Nearest Neighbor, Decision Tree

Danna Gurari

University of Texas at Austin Spring 2020

Review

- Last week:
 - Binary classification applications
 - Evaluating classification models
 - Biological neurons: inspiration
 - Artificial neurons: Perceptron & Adaline
 - Gradient descent
- Assignments (Canvas)
 - Lab assignment due yesterday
 - Problem set 3 due next week
- Questions?

Today's Topics

- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

Today's Topics

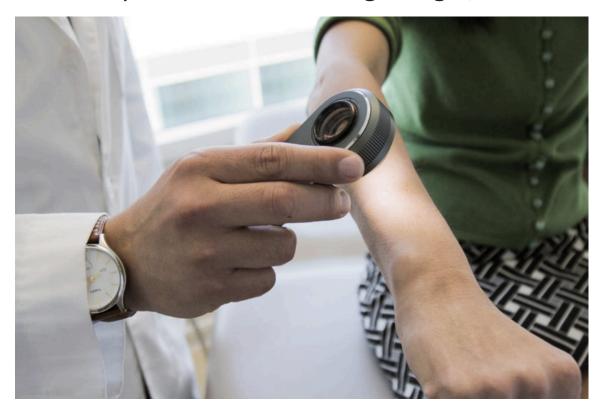
- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

Today's Focus: Multiclass Classification

Predict 3+ classes

Multiclass Classification: Cancer Diagnosis

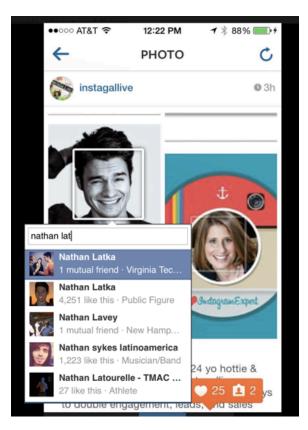
Doctor-level performance in recognizing 2,032 diseases



https://www.nature.com/articles/nature21056

https://news.stanford.edu/2017/01/25/artificial-intelligence-used-identify-skin-cancer/

Multiclass Classification: Face Recognition

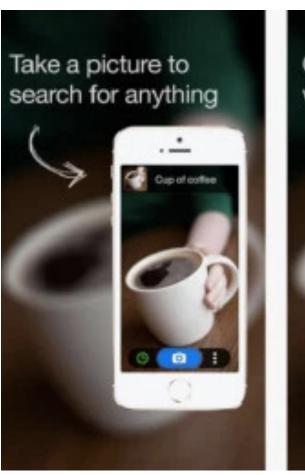


Social media

Visual assistance for people with vision impairments

Security https://www.anyvision.co/

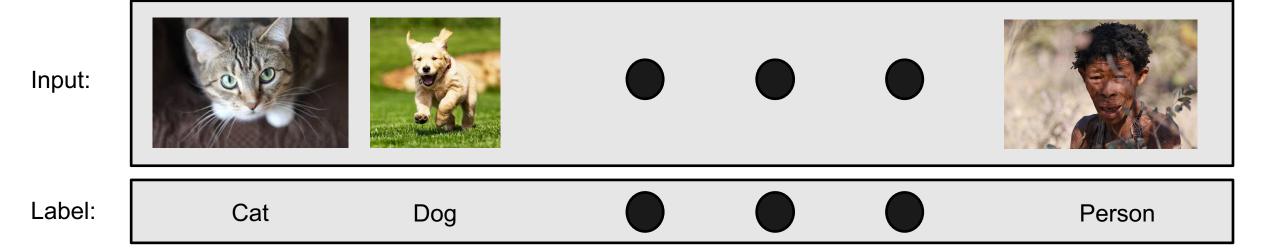
Multiclass Classification: Shopping



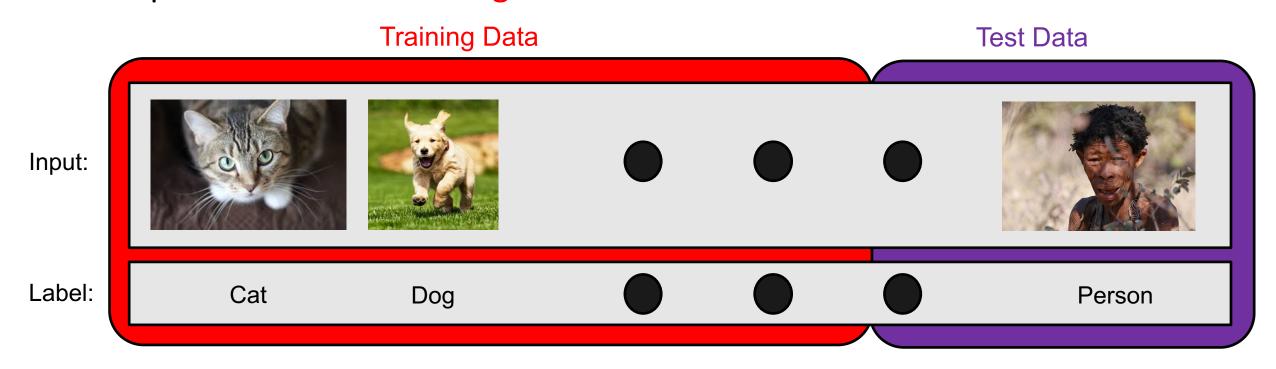
Camfind (https://venturebeat.com/2014/09/24/camfind-app-brings-accurate-visual-search-to-google-glass-exclusive/)

Multiclass Classification: Song Recognition

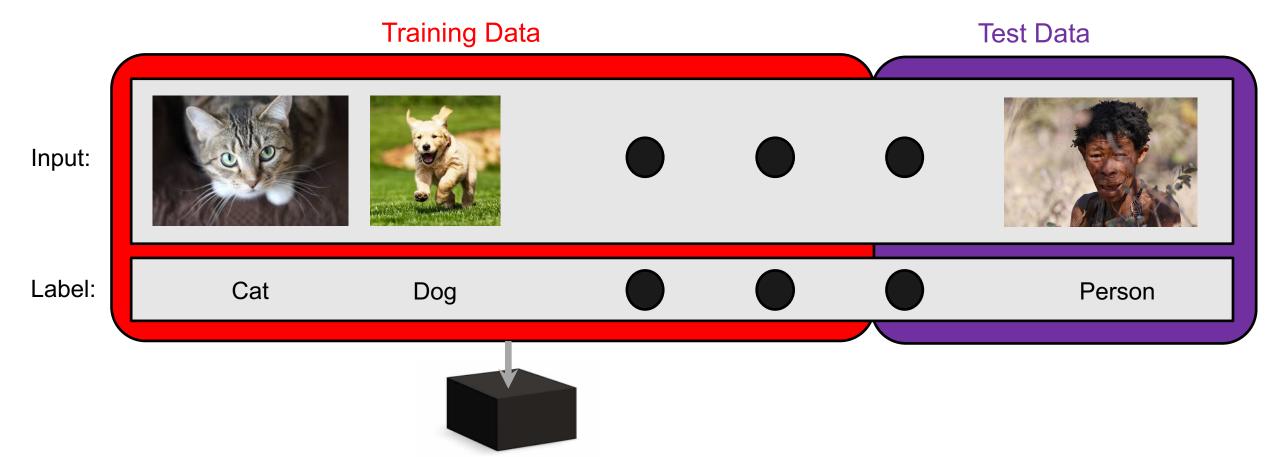
https://gbksoft.com/blog/how-to-make-a-shazam-like-app/

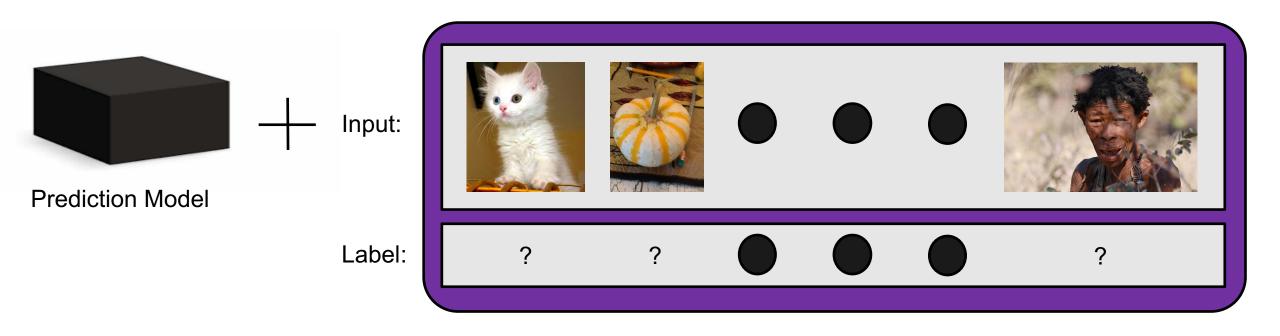


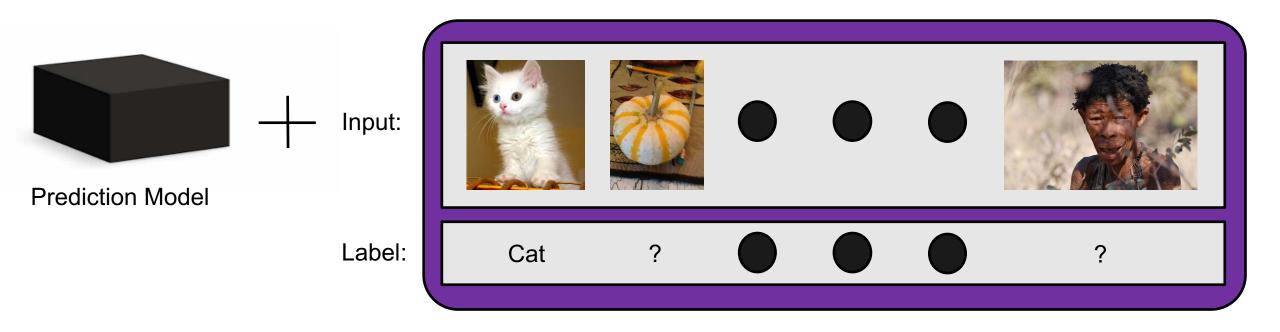
1. Split data into a "training set" and "test set"

