Artificial Neurons and Gradient Descent

Danna Gurari

University of Texas at Austin Spring 2020

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Review

- Last week:
 - Regression applications
 - Evaluating regression models
 - Background: notation
 - Linear regression
 - Polynomial regression
 - Regularization (Ridge regression and Lasso regression)
- Assignments (Canvas):
 - Problem set 2 due yesterday
 - Lab assignment 1 due next week
- Questions?

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Today's Focus: Binary Classification

Distinguish 2 classes

Binary Classification: Spam Detection

=	M Gmail	٩	in:s	pan	n	× •		٥
+	Compose	•		С		1–60 of 60 <	>	٠
	Inbox				Messages that have been in S	Spam more than 30 days will be automatically deleted. Delete all spam messages now		
0	Snoozed		4	\sum	Congrats!!	(12) Your request has been granted.	12:27	PM
in-	Important		\$	D	Mark	Final Reminder- Hello , Last Hour Hire a Book Ghost Writer at 85% Off for Book Writin	12:13	3 PM
>	Sent		*	Σ	! Unsubscribe	Dannag, We need your confirmation please	11:09	AM
	Drafts 13 All Mail		\$	D	WikiPedia	Month End Offer! Get your Wikipedia page at 85% off	10:57	АМ
0	Spam 58		4	Σ	□Private-Message□	Hi_l_sent_some_private□_Image□_&_Video□_you_will_be_surprised!!□_□□	9:53	AM
•	Categories		*	Σ	Paralegal Studies w.	Study Online, Paralegal Studies	9:40	АМ
	[Imap]/Drafts		2	Σ	🍑 iM Horny 🍑	💗 🔥 🥑 xxxRebeccaxxx has unlocked her private video for you 🌛 🐫 🦥	9:03	AM S
	[Imap]/Outbox [Imap]/Sent		4	D	utsafetyalert	CAMPUS ALERT: All clear issued after threat to main building	8:57	AM

Binary Classification: Resume Pre-Screening

source resume directly

recommends the best candidate

Binary Classification: Cancer Diagnosis

Pathology Evolved.

Advanced learning toward faster, more accurate diagnosis of disease.

Partner Login

Binary Classification: Cognitive Impairment Recognition by Apple App Usage

Image Credit: https://www.techradar.com/news/the-10-best-phones-for-seniors

https://www.technologyreview.com/f/615032/the-apps-you-use-on-your-phone-could-help-diagnose-your-cognitivehealth/?utm_medium=tr_social&utm_campaign=site_visitor.unpaid.engagement&utm_source=Twitter#Echobox=1579899156

Binary Classification: Food Quality Control

Machine Learning: Using Algorithms to Sort Fruit

Demo: https://www.youtube.com/watch?v=BI3XzBWpZbY

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

1. Split data into a "training set" and "test set

Training DataTest DataExample:Image: Strain Stra

2. Train model on "training set" to try to minimize prediction error on it

Training Data

3. Apply trained model on "test set" to measure generalization error

Test Data

3. Apply trained model on "test set" to measure generalization error

Test Data

3. Apply trained model on "test set" to measure generalization error

Test Data

Evaluation Methods: Confusion Matrix

TP = true positive TN = true negative FP = false positive FN = false negative

Evaluation Methods : Descriptive Statistics

Commonly-used statistical descriptions:

- How many *actual spam* results are there? 65
- How many *actual trusted* results are there? 1
- How many correctly classified instances?
- How many *incorrectly classified instances*? 2

TP

TP

- What is the *precision*?
 - 50/(50+10) ~ 83% TP + FP
- What is the *recall*?
 - 50/(50+15) ~ 77% **TP** + **FN**

- 110
- 150/175 ~ 86%
- 25/175 ~ 14%

Group Discussion

- Which of these evaluation metrics would you use versus not use and why?
 - Accuracy (number of correctly classified examples)
 - Precision
 - Recall
- Scenario 1: Medical test for a rare disease affecting one in every million people.
- Scenario 2: Deciding which emails to flag as spam.

