
Neural Network
Architecture and Training

Danna Gurari (taught by Yinan Zhao)
University of Texas at Austin

Spring 2020

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Review

• Last week:
• Natural Language Processing
• Computer Vision
• Feature Representation
• Dimensionality Reduction

• Assignments (Canvas):
• Problem set #5 due yesterday
• Lab assignment #3 due in two weeks

• Questions?

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Recall: Historical Context of ML Models

1613

Human “Computers”

19
45

Fi
rs

t p
ro

gr
am

m
ab

le

m
ac

hi
ne

Tu
rin

g
Te

st

19
59

M
ac

hi
ne

 Le
ar

ni
ng

19
56 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

19
57

19
50

AI

19
62

Ea
rly

 1
80

0
Li

ne
ar

 re
gr

es
sio

n

Pe
rc

ep
tr

on

K-
ne

ar
es

t n
ei

gh
bo

rs

De
ci

sio
n

Tr
ee

s
Na

ïv
e

Ba
ye

s

SV
M

En
se

m
bl

e
le

ar
ne

rs

Recall: Rise & Fall of Perceptron (Artificial Neuron)

Frank Rosenblatt
(Psychologist)

“[The perceptron is] the embryo of an
electronic computer that [the Navy] expects
will be able to walk, talk, see, write,
reproduce itself and be conscious of its
existence…. [It] is expected to be finished in
about a year at a cost of $100,000.”
1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-
navy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

Biological Neuron:

Artificial Neurons
(e.g., Perceptron):

Recall: Rise & Fall of Perceptron (Artificial Neuron)

Python Machine Learning; Raschka & Mirjalili

Recall: Rise & Fall of Perceptron (Artificial Neuron)

Cannot solve XOR problem and so separate 1s from 0s with a perceptron (linear function):

Today’s Topic: Neural Networks

1613

Human “Computers”

19
45

Fi
rs

t p
ro

gr
am

m
ab

le

m
ac

hi
ne

Tu
rin

g
Te

st

19
59

M
ac

hi
ne

 Le
ar

ni
ng

19
56 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

19
57

19
50

AI

19
62

Ea
rly

 1
80

0
Li

ne
ar

 re
gr

es
sio

n

Pe
rc

ep
tr

on

K-
ne

ar
es

t n
ei

gh
bo

rs

De
ci

sio
n

Tr
ee

s
Na

ïv
e

Ba
ye

s

SV
M

En
se

m
bl

e
le

ar
ne

rs

Rise of
Neural

Networks

Today’s Topic: Neural Networks
Artificial neurons inspired

by biological learning

(a
cc

or
di

ng
 to

 G
oo

gl
e

Bo
ok

s)

Introduction of hidden
layers and backpropagation

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Today’s Topic: Neural Networks
- Inspiration is that Neurons are “Connected”

Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Neural Network

http://cs231n.github.io/neural-networks-1/

“hidden layer” uses outputs of units (i.e., neurons) and
provides them as inputs to other units (i.e., neurons)

one input
per feature

prediction

• Also called “multilayer perceptron”

• This is a 2-layer neural network (number
of hidden layers plus output layer;
exclude input layer when counting)

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

• How does this relate to a perceptron?

• Unit: takes as input a weighted sum and
applies a non-linear (activation) function

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

Neural Network

Neural Network

• How does this relate to a perceptron?

• Training goal: learn model weights

Python Machine Learning; Raschka & Mirjalili
http://cs231n.github.io/neural-networks-1/

How many weights are in this model?
• Input to Hidden Layer:

• 3x4 = 12
• Hidden Layer to Output Layer

• 4x2 = 8
• Total:

• 12 + 8 = 20

http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:

• 20
• Number of biases:

• 4 + 2 = 6
• Total:

• 26

http://cs231n.github.io/neural-networks-1/

Neural Network

http://cs231n.github.io/neural-networks-1/

Neural Network

How many layers are in this network?
• 3 (number of hidden layers plus

output layer; exclude input layer
when counting)

http://cs231n.github.io/neural-networks-1/

Neural Network

How many weights are in this model?
• Input to Hidden Layer 1:

• 3x4 = 12
• Hidden Layer 1 to Hidden Layer 2:

• 4x4 = 16
• Hidden Layer 2 to Output Layer

• 4x1 = 4
• Total:

