be learned?
 - 4 (red, blue, yellow, and green values in the filter)
- If we instead used a fully connected layer, how many weights would need to be learned?
 - 36 (9 blue x 4 magenta)
- For example, how many parameters must be learned?
 - 5 (4 weights + 1 bias)
- If we instead used a fully connected layer, how many parameters would need to be learned?
 - 40 (36 weights + 4 bias)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Convolutional Layer: Parameters to Learn

- Parameter sharing significantly reduces • number of weights to learn and so storage requirements
 - Sparse (rather than full) connectivity also significantly reduces the number of computational operations required



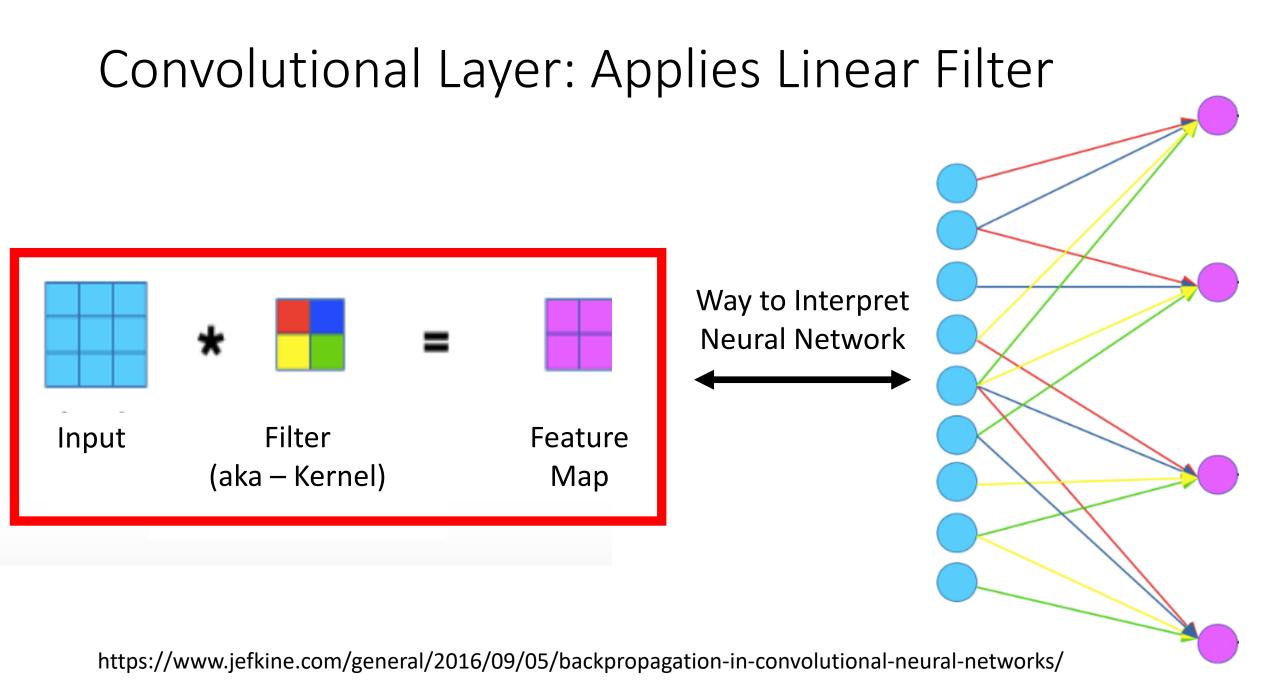
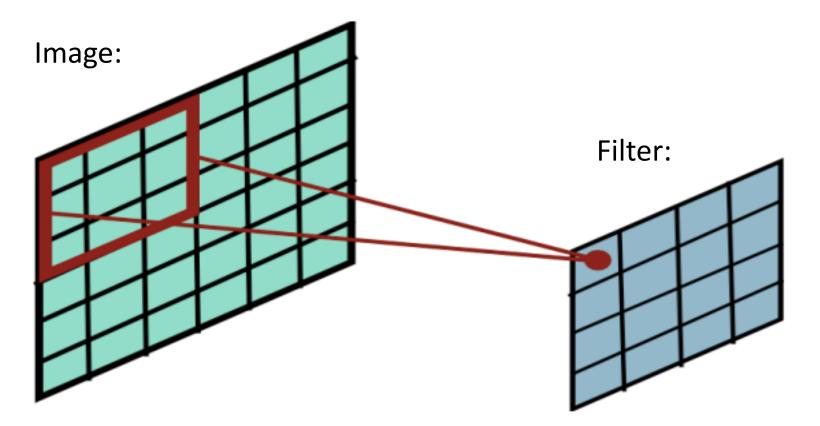


Image Filtering

- Compute a function of local neighborhood for each pixel in the image
- A filter specifies the function for how to combine neighbors' values

