Ensemble Learning

Danna Gurari

University of Texas at Austin Spring 2020

Review

- Last week:
 - Evaluating Machine Learning Models Using Cross-Validation
 - Naïve Bayes
 - Support Vector Machines
- Assignments (Canvas):
 - Problem set 4 due yesterday
 - Lab assignment 2 due next week
- Next week: class will be taught by Samreen Anjum
- Questions?

Today's Topics

One-vs-all multiclass classification

• Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

• Lab

Today's Topics

One-vs-all multiclass classification

• Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

Lab

Recall: Binary vs Multiclass Classification

Binary: distinguish 2 classes

Multiclass: distinguish 3+ classes

Figure Source: http://mlwiki.org/index.php/One-vs-All_Classification

Recall: Binary vs Multiclass Classification

Binary: distinguish 2 classes **Multiclass**: distinguish 3+ classes

Perceptron

Adaline

Support Vector Machine

Nearest Neighbor

Decision Tree

Naïve Bayes

One-vs-All (aka, One-vs-Rest): Applying Binary Classification Methods for Multiclass Classification

• Given 'N' classes, train 'N' different classifiers: a single classifier trained per class, with the samples of that class as positive samples and all other samples as negatives; e.g.,

One-vs-All (aka, One-vs-Rest): Limitation

• Often leads to unbalanced distributions during learning; i.e., when the set of negatives is much larger than the set of positives

One-vs-All (aka, One-vs-Rest): Class Assignment

• (Imperfect) Approach: use majority vote from N classifiers; since multiple classes can be predicted for a sample, this requires the classifiers to produce a real-valued confidence score for its decision.

Today's Topics

One-vs-all multiclass classification

Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

• Lab

Classifier Confidence: Beyond Classification

Indicate both the predicted class and uncertainty about the choice

- When and why might you want to know about the uncertainty?
 - e.g., weather forecast: 25% chance it will rain today
 - e.g., medical treatment: when unconfident, start a patient on a drug at a lower dose and decide later whether to change the medication or dose

Classifier Confidence: How to Measure for K-Nearest Neighbors?

• Proportion of neighbors with label y; e.g.,

When K=3:

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Classifier Confidence: How to Measure for Decision Trees?

Proportion of training samples with label y in the leaf where for the test sample;
 e.g.,

Classifier Confidence: How to Measure for Naïve Bayes?

Conditional probability P (Y|X) for the most probable class

Classifier Confidence: How to Measure for Support Vector Machines?

• Distance to the hyperplane: e.g.,

Classifier Confidence vs Probability

Classifiers can make mistakes in estimating their confidence level

• External calibration procedures can address this issue (e.g., using calibration curves/reliability diagrams)

Today's Topics

One-vs-all multiclass classification

Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

• Lab

Classification from a Classifier's Confidence

 Observation: A threshold must be chosen to define the point at which the example belongs to a class or not

- Motivation: how to choose the threshold?
 - Default is 0.5
 - Yet, it can tuned to avoid different types of errors

Review: Confusion Matrix for Binary Classification

Predicted class

Receiver Operating Characteristic (ROC) curve

Predicted class

Summarizes performance based on the positive class

- A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Receiver Operating Characteristic (ROC) curve

To create, vary prediction threshold and compute TPR and FPR for each threshold

Summarizes performance based on the positive class

- A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Receiver Operating Characteristic (ROC) curve

What is the coordinate for a perfect predictor?

Summarizes performance based on the positive class

- A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

ROC Curve: Area Under Curve (AUC)

Which of the first three methods performs best overall?

Summarizes performance based on the positive class

- A positive prediction is either correct (TP) or not (FP)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Python Machine Learning; Raschkka & Mirjalili

ROC Curve: Multiclass Classification

• Plot curve per class:

https://stackoverflow.com/questions/56090541/how-to-plot-precision-and-recall-of-multiclass-classifier

Precision-Recall (PR) Curve

Predicted class

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Precision-Recall (PR) Curve

To create, vary prediction threshold and compute precision and recall for each threshold

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

Precision-Recall (PR) Curve

What is the coordinate for a perfect predictor?

Summarizes performance based only on the positive class (ignores true negatives):

$$PRE = \frac{TP}{TP + FP}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

PR Curve: Area Under Curve (AUC)

Which classifier is the best?