Each student should submit a response in a Google Form (tracks attendance)

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Inspiration: Animal's Computing Machinery

Neuron

 basic unit in the nervous system for receiving, processing, and transmitting information; e.g., messages such as...

https://www.clipart.email/clipart/donttouch-hot-stove-clipart-73647.html

https://kisselpaso.com/if-the-sun-citymusic-fest-gets-too-loud-there-is-a-phonenumber-you-can-call-to-complain/

"spicy"

https://www.babycenter.co m/404_when-can-my-babyeat-spicy-foods_1368539.bc

Inspiration: Animal's Computing Machinery

https://en.wikipedia.org/wiki /Nematode#/media/File:Cele gansGoldsteinLabUNC.jpg

Nematode worm: 302 neurons

© 2006 Encyclopædia Britannica, Inc.

https://www.britannica.com/sci ence/human-nervous-system

Human: ~100,000,000,000 neurons

Inspiration: Animal's Computing Machinery

Demo (0-1:20): https://www.youtube.com/watch?v=oa6rvUJlg7o

Inspiration: Neuron "Firing"

- When the input signals exceed a certain threshold within a short period of time, a neuron "fires"
- Neuron "firing" (outputs signal) is an "all-or-none" process

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Artificial Neurons: Historical Context

Artificial Neurons: Historical Context

Artificial Neuron: McCulloch-Pitts Neuron

Warren McCulloch (Neurophysiologist)

Walter Pitts (Mathematician)

Note:

- weights (W) and threshold (T) values are fixed
- inputs and weights can be only 0 or 1
- fires when combined input exceeds threshold

https://en.wikipedia.org/wiki/Walter_Pitts

http://web.csulb.edu/~cwallis/artificialn/warren_mcculloch.html

Figure Source: https://web.csulb.edu/~cwallis/artificialn/History.htm

Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943

Artificial Neuron: McCulloch-Pitts Neuron

- Mathematical definition: z =
 fire" or "do not fire"
 1 if z ≥ θ
 -1 otherwise

 - mimics human brain

Artificial Neuron: McCulloch-Pitts Neuron

Python Machine Learning; Raschkka & Mirjalili

Artificial Neurons: Historical Context

polynomial

regression

& AI

Learning Winter

Winter

machine

Perceptron: Innovator and Vision

Frank Rosenblatt (Psychologist) "[The perceptron is] the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... [It] is expected to be finished in about a year at a cost of \$100,000."

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/newnavy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt

Perceptron: Model (Linear Threshold Unit)

- fires when combined input exceeds threshold
- inputs and weights can be any value
- weights (W) are learned

Python Machine Learning; Raschka & Mirjalili

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)

• Fires when a function exceeds threshold:

$$\phi(z) = \begin{cases} 1 & ij & z \ge \theta \\ -1 & otherwise \end{cases}$$

- Rewriting model: $\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$
- Where:

$$z = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m = \boldsymbol{w}^T \boldsymbol{x}$$

Bias $-\theta$ 1

Python Machine Learning; Raschka & Mirjalili

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957
Perceptron: Model (Linear Threshold Unit)

"Input signals" W "Output signal" Output **Artificial Neuron:** Net input Threshold function function dendrites 0 **Biological Neuron:**

Python Machine Learning; Raschka & Mirjalili

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

Perceptron: Learning Algorithm Approach

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Perceptron: Learning Algorithm Approach

Iteratively update linear boundary with observation of each additional example:

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm Approach

Iteratively update linear boundary with observation of each additional example:

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm

- 1. Initialize weights to 0 or small random numbers
- 2. For each training sample:
 - 1. Compute output value: $\sum_{j=0}^{m} \mathbf{x}_{j} \mathbf{w}_{j} = \mathbf{w}^{T} \mathbf{x}_{j}$
 - 2. Update weights with the following definition: $w_j := w_j + \Delta w_j$.