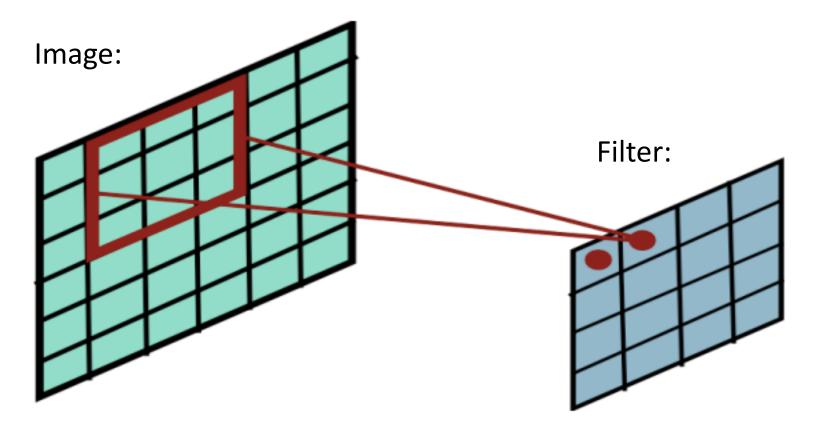
Image Filtering



Slides filter over the image and computes dot products

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

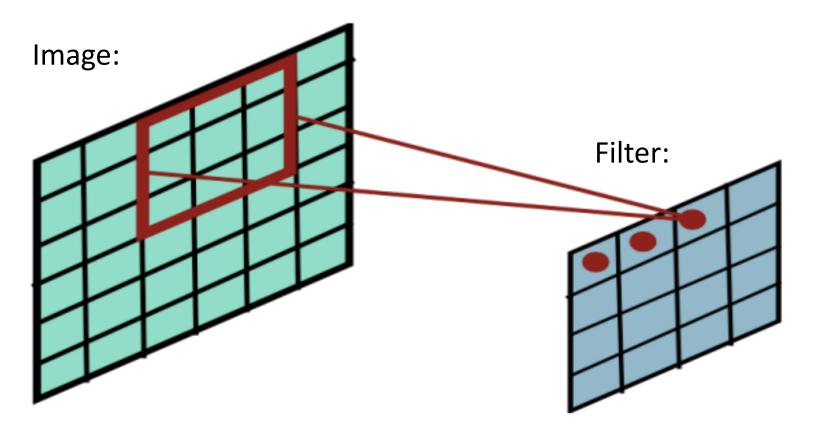
Image Filtering



Slides filter over the image and computes dot products

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

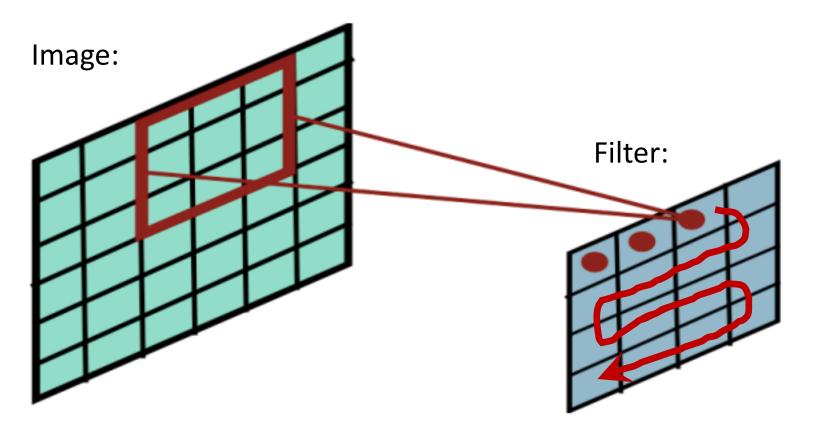
Image Filtering



Slides filter over the image and computes dot products

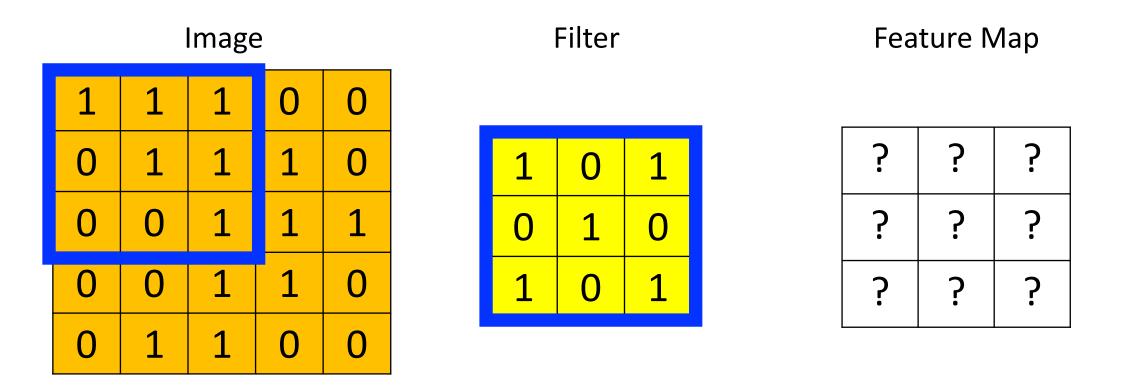
https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

Image Filtering

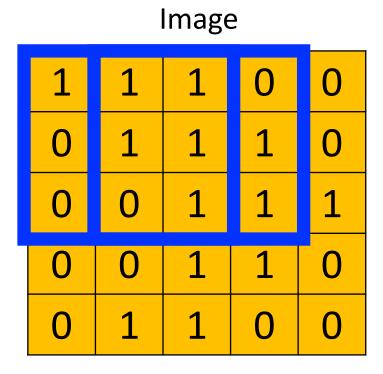


Slides filter over the image and computes dot products

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf



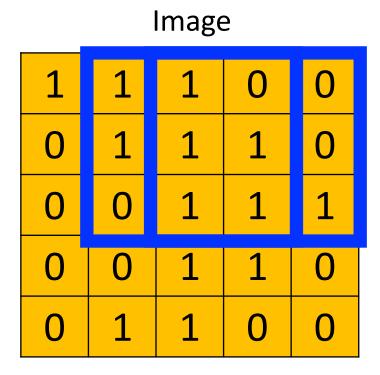
Dot Product = 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*1 + 0*0 + 0*0 + 1*1 Dot Product = 4



Filter

1	0	1
0	1	0
1	0	1

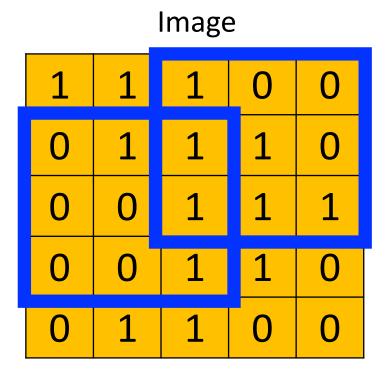
4	?	?
?	?	?
?	?	?



Filter

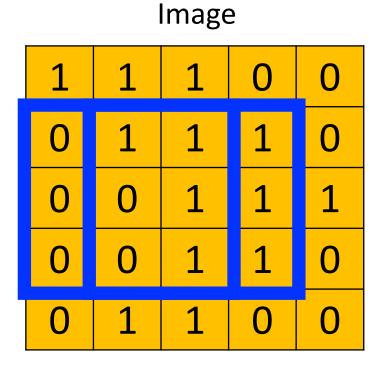
1	0	1
0	1	0
1	0	1

4	3	?
?	?	?
?	?	?



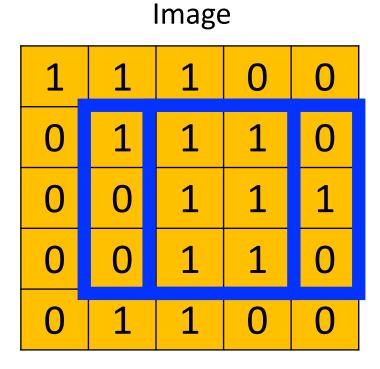
1	0	1
0	1	0
1	0	1

4	3	4
?	?	?
?	?	?



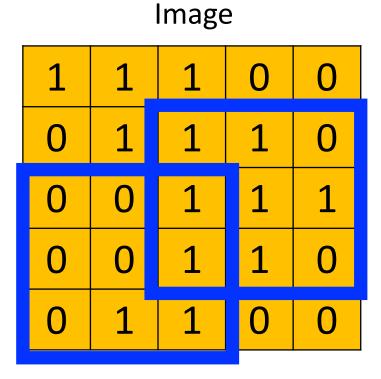
1	0	1
0	1	0
1	0	1

4	3	4
2	?	?
?	?	?



1	0	1
0	1	0
1	0	1

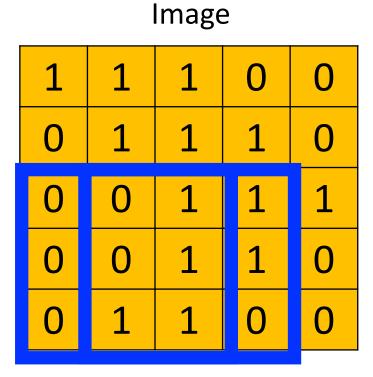
4	3	4
2	4	?
?	?	?



Filter

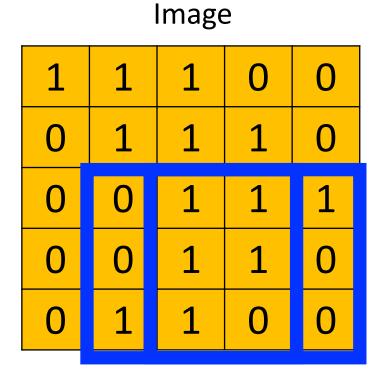
1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
?	?	?