• 12 + 16 + 4 = 32

http://cs231n.github.io/neural-networks-1/

Neural Network

How many parameters are there to learn?
• Number of weights:

• 32
• Number of biases:

• 4 + 4 + 1 = 9
• Total

• 41

http://cs231n.github.io/neural-networks-1/

Fully Connected, Feed Forward Neural Networks

• What does it mean for a model to be fully
connected?
• Each unit provides input to each unit in the next layer

• What does it mean for a model to be feed forward?
• Each layer serves as input to the next layer with no loops

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together
e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3
• y = (w1x1 + w3x2 + b1)w5 + (w2x1 + w4x2 + b2)w6 + b3
• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together
e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Constant x linear function = linear function

Solution to Model Non-Linear Functions:
Non-Linear Activation Functions

Python Machine Learning; Raschka & Mirjalili

Activation
Function

?

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

Solution to Model Non-Linear Functions:
Non-Linear Activation Functions
• e.g.,

Image Source: https://medium.com/@sonish.sivarajkumar/relu-most-
popular-activation-function-for-deep-neural-networks-10160af37dda

Non-Linear Example: Revisiting XOR problem

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

1

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

?

?

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

Bias = 0

?

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Non-Linear Example: Revisiting XOR problem
(1, 1)

(1, 0)

(0, 1)

(0, 0)

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

• Non-linear function: separate 1s from 0s:

• Approach: Use ReLU activation function () with this model:

Neural networks can solve XOR problem...
and so model non-linear functions!

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Output Units

• Matches the neural network to the task it must perform; e.g.,
• Linear regression
• Binary classification
• Multi-class classification
• Multi-label classification

Figure Credit: http://cs231n.github.io/neural-networks-1/

Sigmoid (for Binary Classification)

If >= 0.5, output 1;

Else, outputs 0

Sigmoid (for Multilabel Classification)

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Figure credit:
https://developers.google.com/mac
hine-learning/crash-course/multi-
class-neural-networks/softmax

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Figure credit:
https://developers.google.com/mac
hine-learning/crash-course/multi-
class-neural-networks/softmax

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,
Normalization

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Figure Source: https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Softmax (for Multiclass Classification)

• Generalization of sigmoid that converts the input
into a probability distribution that sums to 1:

• e.g.,

Group Discussion Questions
• How many model parameters must be learned for the network below?
• Assuming you apply a sigmoid function at the final layer with the output values

specified below, which label(s) will be classified as present versus not?
• What label will be classified if you instead apply a softmax function to the output

values?

0.86

-2.85

0.28

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Recall: What to Learn in Neural Network?

• Learn:
• weights connecting units
• bias for each unit

• e.g., 2 layer neural network:

• Algorithm decides how to use each
layer to produce the output; for this
reason, layers are called “hidden”

W11x1

x2 h2

o1

b1

h1
b3

W
12

W22

W 21

w 21

w
21

b2

1

1

1

Neural Network: How to Learn?

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: propagate “blame” for prediction errors throughout model
3. Update each weight using calculated gradients

Neural Network: How to Learn?

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: propagate “blame” for prediction errors throughout model
3. Update each weight using calculated gradients

Neural Network: How to Learn?

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network: How to Learn?

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: propagate “blame” for prediction errors throughout model
3. Update each weight using calculated gradients

• Key challenge: How to compute gradient for a multilayer network?
• Automatic differentiation: field of study on computing derivatives algorithmically
• Backpropagation: originated in the automatic differentiation field, and is a

special case of a techniques called “reverse mode accumulation”

History: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Neural Network Training: Backpropagation

1613

Human “Computers”

19
45

Fi
rs

t p
ro

gr
am

m
ab

le

m
ac

hi
ne

Tu
rin

g
Te

st

19
59

M
ac

hi
ne

 Le
ar

ni
ng

19
56 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

19
57

19
50

AI

19
62

Ea
rly

 1
80

0
Li

ne
ar

 re
gr

es
sio

n

Pe
rc

ep
tr

on

K-
ne

ar
es

t n
ei

gh
bo

rs

De
ci

sio
n

Tr
ee

s
Na

ïv
e

Ba
ye

s

SV
M

En
se

m
bl

e
le

ar
ne

rs

D. Rulhart, G. Hinton, and R. Williams, Learning Internal Representations by Error Propagation, 1986.

Key Innovation:
Backpropagation for

Training Neural Networks

• Goal: want parameters that
minimize “loss” function.