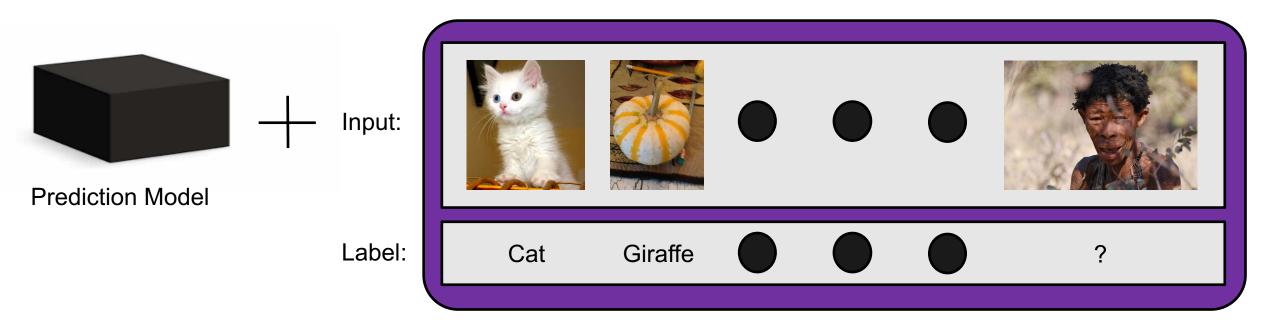


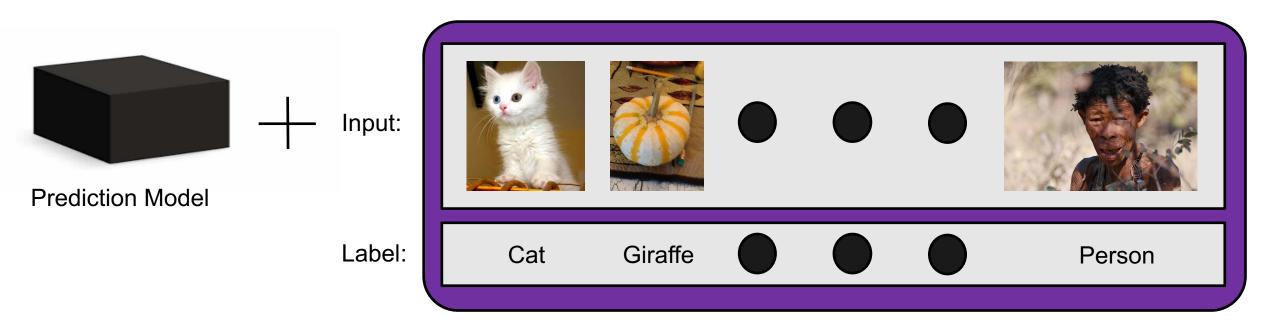
2. Train model on "training set" to try to minimize prediction error on it

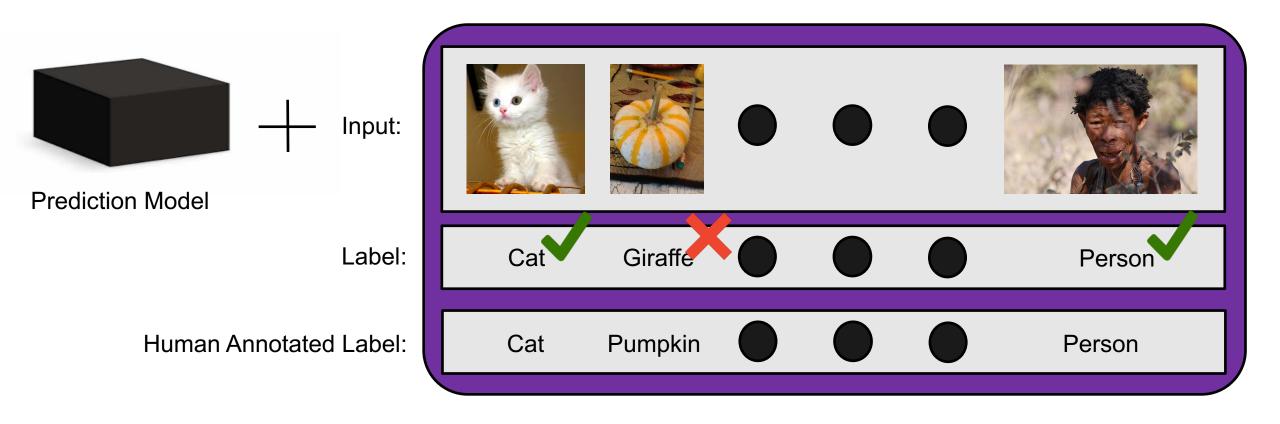












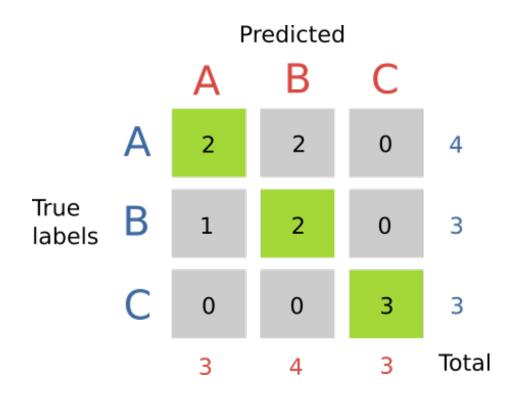
Evaluation Methods

• Confusion matrix; e.g.,

Accuracy: percentage correct

• Precision:
$$\frac{TP}{TP+FP}$$

• Recall:
$$\frac{TP}{TP + FN}$$

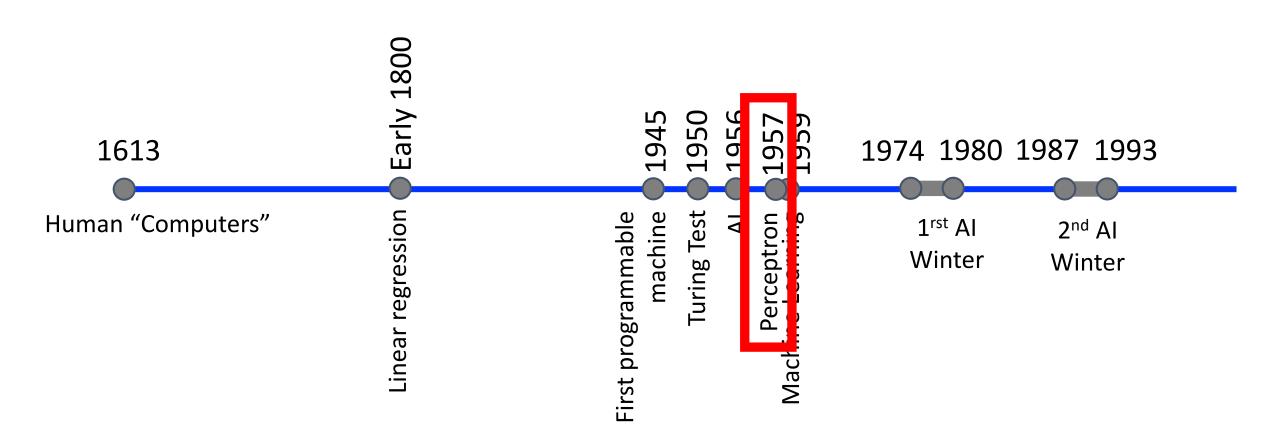


http://gabrielelanaro.github.io/blog/2016/0 2/03/multiclass-evaluation-measures.html