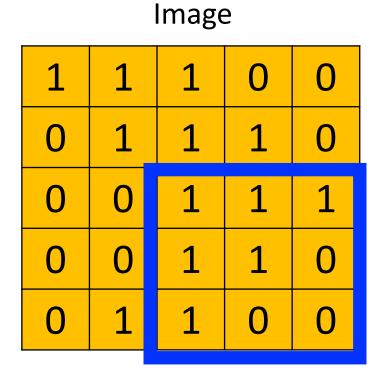
1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	?	?



1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	?



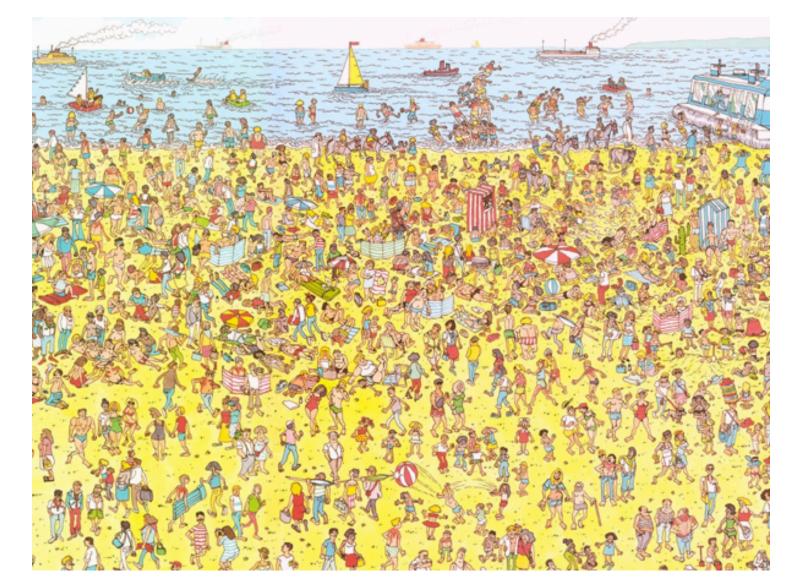
Filter

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	4

Image Filter: What Does It Do? (Where's Waldo?)

Filter



• e.g.,

Filter

Visualization of Filter

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

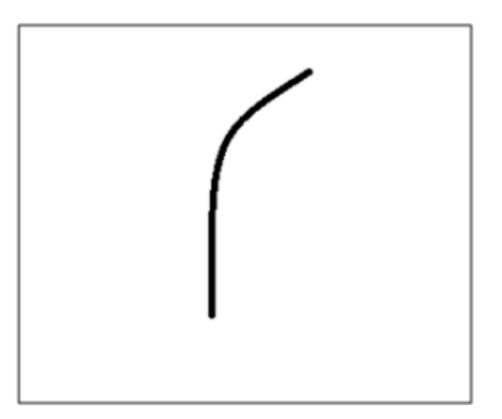
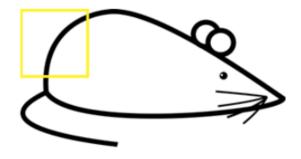


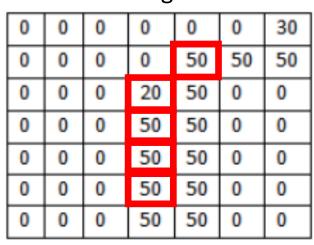
Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

*

Filter Overlaid on Image



• e.g.,



Filter

Weighted Sum = ?

Weighted Sum = (50x30) + (20x30) + (50x30) + (50x30) + (50x30)

Weighted Sum = 6600 (Large Number!!)

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Filter Overlaid on Image

Image

• e.g.,

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Filter

	0	0	0	0	0	30	0
	0	0	0	0	30	0	0
	0	0	0	30	0	0	0
,	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	0	0	0	0

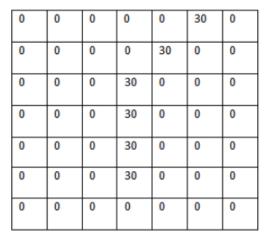
Weighted Sum = ?

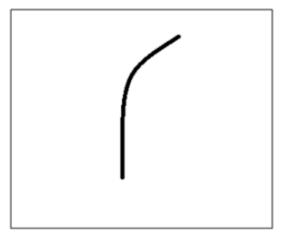
Weighted Sum = 0 (Small Number!!)

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

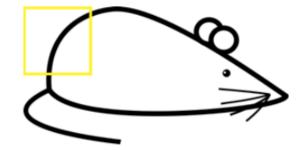
This Filter is a Curve Detector!

• e.g.,





Filter Overlaid on Image (Big Response!)



Filter Overlaid on Image (Small Response!)

Image Credit: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

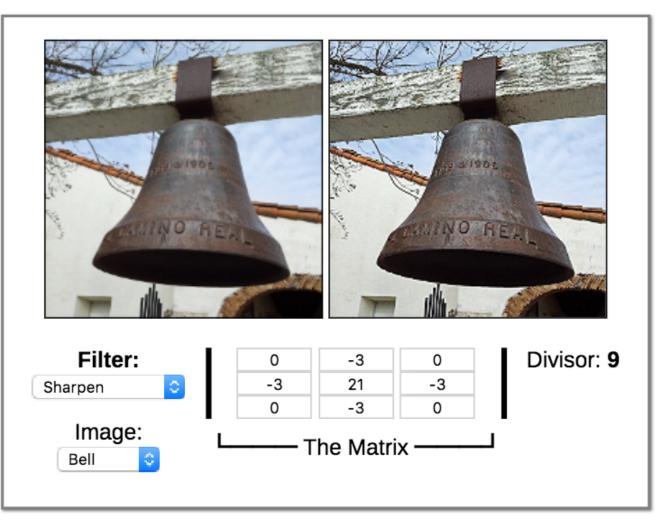
Different Filters Detect Different Features

	Filter	Feature Map
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

	Filter	Feature Map
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Different Filters Detect Different Features



Demo: http://beej.us/blog/data/convolution-image-processing/

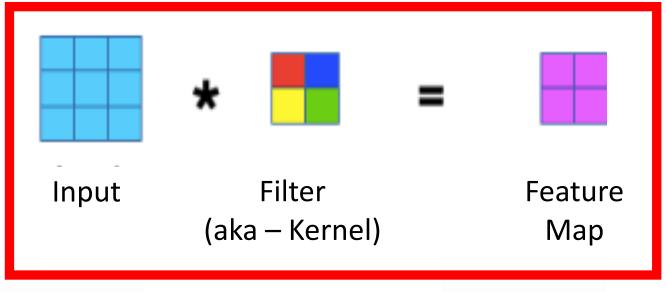
Group Discussion

1. How would you design a linear filter to "brighten" an image

2. How would you design a linear filter to remove wrinkles/blemishes?

Convolutional Layer: Applies Linear Filter

- Note, previous examples show the "cross-correlation" function
- Many neural network libraries use "cross correlation" interchangeably with "convolution"; for mathematicians, these are technically different



Way to Interpret Neural Network

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Convolutional Layer: Implementation Details

