Artificial Neurons and
Gradient Descent

Danna Gurari

University of Texas at Austin
Spring 2020

@A https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachinelLearning/CourseContent.html

Review

* Last week:
e Regression applications
e Evaluating regression models
Background: notation
Linear regression
Polynomial regression
Regularization (Ridge regression and Lasso regression)

* Assignments (Canvas):
* Problem set 2 due yesterday
* Lab assignment 1 due next week

e Questions?

Today’s Topics

* Binary classification applications

Evaluating classification models

Biological neurons: inspiration

Artificial neurons: Perceptron & Adaline

Gradient descent

e Lab

Today’s Topics

* Binary classification applications

Today’s Focus: Binary Classification

Distinguish 2 classes

Binary Classification: Spam Detection

b Gmail Q

1-60 of 60

= Compose

- . e, Messages that have been in Spam more than 30 days will be automatically deleted. Delete all spam messages now
LJ “ Inbox ™ ’

© Snoozed Congrats!! (12) Your request has been granted. 12:27 PM

B important Mark Final Reminder- Hello , Last Hour Hire a Book Ghost Writer at 85% Off for Book Writin... 12:13 PM

A |

e

» = Sent

! Unsubscribe Dannag, We need your confirmation please.. 11:09 AM
W Drafts
B : WikiPedia Month End Offer! Get your Wikipedia page at 85% off 10:57 AM
k4 All Mail
Spam . OPrivate-Message Hi_l_sent_some_private[J_Image_&_VideoO_you_will_be_surprised!!C0_0OO1 9:53 AM
Categories : Paralegal Studies w. Study Online, Paralegal Studies 9:40AM |
[Imap)/Drafts
¥ iM Horny§ VU) JxxxRebeccaxxx has unlocked her private video for youd ¢} U 9:03 AM
[Imap]/Outbox
utsafetyalert CAMPUS ALERT: All clear issued after threat to main building 8:57 AM

[Imap]/Sent

N x

Binary Classification: Resume Pre-Screening

o0
W h q I I Book demo Free trial

¢ Prime Talent Chain ' ABOUT PLATFORM ROADMAP COIN TEAM WHITEPAPER SICNIN BUYCOIN

Hiring Decentralized

PRODUCT ABOUT US BLOG REQUEST ADEMO

Al AND BLOCKCH D1 Skillate

Whaii N N e e e

.# Decentralizing and simplifying the s = _—
industry e =
" e Efiminate the intermediaries betwet Bl 1
seeker, through an open ecosystem %_:____:_,_{,

managers by using Blockchain, Al, a
technologies, that ultimately makes

and more cost-effective

Automatically screen resumes Matching algorithm and candidate
Trained with over 20 million diverse profiles, Skillate's Al recommendatlon
algorithm helps to screen and shortlist resume with the clickofa gkillate's matching engine maps all the relevant profiles with the
button Seamlessly |ntegrate W|th all external Channels and ATS to Job requirements - be it Ski“s’ ed ucation or experience and

source resume directly recommends the best candidate

Binary Classification: Cancer Diagnhosis
@PathAI Whatwedo Aboutus News Careers Pathologists Partner with Us

Pathology Evolved.

Advanced learning toward faster,
more accurate diagnosis of disease.

Binary Classification: Cognitive Impairment
Recognition by Apple App Usage

Image Credit: https://www.techradar.com/news/the-10-best-phones-for-seniors

https://www.technologyreview.com/f/615032/the-apps-you-use-on-your-phone-could-help-diagnose-your-cognitive-
health/?utm_medium=tr_social&utm_campaign=site visitor.unpaid.engagement&utm_source=Twitter#tEchobox=1579899156

Binary Classification: Food Quality Control

—

-

> » o 000/ 208 b @ & [« O

Machine Learning: Using Algorithms to Sort Fruit
Demo: https://www.youtube.com/watch?v=BI3XzBWpZbY

Today’s Topics

* Evaluating classification models

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

Example:

Label: Hairy Hairy Not Hairy 00 Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

1. Split data into a “training set” and “test set

Training Data Test Data

Example:

Label:

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

2. Train model on “training set” to try to minimize prediction error on it

Training Data

Example:

Label:

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label:

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label:

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error
Test Data

Prediction Model

Label:

Predicted Label:

Predicted

Evaluation
Actual
Spam Trusted
S
S| TP FP
n
©
9
a FN TN
=

Methods: Confusion Matrix

TP = true positive
TN = true negative
FP = false positive
FN = false negative

Predicted
Trusted Spam

Evaluation Methods : Descriptive Statistics

Commonly-used statistical descriptions:

Actual How many actual spam results are there? - 65
Spam Trusted * How many actual trusted results are there?- 110
e How many correctly classified instances? - 150/175~ 86%
50 10 * How many incorrectly classified instances? - 25/175~ 14%
 Whatis the precision? TP
15 100 . 50/(50+10)~83% TP+FP
* Whatis the recall? TP

e« 50/(50+15)~77% TP+FN

Group Discussion

* Which of these evaluation metrics would you use versus not use and why?
e Accuracy (hnumber of correctly classified examples)
* Precision
e Recall

e Scenario 1: Medical test for a rare disease affecting one in every million
people.

e Scenario 2: Deciding which emails to flag as spam.

Each student should submit a response in a Google Form (tracks attendance)

Today’s Topics

* Biological neurons: inspiration

Inspiration: Animal’'s Computing Machinery

Neuron
- basic unit in the nervous system for receiving, processing, and
transmitting information; e.g., messages such as...

“hot” “loud”

—

https://kisselpaso.com/if-the-sun-city- https://www.babycenter.co
https://www.clipart.email/clipart/dont- mysijc-fest-gets-too-loud-there-is-a-phone- m/404_when-can-my-baby-
touch-hot-stove-clipart-73647.html number-you-can-call-to-complain/ eat-spicy-foods_1368539.bc

Inspiration: Animal’s Computing Machinery

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons Human: ~100,000,000,000 neurons

Inspiration: Animal’'s Computing Machinery

NEURON

‘ —DENDRITES
ClIEILIL, [BONDNY

——N

Action Potential in the Neuron

Demo (0-1:20): https://www.youtube.com/watch?v=0a6rvUlig7o

Inspiration: Neuron “Firing”

dendrites

N

 When the input signals exceed a certain threshold within a short period of time, a neuron “fires”
* Neuron “firing” (outputs signal) is an “all-or-none” process

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

Today’s Topics

* Artificial neurons: Perceptron & Adaline

Artificial Neurons: Historical Context

Perceptron
First Mathematical ~ 19>7
Model of Neuron Adaline
1943 1960
1613 1815 1945 1956 1959 1974 1980 1987 1993
O e O~ =) O e
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning Winter Winter

regression

Artificial Neurons: Historical Context

Perceptron
First Mathematical ~ 19>7
Model of Neuron Adaline
1943 1960
1613 1815 1945 1956 1959 1974 1980 1987 1993
O— e 8O~ =) e
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning Winter Winter

regression

Artificial Neuron: McCulloch-Pitts Neuron

Output

Note:
- weights (W) and threshold (T) values are fixed

- inputs and weights can be onlyO or 1
- fires when combined input exceeds threshold

Warren McCulloch
(Neurophysiologist)

W W)
. Inxzut I:l ut https://en.wikipedia.org/wiki/Walter_Pitts
Walter P'_tt-s P P http://web.csulb.edu/~cwallis/artificialn/warren_mcculloch.html
(Mathematician) Figure Source: https://web.csulb.edu/~cwallis/artificialn/History.htm

Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943

Artificial Neuron: McCulloch-Pitts Neuron

1ifz28
* Mathematical definition: z=—
* “fire” or “do not fire”

* mimics human brain

-1 otherwise

~—

Z= o(wx)+

Python Machine Learning; Raschkka & Mirjalili

Artificial Neuron: McCulloch-Pitts Neuron

rl if z>26
* Mathematical definition: z=—

d(w'x) =0

A \

-1 otherwise

~—

©
+§
X
X

O
O
+
+ + T

X

Python Machine Learning; Raschkka & Mirjalili

Artificial Neurons: Historical Context

Perceptron
First Mathematical ~ 19°7
Model of Neuron Adaline
1943 1960
1613 1815 1945 1956 1959 1974 1980 1987 1993
O— O~ - ———O) O
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning Winter Winter

regression

Perceptron: Innovator and Vision

“[The perceptron is|] the embryo of an
electronic computer that [the Navy] expects
will be able to walk, talk, see, write,

reproduce itself and be conscious of its
existence.... [It] is expected to be finished in
I obout a year at a cost of $100,000.”