$$\Delta w_j = \eta \text{ (target}^{(i)} - \text{output}^{(i)} \text{ } x_j^{(i)}$$
Learning Rate
True Class Label Predicted Class Label

- 1. Initialize weights to 0 or small random numbers
- 2. For each training sample:

1. Compute output value:
$$\sum_{j=0}^{m} x_{j} w_{j} = w^{T} x_{j}$$

2. Update weights with the following definition: $w_j := w_j + \Delta w_j$

equals 0, so no weight update $\Delta w_{j} = \eta \left(\text{target}^{(i)} - \text{output}^{(i)} \right) x_{j}^{(i)}$ Learning Rate True Class Label Predicted Class Label

- 1. Initialize weights to 0 or small random numbers
- 2. For each training sample:

1. Compute output value:
$$\sum_{j=0}^{m} \mathbf{x}_{j} \mathbf{w}_{j} = \mathbf{w}^{T} \mathbf{x}_{j}$$

2. Update weights with the following definition: $w_j := w_j + \Delta w_j$

equals 2 or -2 so moves weights closer to positive or negative target class

$$\Delta w_j = \eta \text{ (target}^{(i)} - \text{ output}^{(i)} x_j^{(i)}$$
Learning Rate
True Class Label Predicted Class Label

e.g.,
$$y^{(i)} = +1$$
, $\hat{y}^{(i)}_j = -1$, $\eta = 1$

If:
$$x_j^{(i)} = 0.5$$
 Then, $\Delta w_j^{(i)} = ???$

e.g.,
$$y^{(i)} = +1$$
, $\hat{y}_{j}^{(i)} = -1$, $\eta = 1$

If:
$$x_j^{(i)} = 0.5$$
 Then, $\Delta w_j^{(i)} = (1 - -1)0.5 = (2)0.5 = 1$

- Increases weight so activation will be more positive for the sample next time
- Thus more likely to classify the sample as +1 next time

equals 2 or -2 so moves weights closer to positive or negative target class

$$\Delta w_j = \eta \text{ (target}^{(i)} - \text{ output}^{(i)}) x_j^{(i)}$$
Learning Rate
True Class Label Predicted Class Label

e.g.,
$$y^{(i)} = +1$$
, $\hat{y}_j^{(i)} = -1$, $\eta = 1$

If:
$$x_j^{(i)} = 2$$
 Then, $\Delta w_j = ???$

e.g.,
$$y^{(i)} = +1$$
, $\hat{y}_{j}^{(i)} = -1$, $\eta = 1$

If:
$$x_j^{(i)} = 2$$
 Then, $\Delta w_j = (1 - -1)2 = (2)2 = 4$

- Increases weight to a larger extent to be more positive for the sample next time
- Thus more likely to classify the sample as +1 next time

equals 2 or -2 so moves weights closer to positive or negative target class

$$\Delta w_j = \eta (\text{target}^{(i)} - \text{output}^{(i)}) x_j^{(i)}$$
Learning Rate
True Class Label Predicted Class Label

Perceptron: Learning Algorithm (e.g., 2D dataset)

- Initialize weights to 0 or small random numbers 1.
- 2. For each training sample:

1. Compute output value: $\sum_{i=0}^{m} x_{i} w_{i} = w^{T} x$

Update weights with the following definition: $w_j := w_j + \Delta w_j$

 $\Delta w_0 = \eta \text{ (target}^{(i)} - \text{output}^{(i)})$ $\Delta w_1 = \eta \text{ (target}^{(i)} - \text{output}^{(i)}) x_1^{(i)} \text{ All weights updated simultaneously}}$

$$\Delta w_2 = \eta \text{ (target}^{(i)} - \text{output}^{(i)}) x_2^{(i)}$$

Perceptron: Learning Algorithm Example

• True Model: Y is 1 if at least two of the three inputs are equal to 1.