• **Padding**: add values at the image boundaries to preserve image size

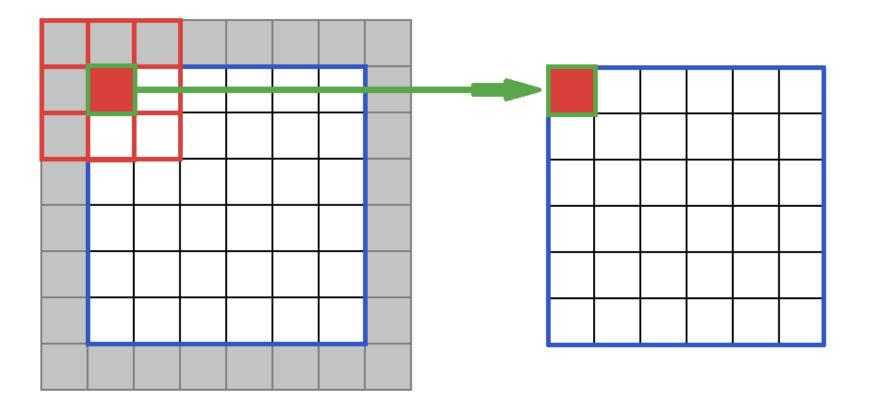
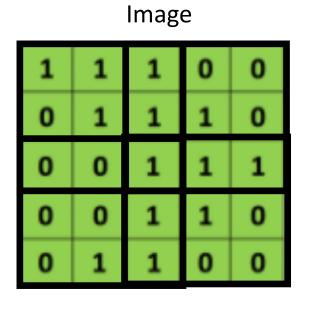
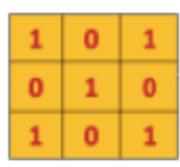


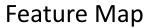
Image Credit: https://software.intel.com/en-us/node/586159

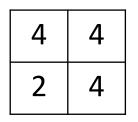
Convolutional Layer: Implementation Details

- Stride: how many steps taken spatially before applying a filter
 - e.g., 2x2









http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

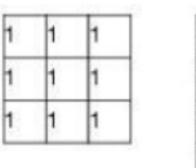
Convolutional Layer: Implementation Details

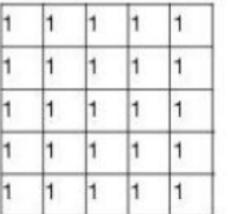
• Demo:

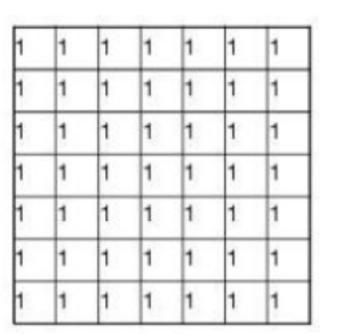
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Group Discussion