• “loss” function quantifies
dissatisfaction with model’s
results on the training data.

• What loss function to use?

Neural Network Training: Backpropagation

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network Training: Backpropagation

• (Predicted – Actual)?
• No. Sensitive to sign.

• |Predicted – Actual|?
• Poor. Discontinuity when

prediction is perfect.
• (Predicted – Actual)2?

• Yes. Differentiable
everywhere.

• And many other possible
functions …

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network Training: Backpropagation

• Key Observation: loss
function is a function of the
weights in the network

• Backpropagation used to
decide how much to blame
each “weight” for errors

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Neural Network Training: Backpropagation

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

• Error propagated backwards
• From output of network, compute

partial derivatives of error at the
output with respect to each model
parameter within the network.

• Gradient computed through
recursive use of chain rule.

• Goes through each layer in reverse
to measure the error contribution
from each connection

Neural Network Training: Backpropagation

• Backpropagation idea:

Ian Goodfellow, Yoshua Bengio, and Aaron Courville; Deep Learning, 2016.

Neural Network: Learn Model Parameters

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate error gradients backward
3. Update each weight using calculated error gradients

Recall: Gradient Descent Algorithms

• Approach: solve mathematical problems by updating estimates of the solution via
an iterative process to “optimize” a function

• e.g., minimize or maximize an objective function f(x) by altering x

• When minimizing the objective function, it also is often called interchangeably
the cost function, loss function, or error function.

Analogy
Hiking to the bottom of a mountain range…
blindfolded (or for a person who is blind)!

Start

End Point (Minimum)

Neural Network: Learn Model Parameters

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate error gradients backward
3. Update each weight using calculated error gradients

• After computing the gradients, we can update the weights by taking an
opposite step towards the gradient for each layer

Rule of thumb: set learning rate to 1/t where t is
number of iterations through the training set so far

Neural Network: How to Learn?

• Repeat until stopping criterion met:
1. Forward pass: propagate training data through network to make prediction
2. Backward pass: using predicted output, calculate gradients backward
3. Update each weight using calculated gradients

• What stopping criterion to use when training?
• Weight changes are incredibly small
• Percentage of misclassified example is below some threshold
• Finished a pre-specified number of epochs
• …

• Repeat until stopping
criterion met:

1. Forward pass:
propagate training
data through network
to make prediction

2. Backward pass: using
predicted output,
calculate gradients
backward

3. Update each weight
using calculated
gradients

Equation for calculating gradients depends on:

1) Network activation function

2) Loss function

Key Challenge: How to Compute Gradient?
Solution is Backpropagation

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Choose Neural Network Architecture

o6

Example from: Jiawei Han and Micheline Kamber; Data Mining.

Sigmoid Activation
Functionx1

x2

x3

Example: Choose Loss Function for Training

ok

Example from: Jiawei Han and Micheline Kamber; Data Mining.

Squared Error Function

x1

x2

x3

Example: Resolve How to Compute Gradient?
(Output Layer)

Example from: Jiawei Han and Micheline Kamber; Data Mining.

t is a constant value:

ok

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1
e = ?

Wj,k

Wj,k

Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :
Sigmoid activation function:

Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :

We can rewrite our function as follows:

Sigmoid activation function:

For efficiency, compute last

Example: Resolve How to Compute Gradient?
(Output Layer)
t is a constant value:

Using the following chain rule :
Sigmoid activation function:

Key Observation: Possible because activation function
and loss function are differentiable!!!

Example: Resolve How to Compute Gradient?
(Output Layer)

ok

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1
e = ?

Wj,k

Wj,k

Example: How to Compute Gradient?
(Hidden Layer)

Symmetry in how to solve for
parameters in hidden layers

ok

Wi,j

Wj,k

Wj,k

Wi,j

Wi,j

Wi,j

Wi,j

Wi,j

i = 1

i = 2

i = 3

j = 1

j = 2

k = 1

e = ?

e = ?

Example: Initialize Values (Weights, Biases)

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

o66

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

Example from: Jiawei Han and Micheline Kamber; Data Mining.