Today's Topics

- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

Recall: Historical Context of ML Models



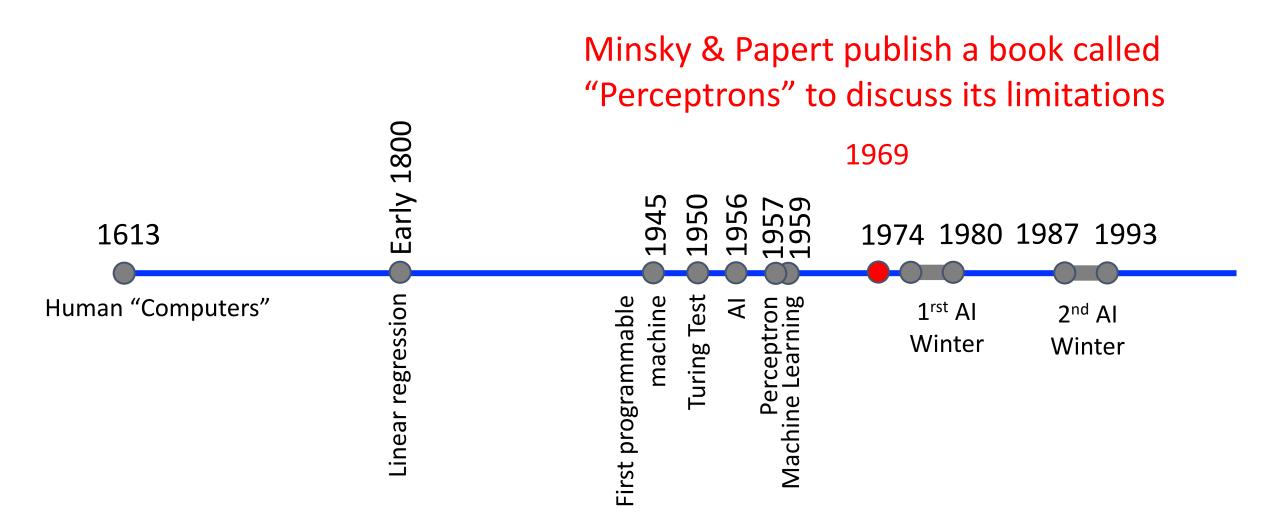
Recall: Vision for Perceptron

Frank Rosenblatt (Psychologist)

"[The perceptron is] the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... [It] is expected to be finished in about a year at a cost of \$100,000."

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

"Perceptrons" Book: Instigator for "Al Winter"



- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	?
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X_1	X ₂	x ₁ XOR x ₂
0	0	?
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	?
1	0	?
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	?
1	1	?

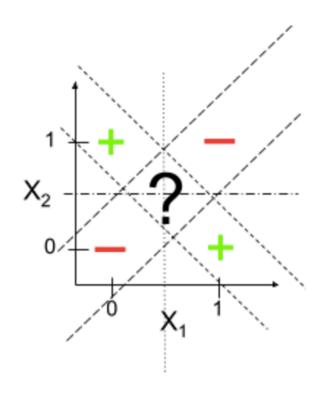
- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	?

- Input: two binary values x₁ and x₂
- Output:
 - 1, when exactly one input equals 1
 - 0, otherwise

X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	1

How to separate 1s from 0s with a perceptron (linear function)?



X ₁	X ₂	x ₁ XOR x ₂
0	0	0
0	1	1
1	0	1
1	1	1

Frank Rosenblatt (Psychologist)

"[The perceptron is] the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its

How can a machine be "conscious" when it can't solve the XOR problem?

navy-device-learns-by-doing-psychologist-shows-embryo-of.html

How to Overcome Limitation?

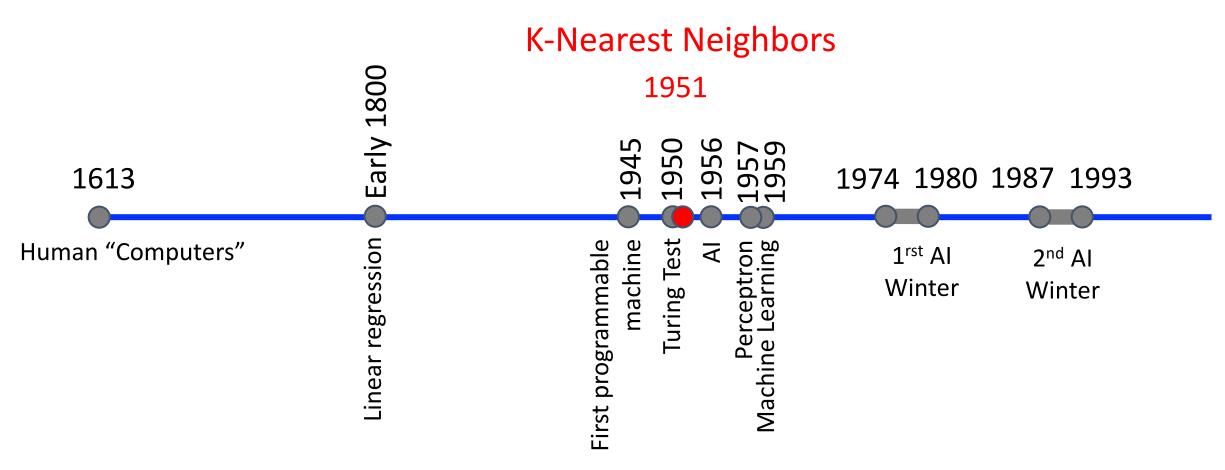
Non-linear models: e.g.,

- Linear regression: perform non-linear transformation of input features
- K-nearest neighbors
- Decision trees
- And many more to follow...

Today's Topics

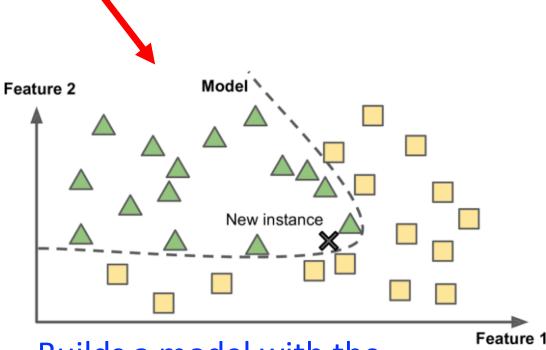
- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric model
- Lab

Historical Context of ML Models



Instance-Based vs Model-Based Learning

Memorizes examples and uses a similarity measure to those examples to make predictions.



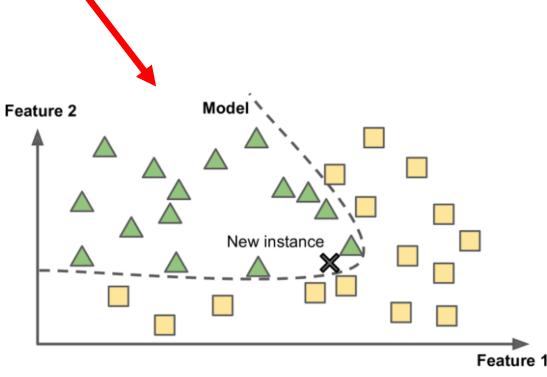
Builds a model with the examples and uses the model to make predictions.

What is the difference between these learning styles?

Figure Source: Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

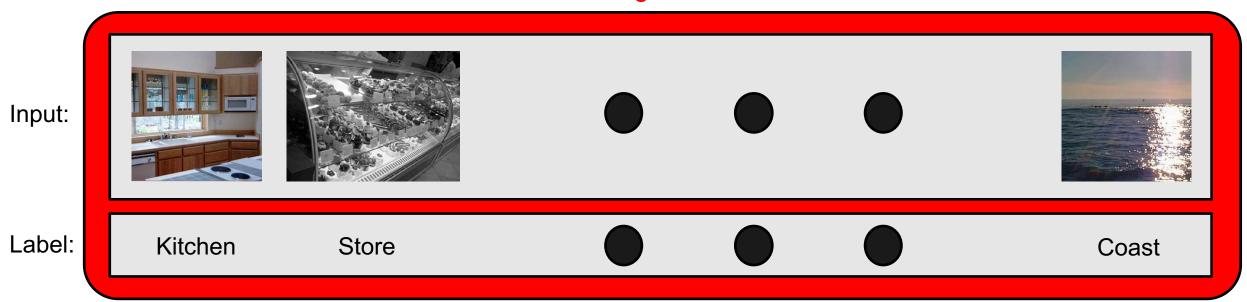
Instance-Based vs Model-Based Learning

Memorizes examples and uses a similarity measure to those examples to make predictions.