1. Why would you choose a larger versus a smaller filter?

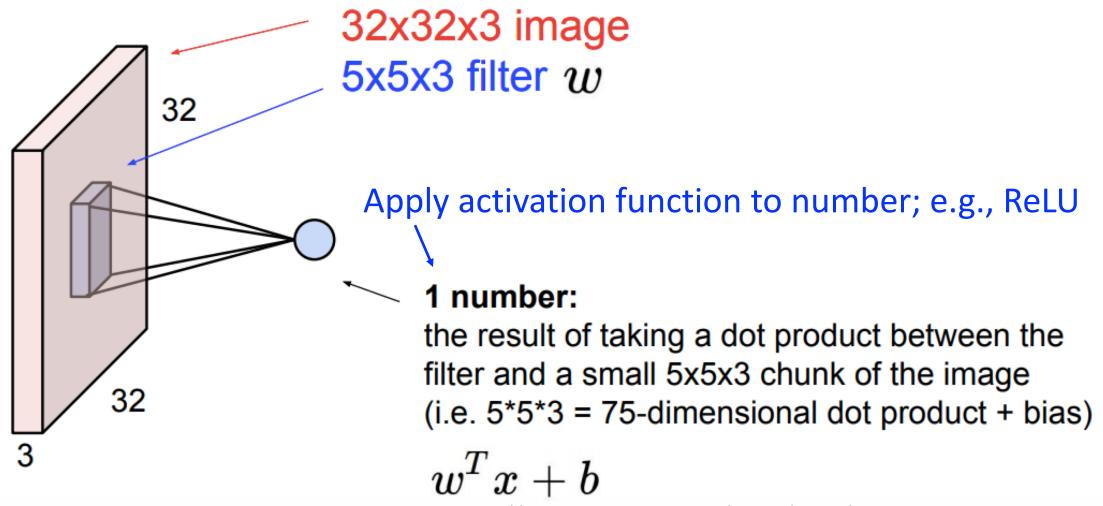




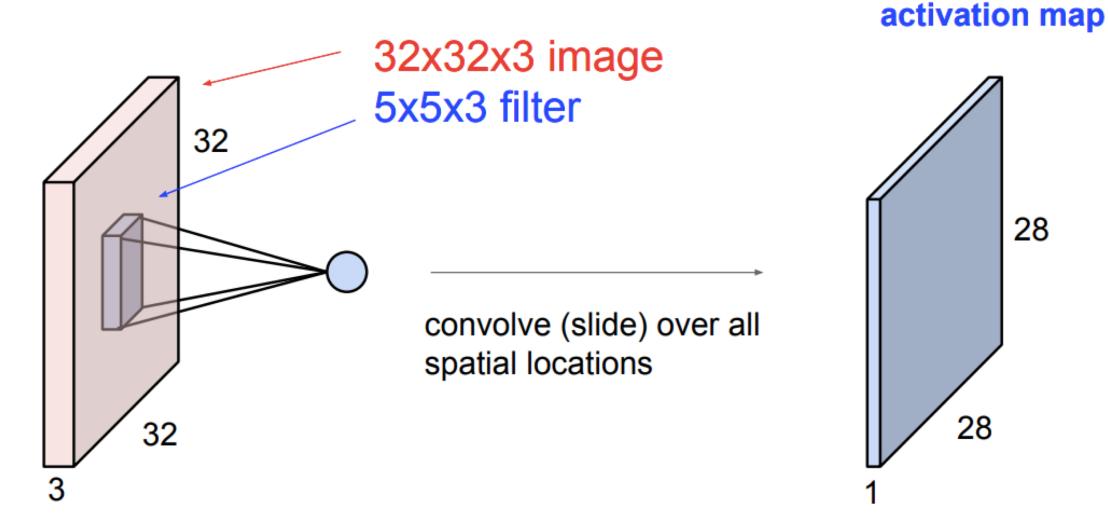


2. Why choose a larger versus smaller stride size?

Convolutional Layer: Introduce Non-Linearity

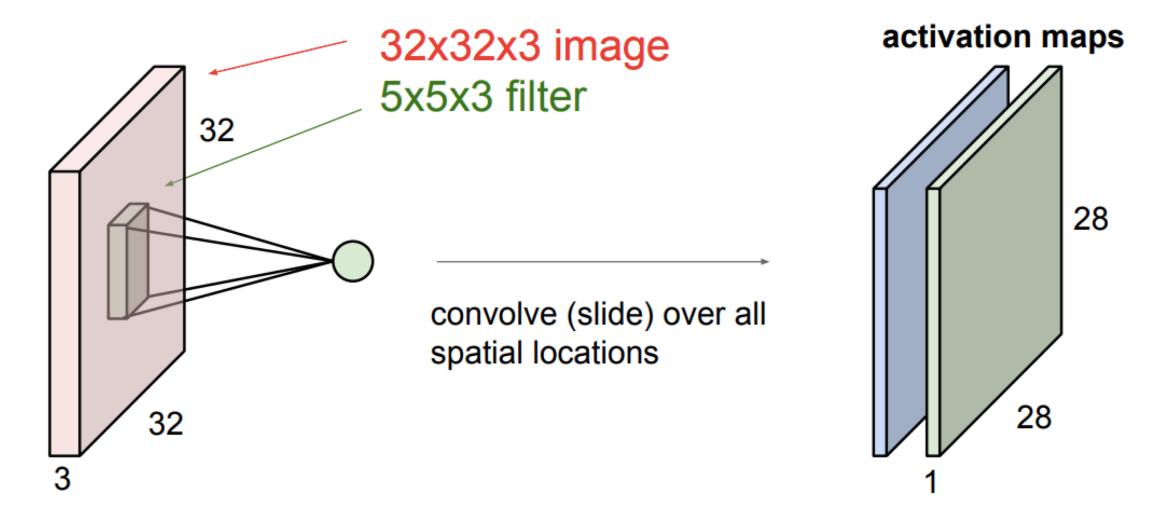


Convolutional Layer



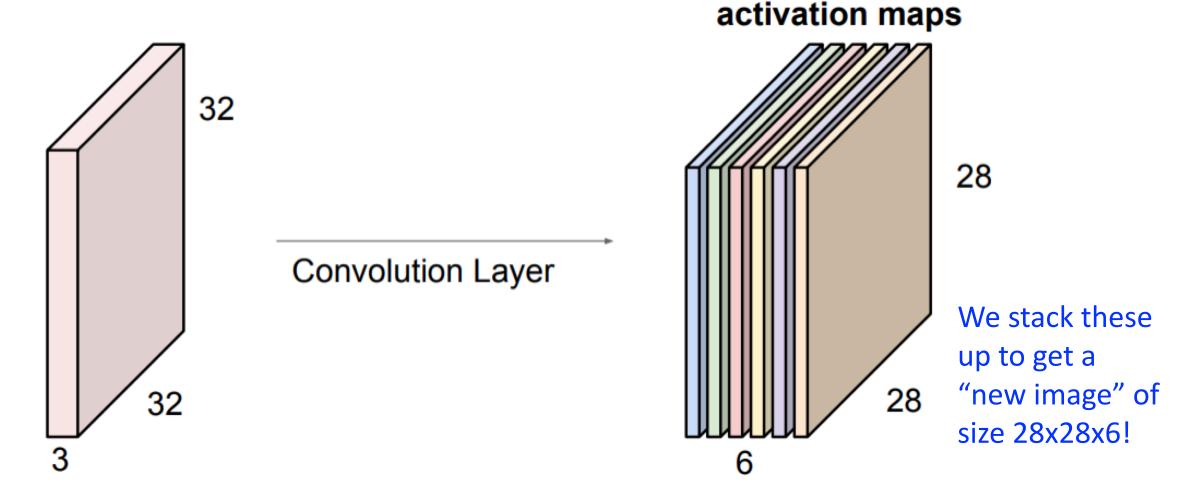
consider a second, green filter

Convolutional Layer



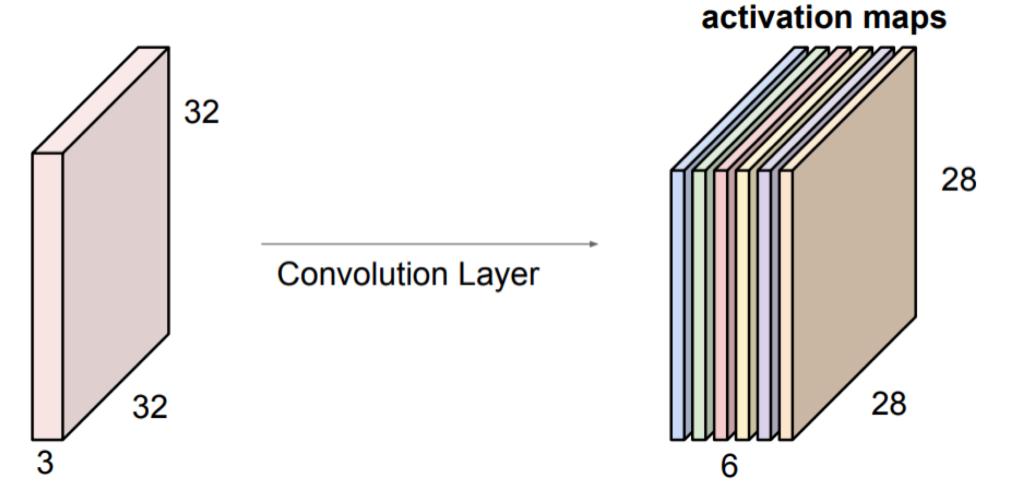
Convolutional Layer

if we had 6 5x5 filters, we'll get 6 separate activation maps:



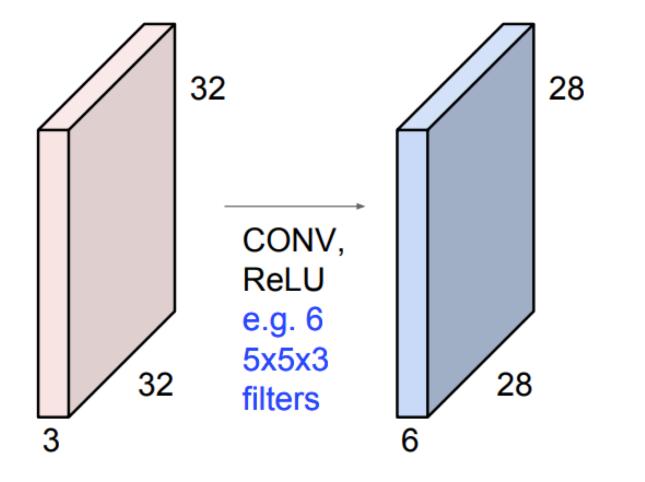
Convolutional Layer: Parameters to Learn

Parameters: bank of filters and biases used to create the activation maps (aka – feature maps)