Perceptron: Learning Algorithm Example

• True Model: Y is 1 if at least two of the three inputs are equal to 1.

• Compute output value: $\sum_{j=0}^{m} x_j w_j = w^T x$; $\phi(w^T x) = -\begin{cases} 1 \text{ if } \phi(w^T x) \ge 0 \\ -1 \text{ otherwise} \end{cases}$

X ₁	X ₂	X ₃	Υ	Predicted	W 0	W 1	W ₂	W 3
1	0	0	-1	?	0	0	0	0

• Compute output value: $\sum_{j=0}^{m} x_j w_j = w^T x$; $\phi(w^T x) = -\begin{bmatrix} 1 & \text{if } \phi(w^T x) \ge 0 \\ -1 & \text{otherwise} \end{bmatrix}$

X ₁	X ₂	X ₃	Υ	Predicted	W 0	W 1	W 2	W 3
1	0	0	-1	1	0	0	0	0

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

X ₁	X ₂	X ₃	Υ	Predicted	W 0	W 1	W ₂	W 3
1	0	0	-1	1	0	0	0	0
1	_			. – .	?	?	?	?

$$\Delta w_0 = \eta \text{ (target}^{(i)} - \text{output}^{(i)})$$

$$\Delta w_1 = \eta \text{ (target}^{(i)} - \text{output}^{(i)}) x_1^{(i)}$$

$$\Delta w_2 = \eta \text{ (target}^{(i)} - \text{output}^{(i)}) x_2^{(i)}$$

$$\Delta w_1 = \eta \text{ (target}^{(i)} - \text{output}^{(i)}) x_2^{(i)}$$

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

X ₁	X ₂	X ₃	Y]	Predicted	W 0	W 1	W ₂	W 3	$\Delta w_0 = 0.1(-1-1)*1 = -0.2$
1	0	0	-1	1	1	0	0	0	0	
		1				?	?	?	?	$\Delta w_1 = 0.1(-1-1)*1 = -0.2$

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

 $\Delta w_2 = 0.1(-1-1)*0 = 0$

 $\Delta w_2 = 0.1(-1-1)*0 = 0$

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

$$\Delta w_1 = 0.1(-1-1)^*1 = -0.2$$
$$\Delta w_2 = 0.1(-1-1)^*0 = 0$$
$$\Delta w_3 = 0.1(-1-1)^*0 = 0$$

• Compute output value:
$$\sum_{j=0}^{m} x_{j} w_{j} = w^{T} x$$
; $\phi(w^{T} x) = -1$ otherwise

X ₁	X ₂	X ₃	Υ	Predicted	W 0	W ₁	W ₂	W 3
1	0	0	-1	1	0	0	0	0
1	0	1	1	?	 -0.2	-0.2	0	0

• Compute output value:
$$\sum_{j=0}^{m} x_{j} w_{j} = w^{T} x$$
; $\phi(w^{T} x) = -1$ otherwise

X ₁	X ₂	X ₃	Υ	Predicted	W 0	W 1	W ₂	W 3
1	0	0	-1	1	0	0	0	0
1	0	1	1	-1	-0.2	-0.2	0	0

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

 $\Delta w = \eta (\text{target}^{(i)} - \text{output}^{(i)}) x^{(i)}$

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

• Update weights: $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

$$\Delta w_2 = 0.1(1-1)*0 = 0$$

 $\Delta w_3 = 0.1(1-1)*1 = 0.2$

Perceptron: Learning Algorithm Example - One Epoch (All Examples)

• $w_j = w_j + \eta$ (target⁽ⁱ⁾ - output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

X ₁	X ₂	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	w 0	W ₁	W ₂	W 3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Perceptron: Learning Algorithm Example - Six Epochs (All Examples)

• $w_j = w_j + \eta$ (target⁽ⁱ⁾ – output⁽ⁱ⁾) $x_j^{(i)}$; learning rate = 0.1

X ₁	X ₂	X ₃	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	W 0	W 1	W 2	W 3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Epoch	w ₀	w ₁	w ₂	W ₃
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Perceptron: Learning Algorithm

Python Machine Learning; Raschka & Mirjalili

Perceptron: Learning Algorithm - What are the Hyperparameters?