PR Curve: Multiclass Classification

• Plot curve per class:

https://stackoverflow.com/questions/56090541/how-to-plot-precision-and-recall-of-multiclass-classifier

Group Discussion: Evaluation Curves

- 1. Assume you are building a classifier for these applications:
 - Detecting offensive content online
 - Medical diagnoses
 - Detecting shoplifters
 - Deciding whether a person is guilty of a crime

What classifier threshold would you choose for each application and why?

- 2. When would you choose to evaluate with a PR curve versus a ROC curve?
- Each student should submit a response in a Google Form (tracks attendance)
 - What is the area under the ROC and PR curves for a perfect classifier?

Assume the following thresholds were used to create the curve: 0, 0.25, 0.5, 0.75, 1.

Today's Topics

One-vs-all multiclass classification

Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

Lab

Idea: How Many Predictors to Use?

More than 1: Ensemble

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - n classifiers for binary classification task
 - Each classifier has same error rate ${m \mathcal{E}}$
 - Probability mass function indicates the probability of error from an ensemble:

Number of classifiers
$$P(y \ge k) = \sum_{k=0}^{n} \binom{n}{k} \varepsilon^{k} \left(1 + \varepsilon^{n-k} \right) = \varepsilon_{ensemble}$$
Subsets from set of size n

$$11. \quad \varepsilon = 0.25; \quad k = 6; \quad \text{probability of error is } \sim 0.034 \text{ which is much the model}$$

ways to choose k subsets from set of size \hat{n} • e.g., n = 11, $\mathcal{E} = 0.25$; k = 6: probability of error is ~0.034 which is much lower than probability of error from a single algorithm (0.25)

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - n classifiers for binary classification task
 - Each classifier has same error rate &
 - * Pro How to Get Diverse Classifiers? *****

$$P(y \ge k) = \sum_{k=0}^{n} \binom{n}{k} \varepsilon^{k} (1 - \varepsilon)^{n-k} = \varepsilon_{ensemble}$$

• e.g., n = 11, $\mathcal{E} = 0.25$; k = 6: probability of error is ~0.034 which is much lower than probability of error from a single algorithm (0.25)

Why Choose Ensemble Instead of an Algorithm?

- Reduces probability for making a wrong prediction, assuming:
 - Classifiers are independent (not true in practice!)
- Suppose:
 - 1. Use different algorithms
 - 2. Use different features
 - 2. Use different training data

How to Predict with an Ensemble?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Resample data to train algorithm on different random subsets
- Boosting
 - Reweight data to train algorithms to specialize on different "hard" examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Historical Context of ML Models

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Majority Voting

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Majority Voting

Majority Voting: Binary Task

e.g., "Is it sunny today?"

Majority Voting: "Soft" (not "Hard")

Majority Voting: Soft Voting on Binary Task

e.g., "Is it sunny today?"

"Yes" (210/4 = 52.5% Yes)

Plurality Voting: Non-Binary Task

e.g., "What object is in the image?"

"Cat"

Majority Voting: Regression

e.g., "Is it sunny today?"

52.5% (average prediction)

Majority Voting: Example of Decision Boundary

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Bagging

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Training

• Build ensemble from "bootstrap samples" drawn with replacement

• e.g., Sample Bagging Bagging indices round 1 round 2 Duplicate data can occur for training Some examples 5 missing from training data; 6 e.g., round 1 Each classifier trained on different subset of data

Breiman, Bagging Predictors, 1994. Ho, Random Decision Forests, 1995.

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Training

• Build ensemble from "bootstrap samples" drawn with replacement

• e.g.,

Class Demo:

Pick a numberfrom the bag

Breiman, Bagging Predictors, 1994. Ho, Random Decision Forests, 1995.

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

Bagging: Predicting

Prediction Model

Prediction Model

Prediction Model

Prediction Model

- Predict as done for "majority voting"
 - e.g., "hard" voting
 - e.g., "soft" voting
 - e.g., averaging values for regression

Bagging: Random Forest

• Build ensemble from "bootstrap samples" drawn with replacement

• e.g.,

Sample indices	Bagging round 1	Bagging round 2	•••
1	2	7	
2	2	3	
3	1	2	
4	3	1	
5	7	1	
6	2	7	
7	4	7	
	C_1	C_2	C_m

Fit decision trees by also selecting random feature subsets

Breiman, Bagging Predictors, 1994. Ho, Random Decision Forests, 1995.

Figure Credit: Raschka & Mirjalili, Python Machine Learning.