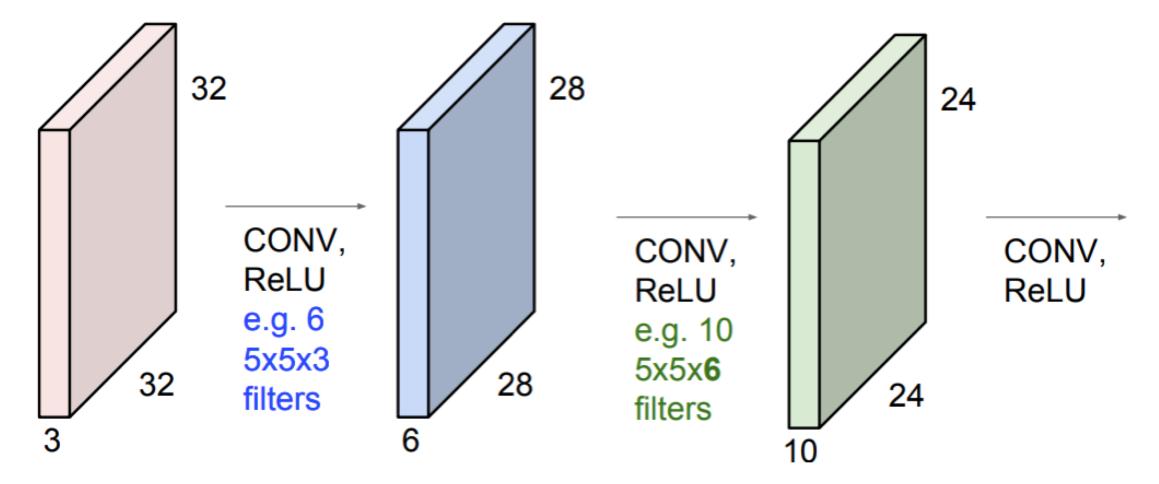
Convolutional Neural Networks (CNNs)

Can then stack a sequence of convolution layers, interspersed with activation functions:



Convolutional Neural Networks (CNNs)

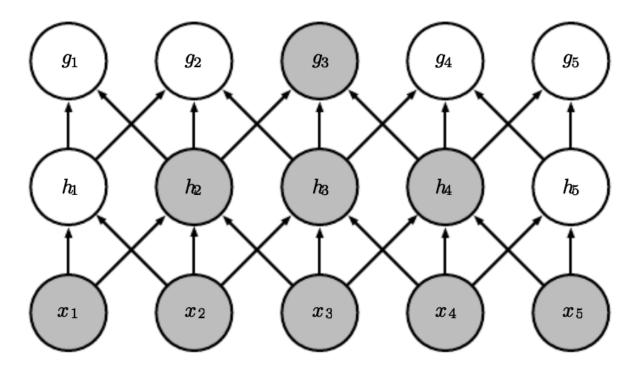
Can then stack a sequence of convolution layers, interspersed with activation functions:



Convolutional Neural Networks (CNNs)

Can then stack a sequence of convolution layers, interspersed with activation functions:

Stacking many convolutional layers leads to learning patterns in increasingly larger regions of the input (e.g., pixel) space.



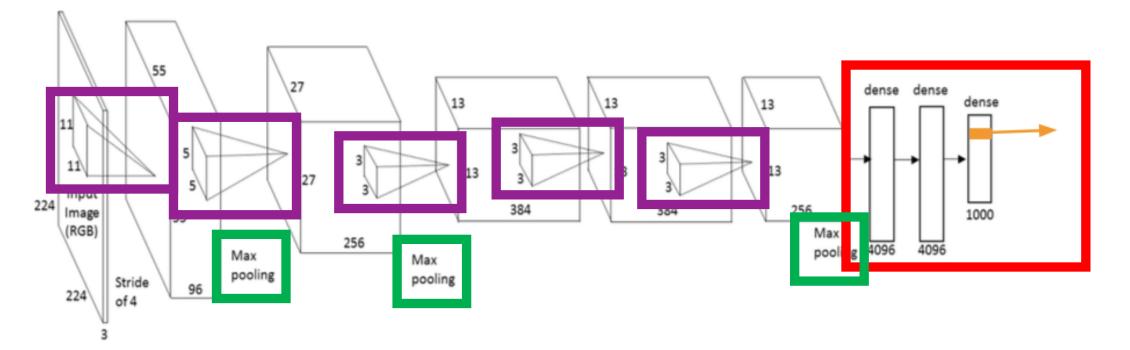
https://www.deeplearningbook.org/contents/convnets.html

Convolutional Layer: Training

- 1. Forward Pass:
 - For convolutional layers:
 - 1. Apply convolution operation with each filter
 - 2. Add biases (one per each output image)
 - 3. Apply an activation function to all the pixels of the output images
- 2. Compute prediction error (with respect to a loss function)
- 3. Backpropagate error to all model parameters (determine how changing a single pixel in the weight kernel affects the loss function)
- 4. Update all model parameters (kernel weights, biases)

CNN: Summary of Convolution Layers

- e.g., AlexNet extracts useful features of lower dimension prior to passing it to MLP with:
 - Convolutional layers
 - Pooling Layers



Slide Credit: https://www.slideshare.net/xavigiro/saliency-prediction-using-deep-learning-techniques A. Krizhevsky, I. Sutskever, G. E. Hinton "ImageNet classification with deep convolutional neural networks"

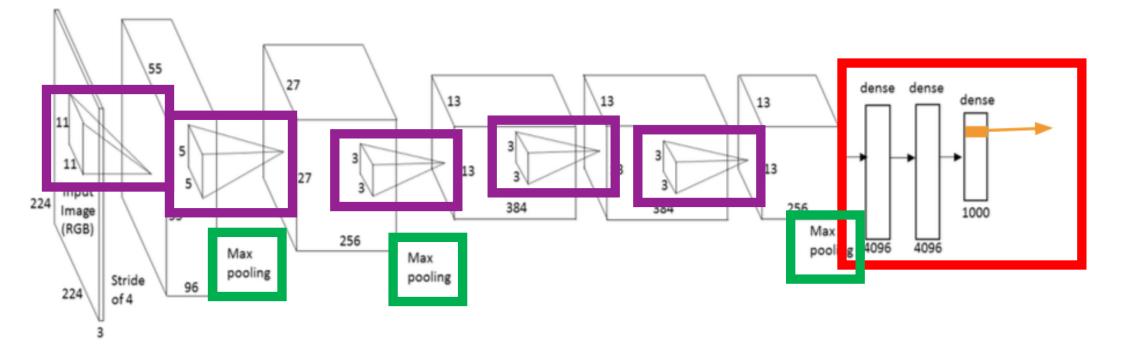
Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google

CNN: Pooling Layers

• AlexNet extracts useful features of lower dimension prior to passing it to MLP with:

- Convolutional layers
- Pooling Layers

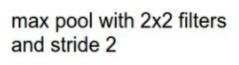


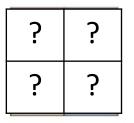
Slide Credit: https://www.slideshare.net/xavigiro/saliency-prediction-using-deep-learning-techniques A. Krizhevsky, I. Sutskever, G. E. Hinton "ImageNet classification with deep convolutional neural networks"

• Max-pooling: partitions input into a set of non-overlapping rectangles and outputs the maximum value for each chunk

enigie depair enee			
1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Single depth slice





• Max-pooling: partitions input into a set of non-overlapping rectangles and outputs the maximum value for each chunk