e.g., Predict What Scene The Image Shows

1. Create Large Database



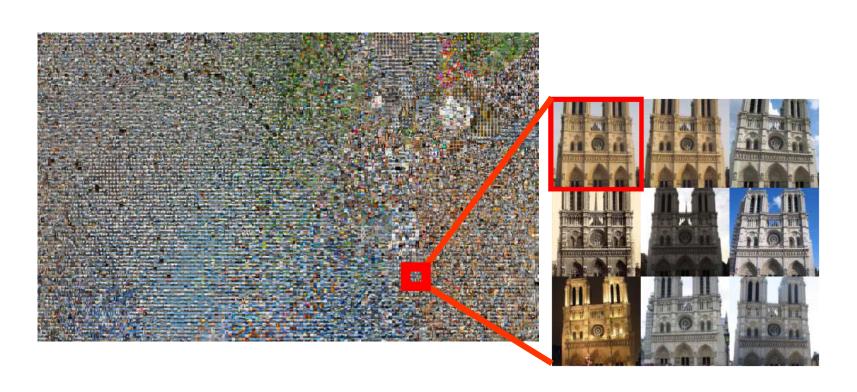
2. Organize Database so Visually Similar Examples Neighbor Each Other

3. Predict Class Using Label of Most Similar Example(s) in the Database

Input:

Label:

3. Predict Class Using Label of Most Similar Example(s) in the Database



Input:

Label: Cathedral

3. Predict Class Using Label of Most Similar Example(s) in the Database

Label:

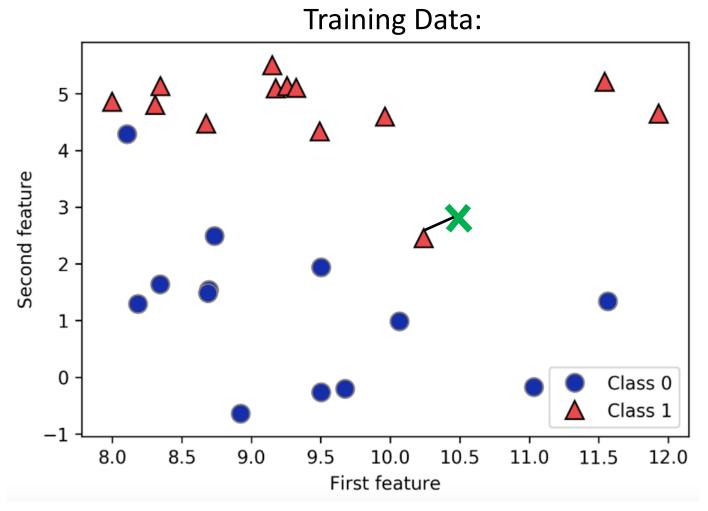
3. Predict Class Using Label of Most Similar Example(s) in the Database

Input:

Label:

Highway 💙

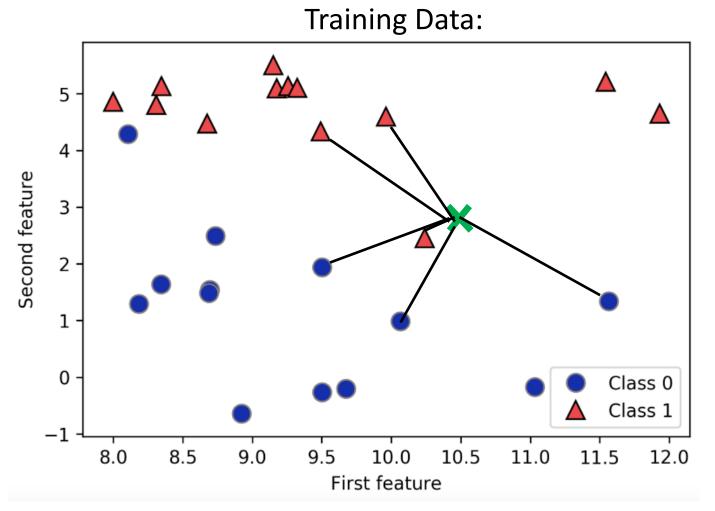
K-Nearest Neighbor Classification



Novel Examples:

- Given:
 - $x = \{10.5, 3\}$
- Predict:
 - When k = 1:

K-Nearest Neighbor Classification



Novel Examples:

- Given:
 - $x = \{10.5, 3\}$
- Predict:
 - When k = 1:
 - Class 1
 - When k = **6**:
 - How to avoid ties?
 - Set "k" to odd value for binary problems
 - Prefer "closer" neighbors

How to measure distance between a novel example and test example?

Commonly use, Minkowski distance:

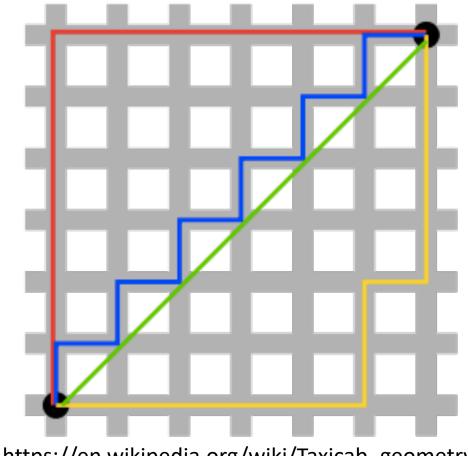
$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{1/p}$$

• When p = 2, Euclidean distance:

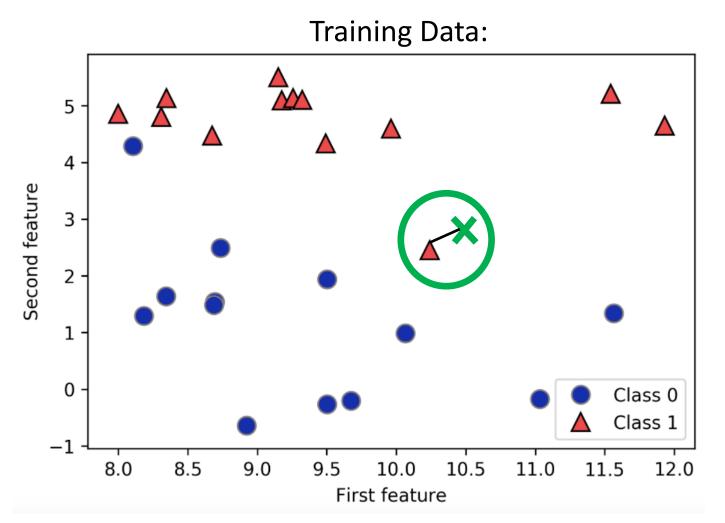
$$=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

• When p = 1, Manhattan distance:

$$=\sum_{i=1}^n |x_i-y_i|$$



https://en.wikipedia.org/wiki/Taxicab_geometry



Euclidean Distance

- Given:
 - $x = \{10.5, 3\}$
- k =1:

$$=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

$$dist = \sqrt{(10.5 - 10.1)^2 + (3 - 2.3)^2}$$

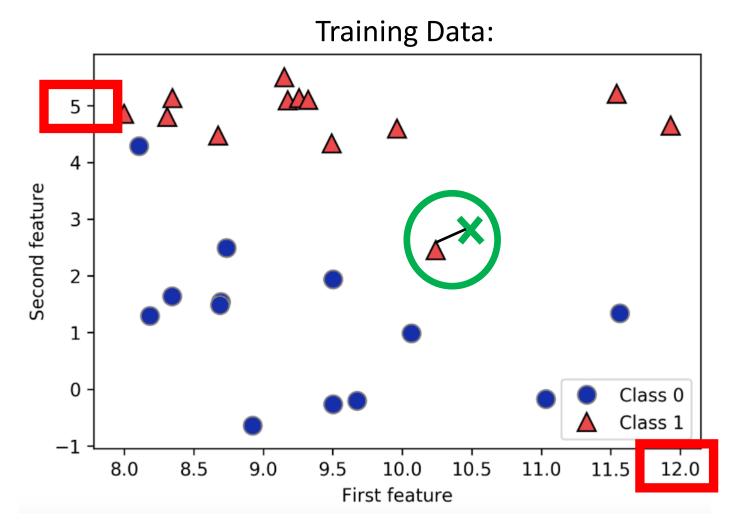
$$dist = \sqrt{0.4^2 + 0.7^2}$$

$$dist = \sqrt{0.16 + 0.49}$$

$$dist = \sqrt{0.65}$$

$$dist = 0.81$$

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb



Euclidean Distance

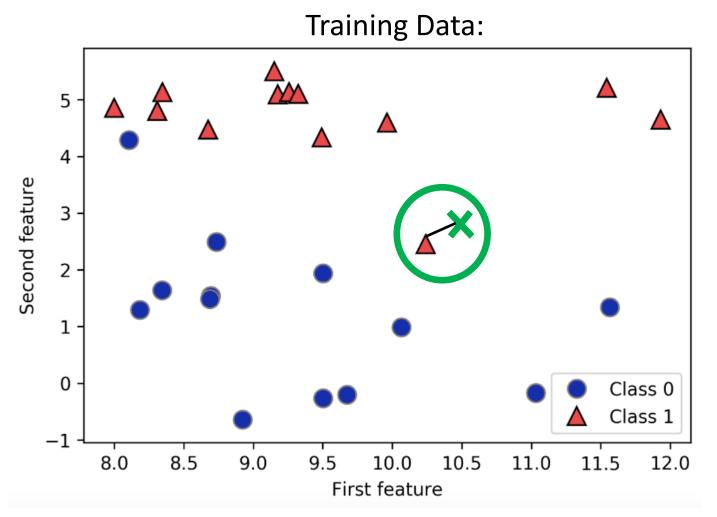
• Given:

•
$$x = \{10.5, 3\}$$

• k =1:

$$=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

Note: $\sqrt{(10.5-10.1)^2+(3-2.3)^2}$ Note: \sqrt{Nay} want to \sqrt{Nay} want to scale the data to the \sqrt{Na} same range first



Manhattan Distance

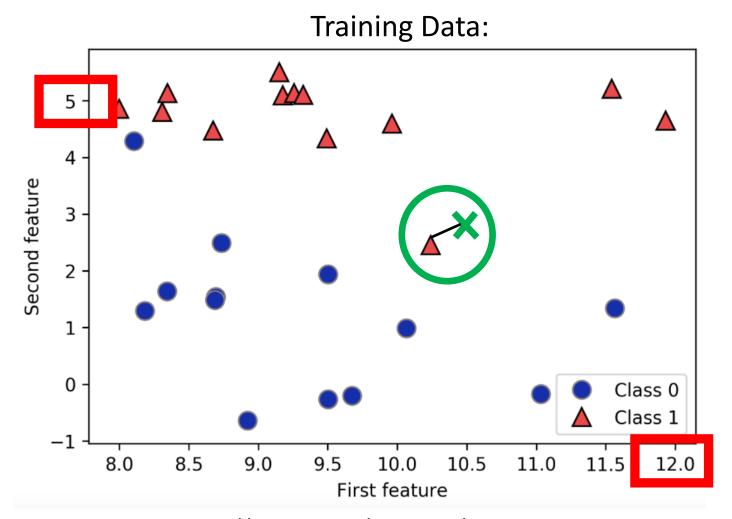
- Given:
 - $x = \{10.5, 3\}$
- k =1:

$$=\sum_{i=1}^n |x_i-y_i|$$

$$dist = |10.5 - 10.1| + |3 - 2.3|$$

 $dist = 0.4 + 0.7$
 $dist = 1.1$

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb



Manhattan Distance

Given:

•
$$x = \{10.5, 3\}$$

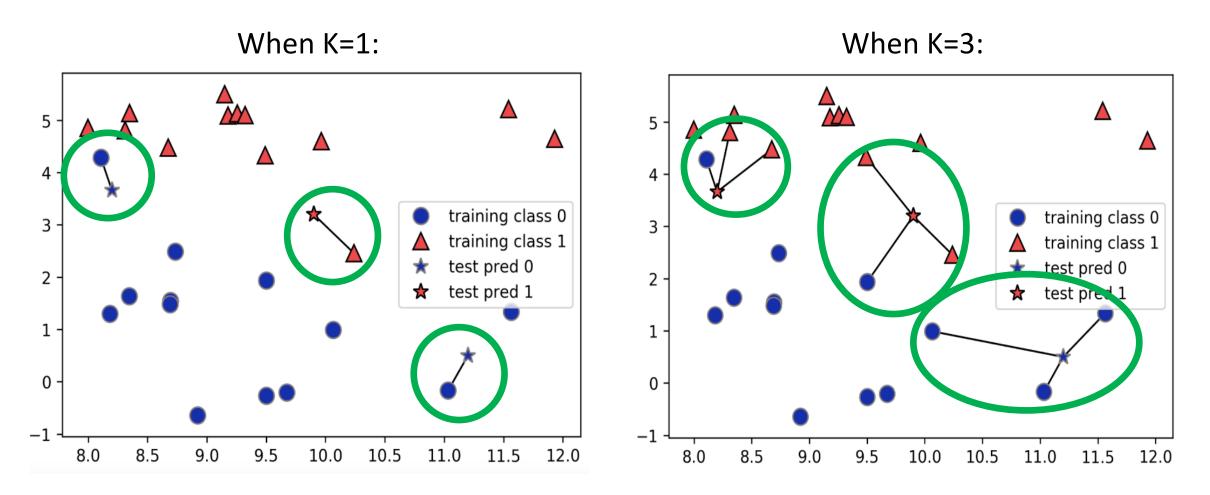
• k =1:

$$=\sum_{i=1}^n |x_i-y_i|$$

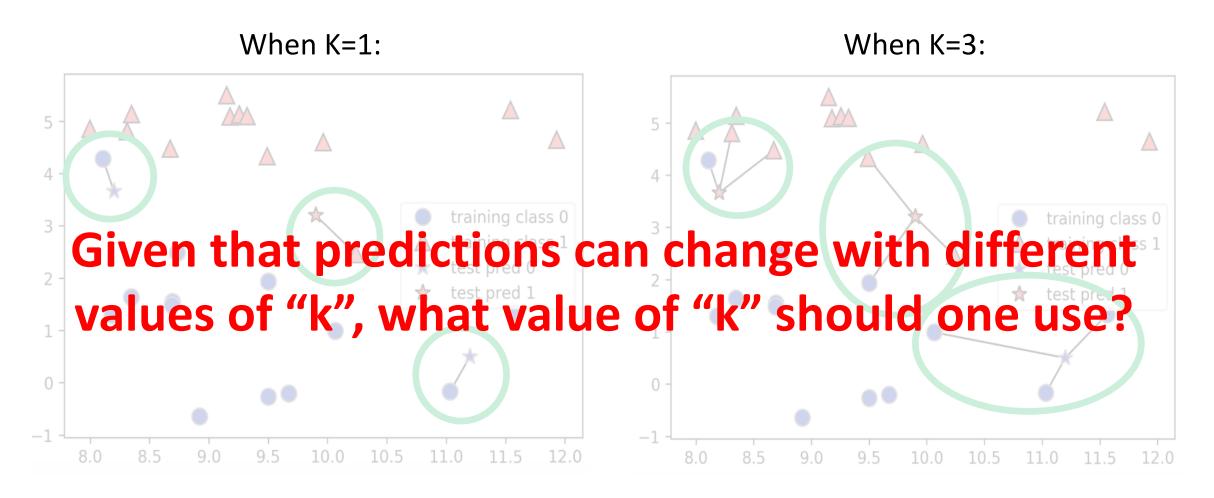
Note: May want to scale the data to the same range first

How to measure distance between a novel example and test example?

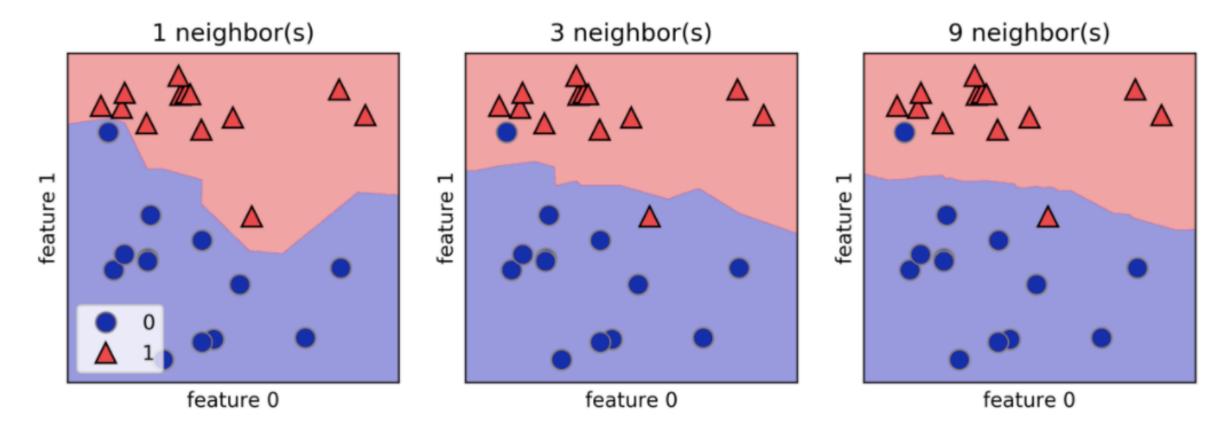
- For categorical data:
 - e.g., Train = blue
 - e.g., Test = blue; identical values so assign distance 0
 - e.g., Test = white; different values so assign distance 1