1

1

1x1

x2

x3

Example: Input Training Example

W1,4 = 0.21

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

0

1

t1 = 1

o6

Example from: Jiawei Han and Micheline Kamber; Data Mining.

1

1

1

Example: Step 1 – Forward Pass
• Repeat until stopping

criterion met:
1. Forward pass:

propagate training
data through network
to make prediction

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = ?

o6

Input to node 4:
i4 = (1 x 0.2 + 0 x 0.4 + 1 x -0.5) – 0.4
i4 = -0.7

Output of node 4 (sigmoid function):
o4 = sigmoid(-0.7)
o4 = 1/(1+e-(-0.7))
o4 = 0.332

1

1

11

0

1

Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o5 = ?

o6

Input to node 5:
i5 = (1 x -0.3 + 0 x 0.1 + 1 x 0.2) + 0.2
i5 = 0.1

Output of node 5 (sigmoid function):
o5 = sigmoid(0.1)
o5 = 1/(1+e-0.1)
o5 = 0.525

1

1

11

0

1

Example: Step 1 – Forward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = ?

o5 = 0.525

Input to node 6:
i6 = (0.332 x -0.3 + 0.1 x -0.2) + 0.1
i6 = -0.105

Output of node 6 (sigmoid function):
o6 = sigmoid(-0.105)
o6 = 1/(1+e-(-0.105))
o6 = 0.474

1

1

11

0

1

Example: Step 2 – Backward Pass
• Repeat until stopping

criterion met:
1. Forward pass:

propagate training
data through network
to make prediction

2. Backward pass: using
predicted output,
calculate gradients
backward

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = ?

1

1

11

0

1

Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = ?

Error at node 6:
e6 = (1-0.474) (0.474)(1-0.474)
e6 = 0.1311

1

1

11

0

1

Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

Error at node 5:
e5 = (0.1311)(-0.2)(0.525)(1-0.525)
e5 = -0.0065

o6 = 0.474

o5 = 0.525

e6 = 0.1311

e5 = ?

1

1

11

0

1

Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

Error at node 4:
e4 = (0.1311)(-0.3)(0.332)(1-0.332)
e4 = -0.0087

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = ?
e5 = -0.0065

1

1

11

0

1

Example: Step 2 – Backward Pass

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

6

4

5

b4 = -0.4

b5 = 0.2

b6 = 0.1

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

1

1

11

0

1

• Repeat until stopping
criterion met:

1. Forward pass:
propagate training
data through network
to make prediction

2. Backward pass: using
predicted output,
calculate gradients
backward

3. Update each weight
using calculated
gradients

Example: Step 3 – Update Weights

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Example: Step 3 – Update Weights

W1,4 = ?

W4,6 = ?

W5,6 = ?

W1,5 = ?

W2,4 = ?

W2,5 = ?

W3,4 = ?

W3,5 = ?

6

4

5

b4 = ?

b5 = ?

b6 = ?

t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w4,6 = -0.3 + (0.9)(0.1311)(0.332)
w4,6 = -0.261

W1,4 = 0.2

W4,6 = -0.3

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

Add here for efficiency (removed from earlier equation)

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w5,6 = -0.2 + (0.9)(0.1311)(0.525)
w5,6 = -0.138

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.2

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New bias (learning rate = 0.9):
b6 = 0.1 + (0.9)(0.1311)
b6 = 0.218

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.1

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w1,4 = 0.2 + (0.9)(-0.0087)(1)
w1,4 = 0.192

W1,4 = 0.2

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w1,5 = -0.3 + (0.9)(-0.0065)(1)
w1,5 = -0.306

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.3

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w2,4 = 0.4 + (0.9)(-0.0087)(0)
w2,4 = 0.4

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w2,5 = 0.1 + (0.9)(-0.0065)(0)
w2,5 = 0.1

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w2,5 = 0.1 + (0.9)(-0.0065)(0)
w2,5 = 0.1

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w3,4 = -0.5 + (0.9)(-0.0087)(1)
w3,4 = -0.508

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.5

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New weights (learning rate = 0.9):
w3,5 = 0.2 + (0.9)(-0.0065)(1)
w3,5 = 01.94

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.2

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New bias (learning rate = 0.9):
b5 = 0.2 + (0.9)(-0.0065)
b5 = 0.194