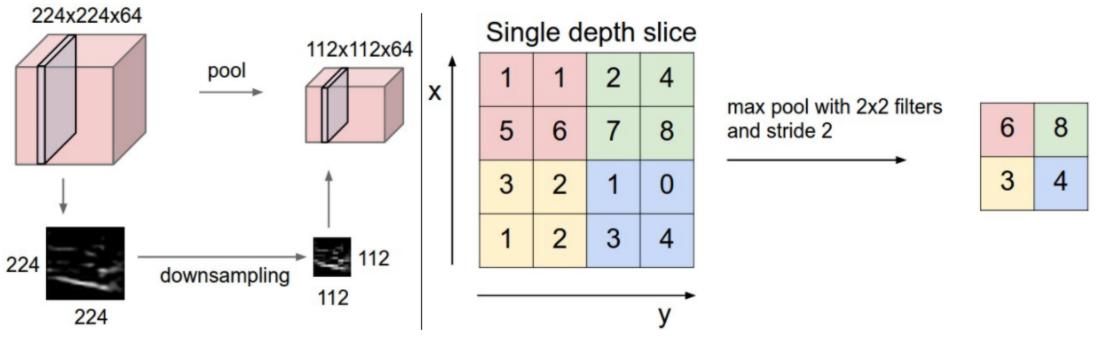
enigie deput enee				
1	1	2	4	
5	6	7	8	
3	2	1	0	
1	2	3	4	

Single depth slice

max pool with 2x2 filters and stride 2

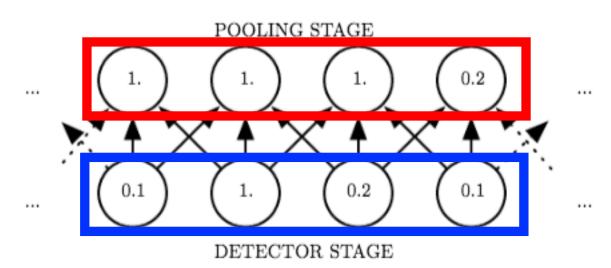
6	8
3	4

• Max-pooling: partitions input into a set of non-overlapping rectangles and outputs the maximum value for each chunk



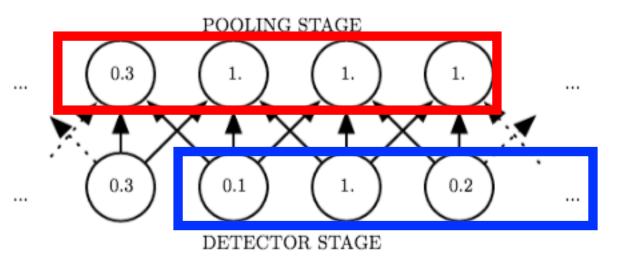
Pooling Layer

• Resilient to small translations



• e.g.,

- Input: all values change (shift right)
- Output: only half the values change



https://www.deeplearningbook.org/contents/convnets.html

- Max-pooling: partitions input into a set of non-overlapping rectangles and outputs the maximum value for each chunk
- Average-pooling: partitions input into a set of non-overlapping rectangles and outputs the average value for each chunk

1	1	2	4
-			
5	6	7	8
3	2	1	0
1	2	3	4
	~	Ŭ	-

Single depth slice

Avg pool with 2x2 filters and stride 2

?	?	
?	?	

- Max-pooling: partitions input into a set of non-overlapping rectangles and outputs the maximum value for each chunk
- Average-pooling: partitions input into a set of non-overlapping rectangles and outputs the average value for each chunk

1	1	2	4	
5	6	7	8	
3	2	1	0	
1	2	3	4	

Single depth slice

http://cs231n.github.io/convolutional-networks/#pool

3.25

2

5.25

2

Avg pool with 2x2 filters

and stride 2

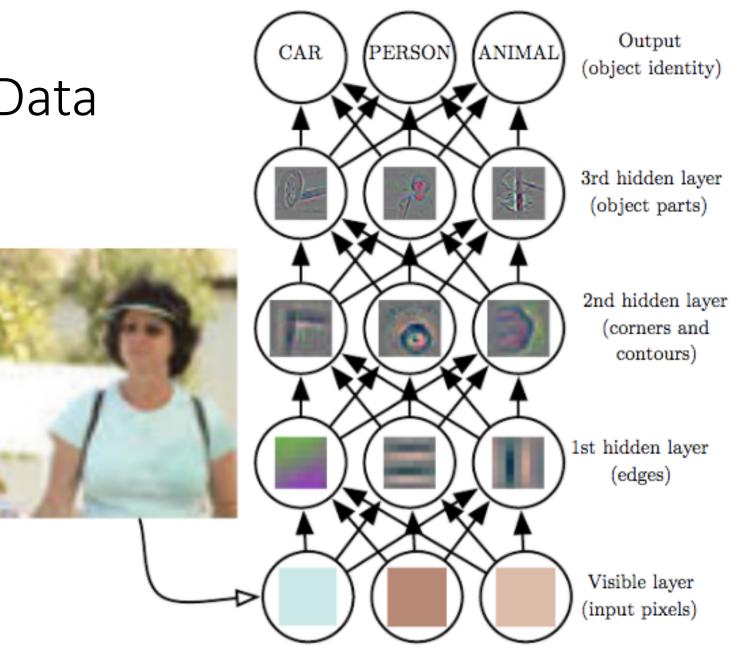
Pooling Layer: Benefits

- How many parameters must be learned?
 - None
- Benefits?
 - Builds in invariance to translations of the input
 - Reduces memory requirements
 - Reduces computational requirements

Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google

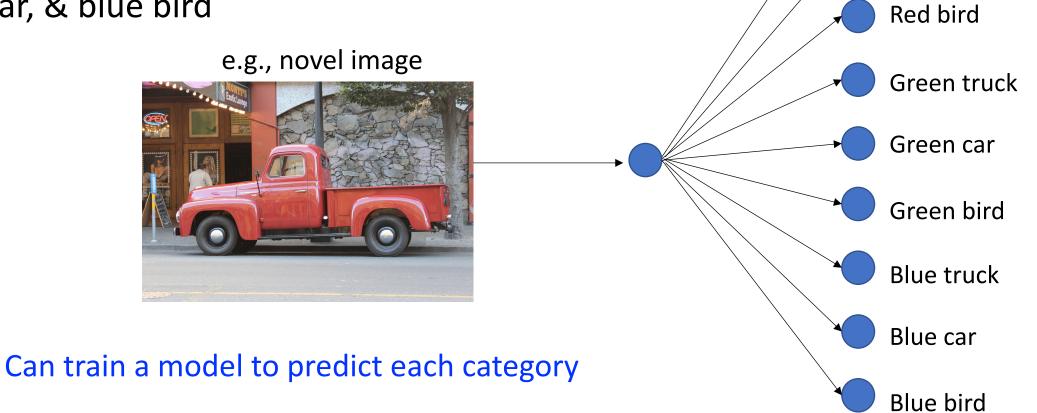
CNN: Learns Good Representation of Data



Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville

How to Efficiently Describe/Represent Images?

 e.g., predict for given image if it is a: red truck, red car, red bird, green truck, green car, green bird, blue truck, blue car, & blue bird