- Learning rate
- Number of epochs (passes over the dataset)

Artificial Neurons: Historical Context

Adaline (ADAptive LInear NEuron)

Python Machine Learning; Raschka & Mirjalili

Bernard Widrow and Ted Hoff, An Adaptive "Adaline" Neuron Using Chemical "Memistors", 1960

Adaline: Difference to Perceptron

Adaptive Linear Neuron (Adaline)

Python Machine Learning; Raschka & Mirjalili

Adaline: Learning Algorithm

- 1. Initialize the weights to 0 or small random numbers.
- 2. For k epochs (passes over the training set)
 - 1. For each training sample
 - 1. Compute the predicted output value y
 - 2. Compare predicted to actual output and compute "weight update" value
 - 3. Update the "weight update" value
 - 2. Update weights with accumulated "weight update" values

Unlike Perceptron, does not make updates per sample

Adaline: Learning Algorithm

- 1. Initialize the weights to 0 or small random numbers.
- 2. For k epochs (passes over the training set)
 - 1. For each training sample
 - 1. Compute the predicted output value y
 - 2. Compare predicted to actual output and compute "weight update" value
 - 3. Update the "weight update" value
 - 2. Update weights with accumulated "weight update" values: $w_j := w_j + \Delta w_j$. Key Idea: this is differentiable!!!

Learning Rate

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y^{(i)} - \phi(z)_A^{(i)} \right)^2$$

Sum of squared errors

 $\Delta \mathbf{w} = -\eta \nabla J(\mathbf{w})$

Take step away from gradient

Mathematical Simplification

Adaline: Learning Algorithm - Derivation of Equation to Update Weights

$$\begin{aligned} \frac{\partial J}{\partial w_j} \\ &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right)^2 \\ &= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right)^2 \\ &= \frac{1}{2} \sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \phi(z)_A^{(i)} \right) \\ &= \sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \sum_i \left(w_j^{(i)} x_j^{(i)} \right) \right) \\ &= \sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right) (-x_j^{(i)}) \\ &= -\sum_i \left(y^{(i)} - \phi(z)_A^{(i)} \right) (-x_j^{(i)}) \end{aligned}$$

Adaline: Learning Algorithm - Derivation of Equation to Update Weights

 $\frac{\partial J}{\partial w_i}$ $= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{i} \left(y^{(i)} - \phi(z)_A^{(i)} \right)^2$ $= \frac{1}{2} \frac{\partial}{\partial w_i} \sum_{i} \left(y^{(i)} - \phi(z)_A^{(i)} \right)^2$ $= \frac{1}{2} \sum_{i} \left(y^{(i)} - \phi(z)^{(i)}_{A} \right) \frac{\partial}{\partial w_{i}} \left(y^{(i)} - \phi(z)^{(i)}_{A} \right)$ $=\sum_{i} \left(y^{(i)} - \phi(z)^{(i)}_A \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \sum_{i} \left(w^{(i)}_j x^{(i)}_j \right) \right)$ $= \sum (y^{(i)} - \phi(z)^{(i)}_A)(-x^{(i)}_i)$ $= -\sum_{i} \left[y^{(i)} - \phi(z)^{(i)}_{A} \right] x_{j}^{(i)}$ Updates based on continuous valued prediction!