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Example: Step 3 – Update Weights

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

New bias (learning rate = 0.9):
b4 = -0.4 + (0.9)(-0.0087)
b4 = -0.408

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.4

b5 = 0.2

b6 = 0.218

1

1

11

0

1

Repeat Steps 1-3 With New Examples

6

4

5
t1 = 1

o4 = 0.332

o6 = 0.474

o5 = 0.525

e6 = 0.1311e4 = -0.0087
e5 = -0.0065

W1,4 = 0.192

W4,6 = -0.261

W5,6 = -0.138

W1,5 = -0.306

W2,4 = 0.4

W2,5 = 0.1

W3,4 = -0.508

W3,5 = 0.194

b4 = -0.408

b5 = 0.2

b6 = 0.218

1

1

1x1

x2

x3

Repeat Steps 1-3 With New Examples
• Repeat until stopping

criterion met:
1. Forward pass:

propagate training
data through network
to make prediction

2. Backward pass: using
predicted output,
calculate gradients
backward

3. Update each weight
using calculated
gradients

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

Training Challenge: Train Faster!!!

• Can take hours, days, weeks, months, or more to train millions of parameters…

Weight Updates: How to Speed Up Training?

• Demo at http://cs231n.github.io/neural-networks-3/#update

Train Faster: How to Update Using Gradient?

• Vanilla Approach:

Figure from: https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

Recall: steps get smaller
as gradient gets smaller

http://cs231n.github.io/neural-networks-3/#update

Train Faster: How to Update Using Gradient?

• Momentum optimization:
• Analogy: roll a ball down a hill and it will pick up momentum

Figure from: https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5

Train Faster: How to Update Using Gradient?

• Momentum optimization:
• Analogy: roll a ball down a hill and it will pick up momentum

• What are advantages and disadvantages?
• Can roll past local minima J
• It may roll past optimum and oscillate around it L
• Another hyperparameter to tune L http://cs231n.github.io/neural-networks-3/#update

Values range from 0 to 1 (larger values mean greater friction)
Gradient is used for acceleration rather than speed

Train Faster: How to Update Using Gradient?

• Adapt learning rate per-parameter
• e.g., AdaGrad: decays faster when dimensions are steeper

• e.g., RMSprop:

• e.g., Adam:

http://cs231n.github.io/neural-networks-3/#update

Train Faster: How to Update Learning Rate?

• Step decay:
• Reduce the learning rate by some factor every few epochs.

• Exponential decay

• 1/t decay

http://cs231n.github.io/neural-networks-3/#update

Monitor Loss During Training

• What should happen to the loss function value during training?

Image credit: http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/10_nn1.pdf

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

Recall: Non-Linear Activation Functions

Python Machine Learning; Raschka & Mirjalili

Activation
Function

?

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

Non-Linear Activation Functions

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/10_nn1.pdf

Sigmoid Tanh ReLU

Non-Linear Activation Functions

Figure Credit: https://adventuresinmachinelearning.com/vanishing-gradient-problem-tensorflow/

e.g., ReLU
What is a limitation of ReLU?

- Neurons can die (they only
output 0 when the weighted
sum of its input is negative)

https://adventuresinmachinelearning.com/vanishing-gradient-problem-tensorflow/

Non-Linear Activation Functions

Use activation functions that don’t have small derivative values

Figure Credit: https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

e.g., Variants of ReLU e.g., Exponential Linear

Clevert et al. Fast and Accurate deep network learning by exponential linear units. 2015

https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

• A loss function quantifies the
dissatisfaction with a model’s
results on the training data.

• What loss function to use?

Recall: Loss Functions

Figure from: Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
Jeffrey Mark Siskind; Automatic Differentiation in Machine Learning: a Survey; 2018

• Mean squared error/L2 loss/
quadratic loss

• Mean absolute error/L1 loss
• Huber loss
• Cross entropy loss/logarithmic

loss
• KL divergence loss
• Hinge loss
• Adversarial loss
• And many more options…

Loss Functions

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23

Today’s Topics

• History of Neural Networks

• Neural Network Architecture – Hidden Layers and Solving XOR Problem

• Neural Network Architecture – Output Units

• Training a Neural Network – Optimization

• Training a Neural Network – Activation Functions & Loss Functions

• Lab