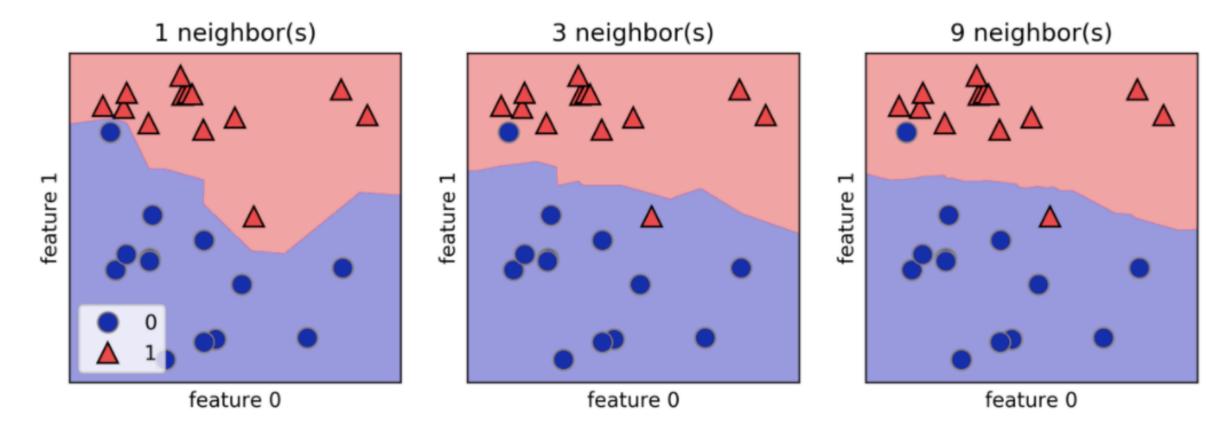
https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb



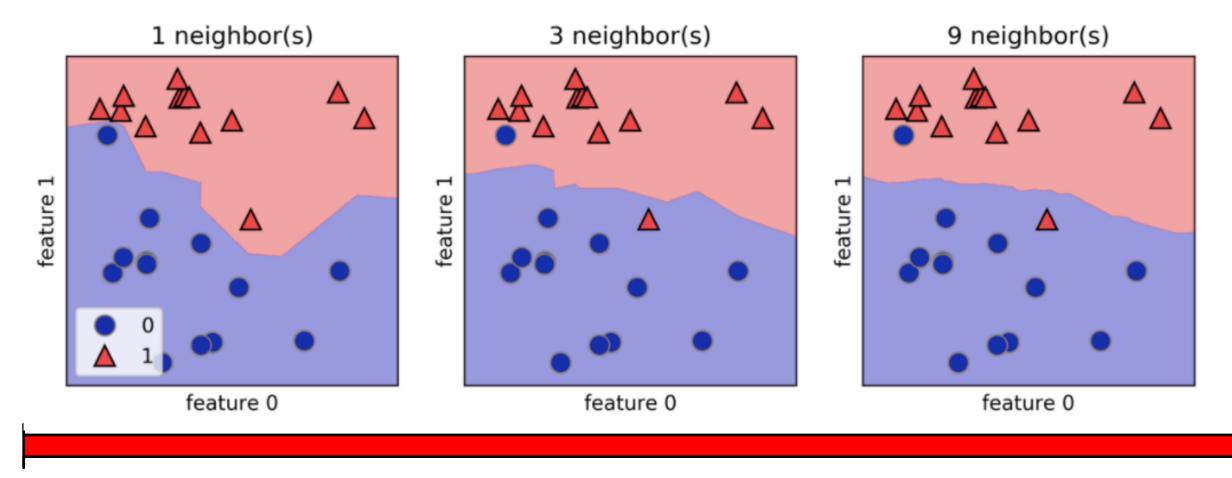
https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb



What happens to the decision boundary as "k" grows?

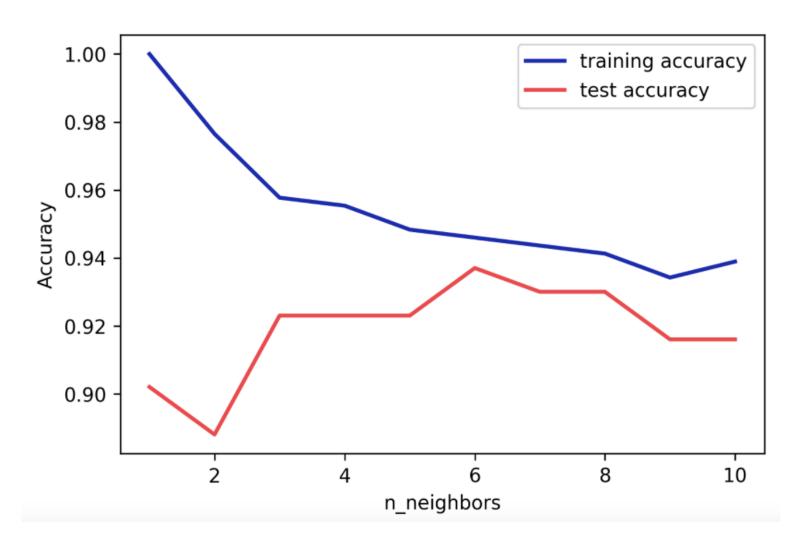


What happens when "k" equals the training data size?



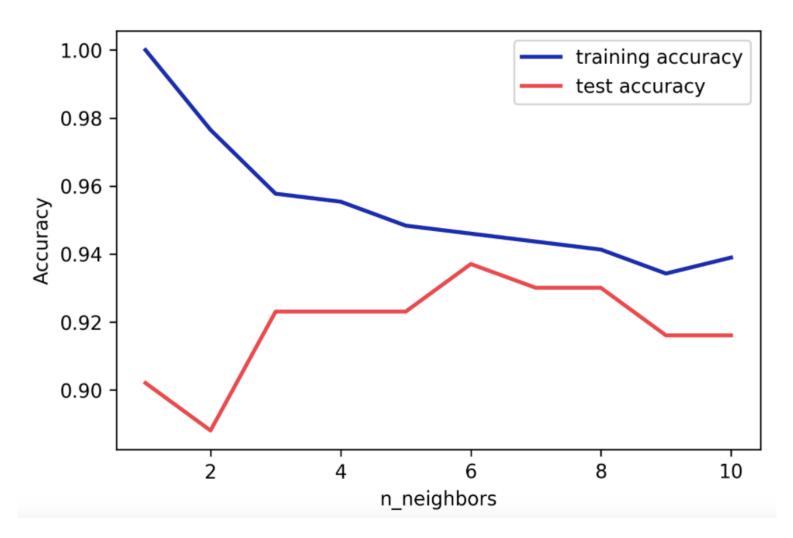
(Higher Model Complexity)

(Lower Model Complexity)



At what value for "k" is model **overfitting** the most?

k = 1



What is the best value for "k"?

$$k = 6$$

K-Nearest Neighbor: How to Use to Predict More than Two Classes?

 Tally number of examples belonging to each class and again choose the majority vote winners

What are Strengths of KNN?

- Adapts as new data is added
- Training is relatively fast
- Easy to understand

What are Weaknesses of KNN?

- For large datasets, requires large storage space
- For large datasets, this approach can be very slow or infeasible
 - Note: can improve speed with efficient data structures such as KD-trees
- Vulnerable to noisy/irrelevant examples
- Sensitive to imbalanced datasets where more frequent class will dominate majority voting

Today's Topics

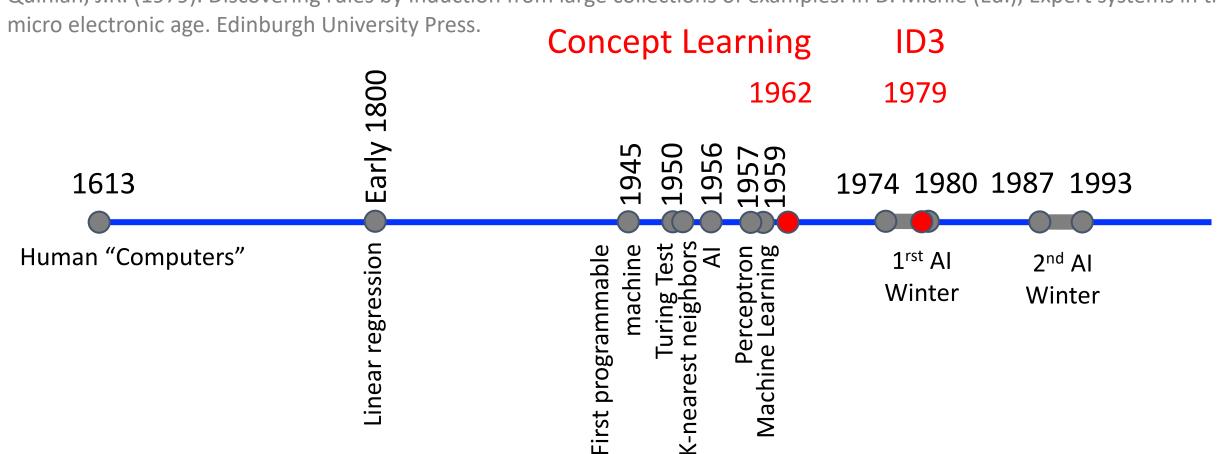
- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

Historical Context of ML Models

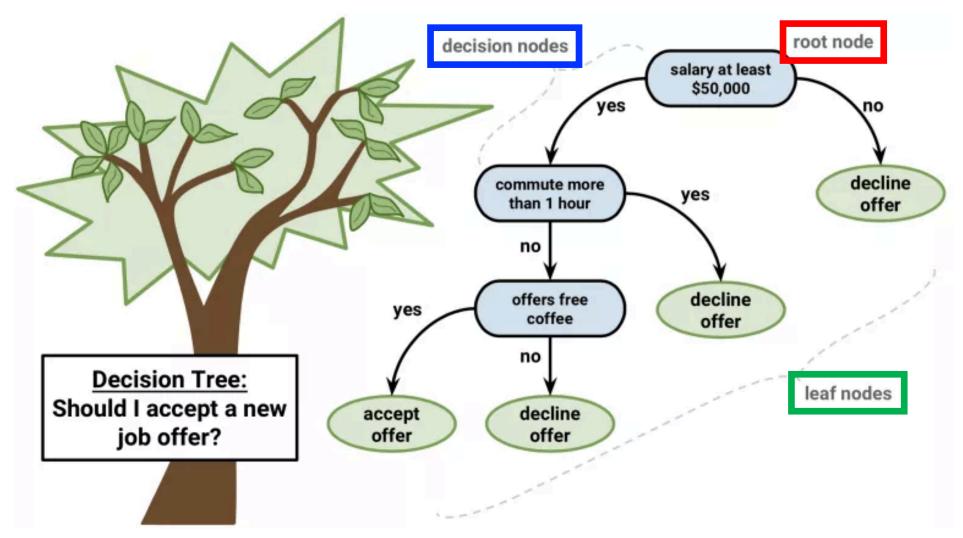
Quinlan, J. R. (1986). Induction of decision trees. *Machine learning*, 1(1), 81-106.