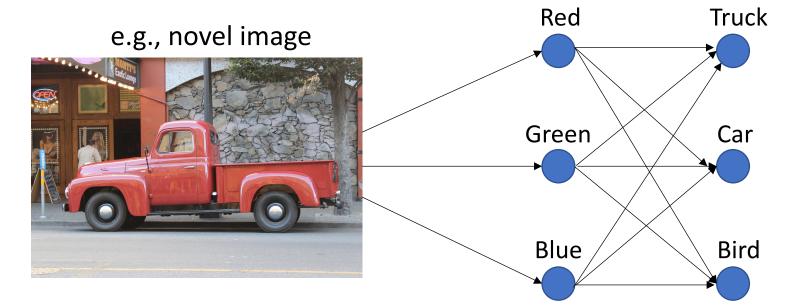


Red truck

Red car

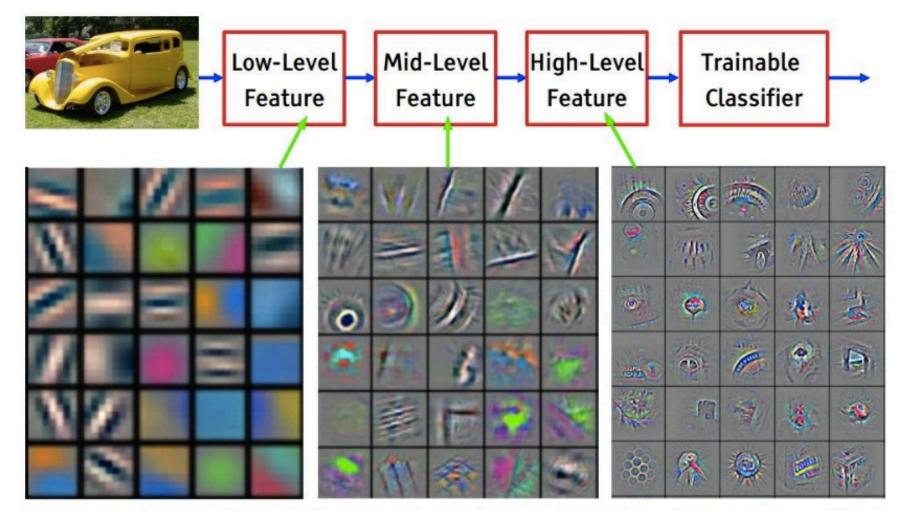
How to Efficiently Describe/Represent Images?

 e.g., predict for given image if it is a: red truck, red car, red bird, green truck, green car, green bird, blue truck, blue car, & blue bird



Can design a more efficient model to first capture color and then objects (greater parameter efficiency using hierarchical layers of features)!

CNN: Learns Good Representation of Data

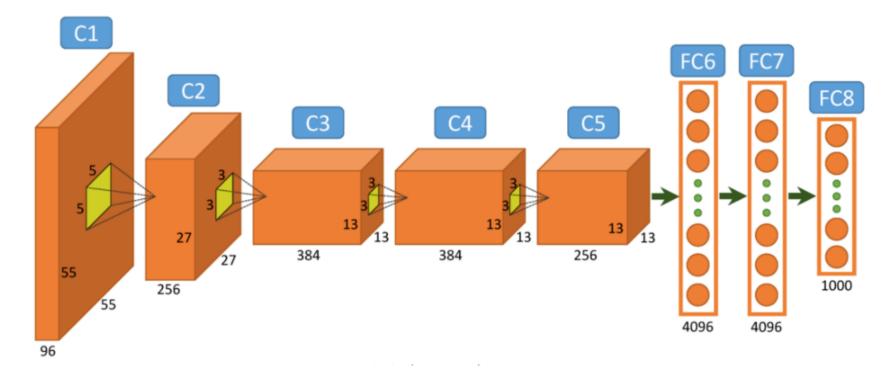


CNN: Intuition of Different Layers

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

AlexNet Deep Features

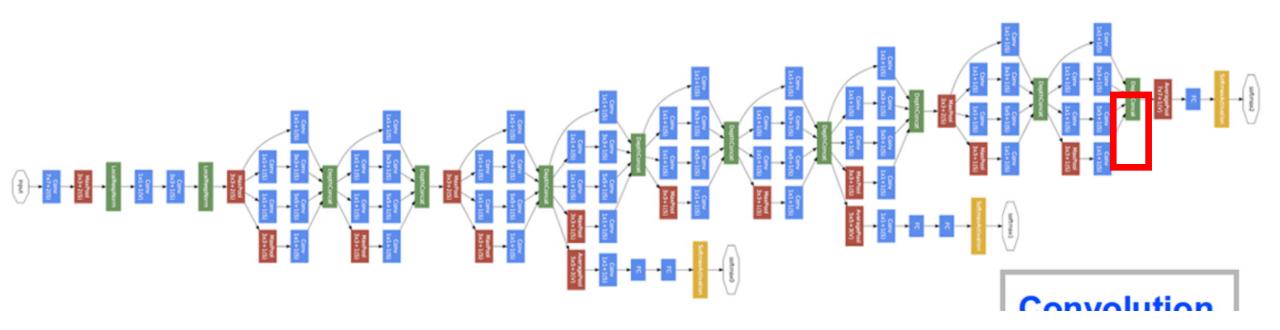
- What is the dimensionality of the fc6 feature?
- What is the dimensionality of the fc7 feature?



https://www.researchgate.net/figure/Architecture-of-Alexnet-Fromleft-to-right-input-to-output-five-convolutional-layers_fig2_312303454

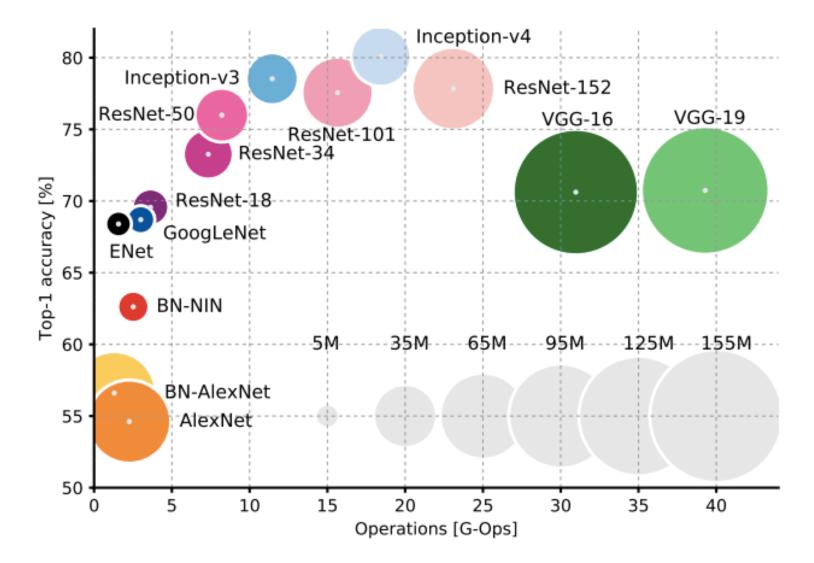
GoogleNet (Inception) Deep Features

• What is the dimensionality of the inception features?



http://joelouismarino.github.io/blog_posts/blog_googlenet_keras.html

And Many More Features From...



- VGG16
- VGG19
- ResNet
- Enet
- •

CNN Architectures: Input Beyond Images...

- Acoustic/Speech: input treated as an image, with one axis corresponding to time and the other to frequency of spectral components
- Video: one axis corresponds to time, one to the height of the video frame, and one to the width of the video frame

Today's Topics

- History of Convolutional Neural Networks (CNNs)
- CNNs Convolutional Layers
- CNNs Pooling Layers
- Deep Features
- Guest Speaker: Dr. Peter Anderson, Research Scientist at Google