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Boosting

 Key idea: sequentially train predictors that each try to correctly predict examples that were hard for previous predictors

Original Algorithm:

- Train classifier 1: use random subset of examples without replacement
- Train classifier 2: use a second random subset of examples without replacement and add 50% of examples misclassified by classifier 1
- Train classifier 3: use examples that classifiers 1 and 2 disagree on
- Predict using majority vote from 3 classifiers

Assign equal weights to all examples

- Assign larger weights to previous misclassifications
- Assign smaller weights to previous correct classifications
- Assign larger weights to training samples C₁ and C₂ disagree on
- Assign smaller weights to previous correct classifications

Predict with weighted majority vote

Freund and Schapire, Experiments with a New Boosting Algorithm, 1996.

Raschka and Mirjalili; Python Machine Learning

e.g., 1d dataset

Sample indices	х	У	Weights	ŷ(x <= 3.0)?	Correct?	Updated weights
1	1.0	1	0.1	1	Yes	0.072
2	2.0	1	0.1	1	Yes	0.072
3	3.0	1	0.1	1	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	1	0.1	-1	No	0.167
8	8.0	1	0.1	-1	No	0.167
9	9.0	1	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

Round 2: Jpdate weights

Round 1: training data, weights, predictions

e.g., 1d dataset

1. Compute error rate (sum misclassified examples' weights):

$$\varepsilon = 0.1 \times 0 + 0.1 \times 1 + 0.1 \times 1 + 0.1 \times 1 + 0.1 \times 0 + 0.1 \times 1 + 0.1 \times 1 + 0.1 \times 0 = \frac{3}{10} = 0.3$$

- 2. Compute coefficient used to update weights and make majority vote prediction: $(1-\varepsilon)$
- majority vote prediction: 3. Update weight vector: $\alpha_j = 0.5 \log \left(\frac{1 - \varepsilon}{\varepsilon} \right) \approx 0.424$ $w := w \times \exp \left(-\alpha_j \times \hat{y} \times y \right)$
 - Correct predictions will decrease weight and vice versa

$$0.1 \times \exp(-0.424 \times 1 \times 1) \approx 0.065$$
 $0.1 \times \exp(-0.424 \times (-1) \times (1)) \approx 0.153$

4. Normalize weights to sum to 1: $\sum_{i} w_{i} = 7 \times 0.065 + 3 \times 0.153 = 0.914$ $w := \frac{w}{\sum_{i} w}$

Correct?	Updated weights	
Yes	0.072	0.065/0.914
Yes	0.072	
No	0.167	0.153/0.914
No	0.167	
No	0.167	
Yes	0.072	

Raschka and Mirjalili; Python Machine Learning

To predict, use α calculated for each classifier as its weight when voting with all trained classifiers.

Idea: value the prediction of each classifier based on the accuracies they had on the training dataset.

How to Predict with an Ensemble of Algorithms?

- Majority Voting
 - Return most popular prediction from multiple prediction algorithms
- Bootstrap Aggregation, aka Bagging
 - Train algorithm repeatedly on different random subsets of the training set
- Boosting
 - Train algorithms that each specialize on different "hard" training examples
- Stacking
 - Train a model that learns how to aggregate classifiers' predictions

Stacked Generalization, aka Stacking

 Train meta-learner to learn the optimal weighting of each classifiers' predictions for making the final prediction

• Algorithm:

- 1. Split dataset into three disjoint sets.
- 2. Train several base learners on the first partition.
- 3. Test the base learners on the second partition and third partition.
- 4. Train meta-learner on second partition using classifiers' predictions as features
- 5. Evaluate meta-learner on third prediction using classifiers' predictions as features

David, H. Wolpert, Stacked Generalization, 1992.

Ensemble Learner Won Netflix Prize "Challenge"

- In 2009 challenge, winning team won \$1 million using ensemble approach:
 - https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
 - Dataset: 5-star ratings on 17770 movies from 480189 "anonymous" users collected by Netflix over ~7 years. In total, the number of ratings is 100,480,507.

- Netflix did not use ensemble recommendation system. Why?
 - "We evaluated some of the new methods offline but the additional accuracy gains that we measured did not seem to justify the engineering effort needed to bring them into a production environment" - https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
 - Computationally slow and complex from using "sequential" training of learners

Today's Topics

One-vs-all multiclass classification

• Classifier confidence

• Evaluation: ROC and PR-curves

Ensemble learning

• Lab