Hunt, E.B. (1962). Concept learning: An information processing problem. New York: Wiley.

Quinlan, J.R. (1979). Discovering rules by induction from large collections of examples. In D. Michie (Ed.), Expert systems in the



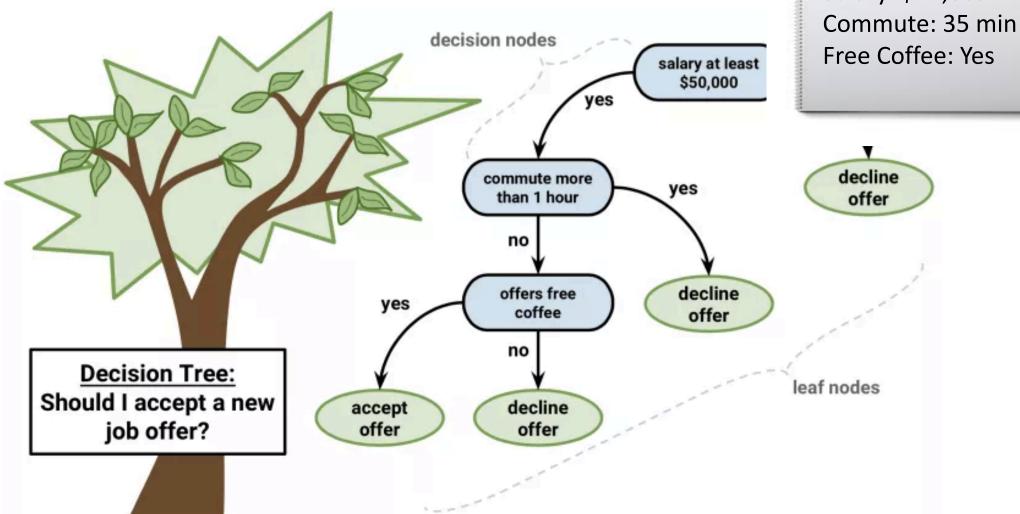
Example: Decision Tree



http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Test Example

Salary: \$44,869



Example: Decision Tree

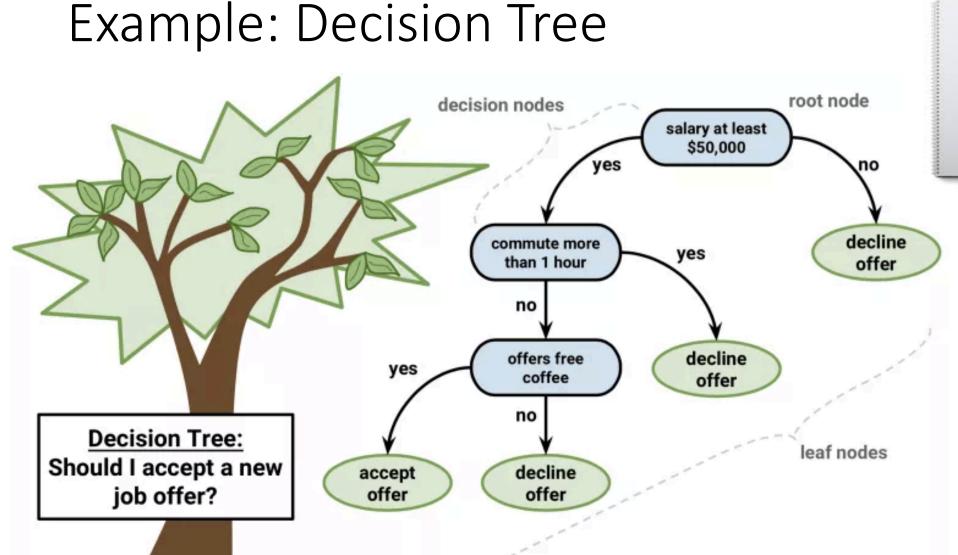
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Test Example

Salary: \$62,200

Commute: 45 min

Free Coffee: Yes



http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Decision Tree: Generic Structure

 Goal: predict class label • Representation: Tree • Internal (non-leaf) nodes = tests an attribute • Branches = attribute value Leaf = classification label

Decision Tree: Generic Structure

 Goal: predict class label • Representation: Tree • Internal (non-leaf) nodes = tests an attribute • Branches = attribute value Leaf = classification label

Decision Tree: Generic Structure

How can a machine learn a decision tree?

Decision Tree: Generic Learning Algorithm

 Greedy approach (NP complete problem) Function BuildTree(n,A) // n: samples (rows), A: attributes If empty(A) or all n(L) are the same status = leaf class = most common class in n(L) else status = internal a ← bestAttribute(n,A) Key Decision LeftNode = BuildTree(n(a=1), A \ {a}) RightNode = BuildTree(n(a=0), A \ {a}) end end

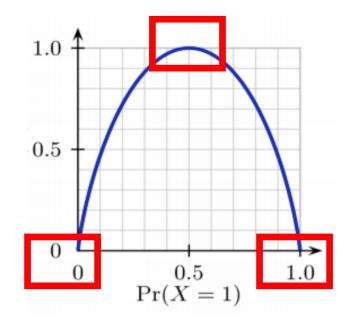
Next "Best" Attribute: Use Entropy

Number of classes Encodes in bits
$$Entropy = -\sum_{i=1}^n p_i \log_2 p_i$$

Fraction of examples belonging to class i

In a binary setting,

- Entropy is 0 when fraction of examples belonging to a class is 0 or 1
- Entropy is 1 when fraction of examples belonging to each class is 0.5



Next "Best" Attribute: Use Entropy

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Le C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -\left(\frac{5}{8}\log_2\frac{5}{8} + \right)$$

Next "Best" Attribute: Use Entropy

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -(\frac{5}{8}\log_2\frac{5}{8} + \frac{3}{8}\log_2\frac{3}{8})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

0.5 0.5

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -(\frac{5}{8}\log_2\frac{5}{8} + \frac{3}{8}\log_2\frac{3}{8})$$

$$Entropy = -(-0.42 - 0.53) = 0.95$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -(-0.53 - 0.39) = 0.92$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Туре	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = ?

$$Entropy = -(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = ?

$$Entropy = -(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5})$$

$$Entropy = -(-0.44 - 0.53) = 0.97$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = 0.97
- Information gain by split on "Type"?

$$IG = 0.95 - (\frac{3}{8} * 0.92 + \frac{5}{8} * 0.97)$$

 $IG = 0$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -(-0.53 - 0.39) = 0.92$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = ?

$$Entropy = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4})$$

$$Entropy = -(-0.32 - 0.5) = 0.82$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = 0.82
 - Right tree: "Long" = ?