Updates based on all samples

Adaline: Difference to Perceptron

Adaptive Linear Neuron (Adaline)

Python Machine Learning; Raschka & Mirjalili
Adaline: Comparison to Linear Regression

http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Artificial Neurons: Historical Context

Artificial Neurons: Limitations

1. Assumes Data is Linearly Separable

- 2. Results depend on initial values of weights
- 3. Despite clear weaknesses, artificial neurons are the foundation of today's state-of-art machine learning algorithms

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Learning Algorithm for Adaline: - Gradient Descent (Optimization)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Gradient Descent (Optimization)

- Repeat:
 - 1. Guess
 - 2. Calculate error
- e.g., learn linear model for converting kilometers to miles

- Repeat:
 1. Guess
 2. Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

- Repeat:
 - Guess
 Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

- Repeat:
 1. Guess
 2. Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

- Repeat:
 - Guess
 Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

- Repeat:
 1. Guess
 2. Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

- Repeat:
 - Guess
 Calculate error
- e.g., learn constant multiplier to convert US dollars to Israeli shekels

 Idea: iteratively adjust constant (i.e., model parameter) to try to reduce the error

Gradient Descent Algorithms

- Approach: solve mathematical problems by updating estimates of the solution via an iterative process to "optimize" a function
 - e.g., minimize or maximize an objective function f(x) by altering x

🗩 End Point (Minimum)

<u>Analogy</u>

Hiking to the bottom of a mountain range... blindfolded (or for a person who is blind)!

• When **minimizing** the objective function, it also is often called interchangeably the **cost function**, **loss function**, or **error function**.

Approach: Employ Calculus Concepts

- Idea: use derivatives!
 - Derivatives tells us how to change the input x to make a small change to the output f(x)
 - Functions with multiple inputs rely on a partial derivative for each input
- Gradient descent:
 - Iteratively update f(x) by moving x in small steps with the opposite sign of the derivative

Which letter is the global minimum?

Which letter(s) are local minima?

Louis Augustin Cauchy: Compte Rendu `a l'Acad´emie des Sciences of October 18, 1847

Gradient Descent – Relationship to Adaline

• What was trying to be minimized for Adaline?

Python Machine Learning; Raschka & Mirjalili

Gradient Descent: Influence of Learning Rate

- Learning Rate: amount new evidence is prioritized when updating weights
- What happens when learning rate is too small?
 - Convergence to good solution will be slow!
- What happens when learning rate is too large?
 - May not be able to converge to a good solution
- How to address the cons of different learning rates?
 - Gradually reduce learning rate over time

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

Batch Gradient Descent (BGD)

- For each step (update), use calculations over *all training examples*
- What are strengths of this approach?
 - Does not bounce too much
- What are weaknesses of this approach?
 - Very slow or infeasible when dataset is large
- Which algorithm uses this?
 - Adaline

Stochastic Gradient Descent (SGD)

- For each step (update), use calculations from *one training example*
- What are strengths of this approach?
 - Each iteration is fast to compute
 - Can train using huge datasets (stores one instance in memory at each iteration)
- What are weaknesses of this approach?
 - Updates will bounce a lot

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Mini-batch Gradient Descent

- For each step (update), use calculations over *subset of training examples*
- What are strengths of this approach?
 - Bounces less erratically when finding model parameters than SGD
 - Can train using huge datasets (store some instances in memory at each iteration)
- What are weaknesses of this approach?
 - Very slow or infeasible when dataset is large
- Which algorithm uses this?
 - To be explored in future classes

Today's Topics

- Binary classification applications
- Evaluating classification models
- Biological neurons: inspiration
- Artificial neurons: Perceptron & Adaline
- Gradient descent
- Lab

Credits

- Image of Boulder: <u>http://boulderrunning.com/where2run/five-trails-</u> <u>for-hill-running-and-mountain-training/</u>
- Stick person figure:

https://drawception.com/game/AsPNcppPND/draw-yourselfblindfolded-pio/

- Figure: <u>https://www.quora.com/What-is-meant-by-gradient-descent-in-laymen-terms</u>
- Figure and great reference: <u>https://beamandrew.github.io/deeplearning/2017/02/23/deep_learn</u> <u>ing_101_part1.html</u>