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = 0.82
 - Right tree: "Long" = 0
- Information gain by split on "Length"?

$$IG = 0.95 - (\frac{3}{8} * 0.92 + \frac{4}{8} * 0.82 + \frac{1}{8} * 0)$$

 $IG = 0.19$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
$\overline{\mathrm{m1}}$	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

 $\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$IG = 0.95 - (\frac{5}{8} * (\frac{5}{5} \log_2 \frac{5}{5}) + \frac{3}{8} * (\frac{3}{3} \log_2 \frac{3}{3}))$$

 $IG = 0.95$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
$\mathrm{m}5$	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

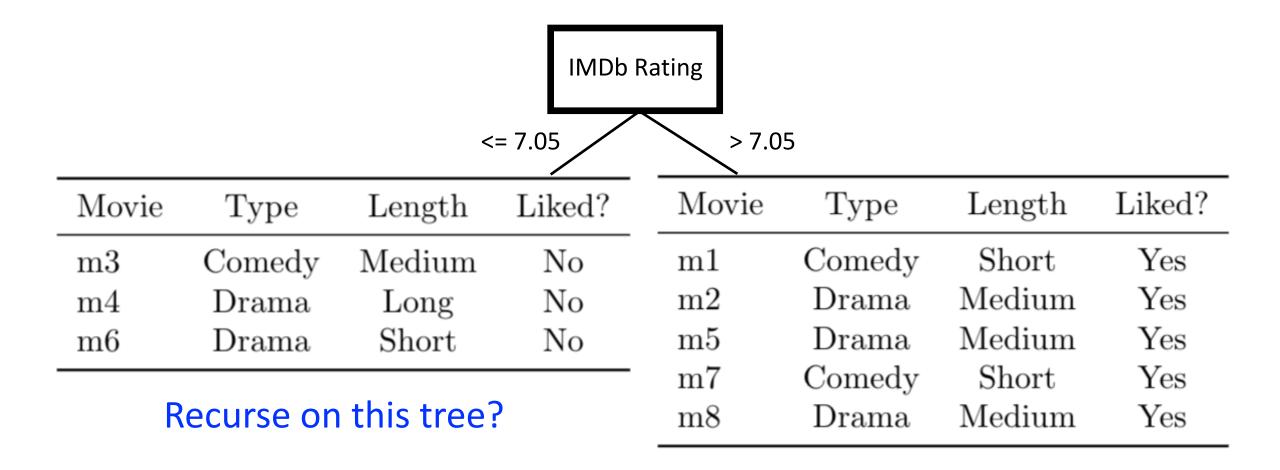
 $\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$

Decision Tree: What is Our First Split?

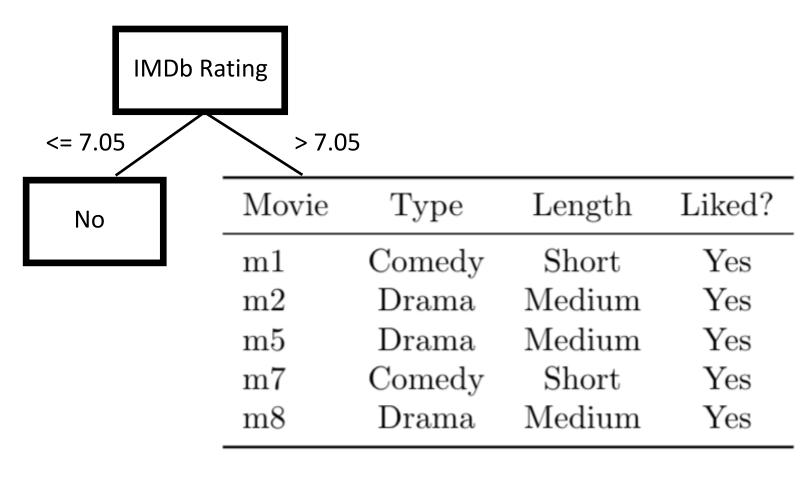
• Greedy approach (NP complete problem)

```
Function BuildTree(n,A) // n: samples (rows), A: attributes
 If empty(A) or all n(L) are the same
    status = leaf
                                                                IG = 0.95
                                             IG = 0
                                                     IG = 0.19
    class = most common class in r/1 \
                                    Movie
                                                               IMDb Rating
                                                                             Liked?
                                             Type
                                                      Length
 else
                                            Comedy
                                                      Short
                                                                   7.2
                                                                              Yes
                                    m1
    status = internal
                                            Drama
                                                     Medium
                                                                   9.3
                                                                              Yes
                                    m2
    m3
                                                     Medium
                                                                   5.1
                                                                              No
                                            Comedy
    LeftNode = BuildTree(n(a=1), A
                                            Drama
                                                                   6.9
                                                                              No
                                    m4
                                                      Long
                                                     Medium
                                                                   8.3
                                    m_5
                                            Drama
                                                                              Yes
    RightNode = BuildTree(n(a=0),
                                            Drama
                                                      Short
                                                                   4.5
                                                                              No
                                    m6
  end
                                            Comedy
                                                      Short
                                                                   8.0
                                                                              Yes
                                    m7
end
                                                     Medium
                                    m8
                                            Drama
                                                                   7.5
                                                                              Yes
```

Decision Tree: What Tree Results?

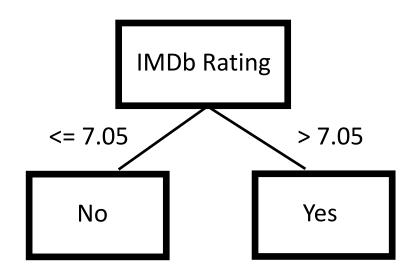


Decision Tree: What Tree Results?



Recurse on this tree?

Decision Tree: What Tree Results?



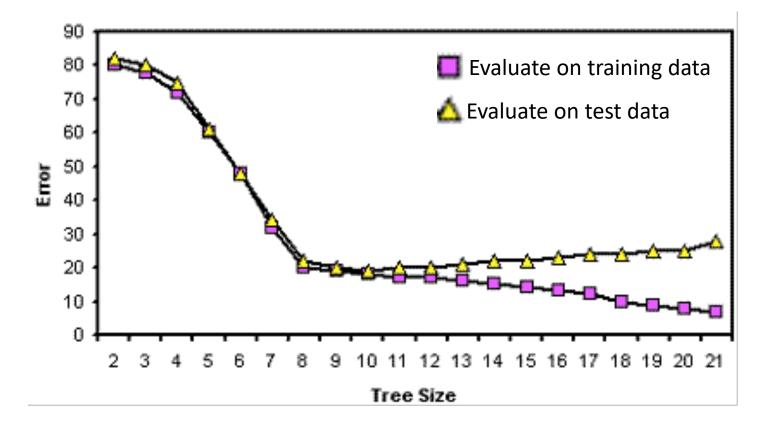
Decision Tree: Generic Learning Algorithm

Greedy approach (NP complete problem)

```
Function BuildTree(n,A) // n: samples (rows), A: attributes
 If empty(A) or all n(L) are the same
    status = leaf
    class = most common class in n(L)
 else
                                                    Entropy (maximize information gain)
    status = internal
                                                    Gini Index (used in CART algorithm)
    a ⇐ bestAttribute(n,A)
                             Key Decision –
                                                    Gain ratio (used in C4.5 algorithm)
                                                   Mean squared error
    LeftNode = BuildTree(n(a=1), A \ {a})
    RightNode = BuildTree(n(a=0), A \ {a})
  end
end
```

Overfitting

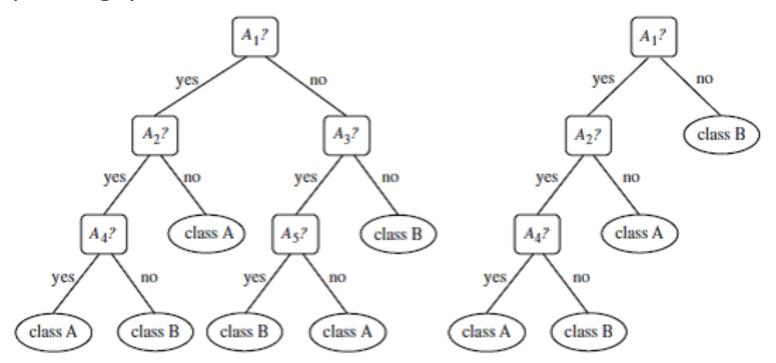
• At what tree size, does overfitting begin?



http://www.alanfielding.co.uk/multivar/crt/dt_example_04.htm

Regularization to Avoid Overfitting

- Pruning
 - Pre-pruning: stop tree growth earlier
 - Post-pruning: prune tree afterwards



https://www.clariba.com/blog/tech-20140811-decision-trees-with-sap-predictive-analytics-and-sap-hana-emilio-nieto

Today's Topics

- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

Machine Learning Goal

• Learn function that maps input features (X) to an output prediction (Y)

$$Y = f(x)$$

Machine Learning Goal

Learn function that maps input features (X) to an output prediction (Y)

$$Y = f(x)$$

Parametric model: has a fixed number of parameters

Machine Learning Goal

Learn function that maps input features (X) to an output prediction (Y)

$$Y = f(x)$$

- Parametric model: has a fixed number of parameters
- Non-parametric model: does not specify the number of parameters

Class Discussion:

- For each model, is it parametric or non-parametric?
 - Linear regression
 - K-nearest neighbors
- What are advantages and disadvantages of parametric models?

What are advantages and disadvantages of non-parametric models?

Each student should submit a response in a Google Form (tracks attendance)

Today's Topics

- Multiclass classification applications and evaluating models
- Motivation for new era: need non-linear models
- Nearest neighbor classification
- Decision tree classification
- Parametric versus non-parametric models
- Lab

References Used for Today's Material

- Chapter 3 of Deep Learning book by Goodfellow et al.
- http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/06_trees.pdf
- http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/tutorial3_CrossVal-DTs.pdf
- http://www.cs.cmu.edu/~epxing/Class/10701/slides/classification15.pdf