)
2 B
3 by A

Frank Rosenblatt

1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-
navy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt

Perceptron: Model (Linear Threshold Unit)

9 6 Output

SSHES(E

Net input Threshold
function function
Note:

- fires when combined input exceeds threshold
- inputs and weights can be any value
- weights (W) are learned

Python Machine Learning; Raschka & Mirjalili
Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)

* Fires when a function exceeds threshold:

¢(z):{ 1 ?

—1 otherwise

e Rewriting model: | i
#(z)=

—1 otherwise

* Where:
— w Iy Y)Y = r
Z =Wkt WX+ WX, =W X
[N
Bias _9 1 Python Machine Learning; Raschka & Mirjalili

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)

@"@ @ » Output

Net input Threshold
function function

1 ifz>20
—1 otherwise

#(z)=

v v . P
A — ‘10./\0 + "11.«\1 + M + "1“”1.«\'" — ’v x
N
Bias [—@ || 1

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Python Machine Learning; Raschka & Mirjalili

Perceptron: Model (Linear Threshold Unit)

“Input signals”

|II

“Output signa

O—ou]
(o

Net input Threshold
function function

Artificial Neuron:

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

Perceptron: Learning Algorithm Approach

ALY
%° , o !

o Chop into

Lots* of data pieces

Launch!

y
Study the ; Train online Evaluate
problem ML algorithm solution
T Analyze <
errors

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Perceptron: Learning Algorithm Approach

Iteratively update linear o
boundary with observation
of each additional example:

domestication

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm Approach

Iteratively update linear
boundary with observation
of each additional example:

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm

1. Initialize weights to 0 or small random numbers
2. For each training sample:

. m D — T
1. Compute output value: ZJ,:O XW,=w X

2. Update weights with the following definition: W; = W;

Aw; =1 (target(i) - output(i)) x}i)

Learning Rate
True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Correct Class Label?

1. Initialize weights to 0 or small random numbers
2. For each training sample:

1. Compute output value: Z';:O XW; = w' x

2. Update weights with the following definition: W; := W;
equals 0, so no weight update
Aw7 nl(target” — output'?) }')

Learning Rate

True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

1. Initialize weights to 0 or small random numbers
2. For each training sample:

m

T
XW.=W X

1. Compute output value: Z,-:o W

2. Update weights with the following definition: W; = W;
equals 2 or -2 so moves weights closer to positive or negative target class

(i)

Aw; =1 (target(i) - output(i)) :

Learning Rate
True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

i)

eg, y =+, p, =-1, n=1

i (#)
If: x, =0.5 Then, Aw, = ???

Learning Rate
True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

e.g., y(i) — +l, j?;i) :—l, 77 :1

£ x" =05 Then, Aw, =(1--1)0.5=(2)0.5=1

* Increases weight so activation will be more positive for the sample next time
 Thus more likely to classify the sample as +1 next time

: L : Wi .= W
equals 2 or -2 so moves weights closer to positive or negative target class

Aw; =1 (target(i) - output(i))

Learning Rate

True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

(1)
e.g., b%

if: x, =2 Then, Aw, = 272

=+1, §, =-1, p=1

Learning Rate
True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

e.g., y(i) — +l, j?;i) :—l, 77 :1

f: x, =2 Then, Aw, =(1--1)2=(2)2=4

* Increases weight to a larger extent to be more positive for the sample next time
 Thus more likely to classify the sample as +1 next time

: L : Wi .= W
equals 2 or -2 so moves weights closer to positive or negative target class

Aw; =1 (target(i) - output(i))

Learning Rate

True Class Label Predicted Class Label

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm (e.g., 2D dataset)

1. Initialize weights to 0 or small random numbers
2. For each training sample:

- T
X W. =W X

1. Compute output value: Z,:o W

2. Update weights with the following definition: W; = W;

Aw, =1 (target(i) - output(i))

— () _ (i)y () [All weights updated
AWl =N (target OUtp ut) x,l simultaneously

(i)
2

Aw, =1 (target(i) - output(i)) X

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 | Xo | X3 Y Input Black box

1 oo

1 1o 1 Xy

11110 Output
111 11]7

o | o 1 X2——> —+» Y

0l 11]0

0| 1| 1 x3_ .

ol o0l o0

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

* True Model: Y is 1 if at least two of the three inputs are equal to 1.

X1 [Xo | Xs| Y Input Black box

110 0| -1

1 o] 1] 1 X+

111 1ol 1 Output
1111 1

o o P X2——> —+» Y

o 1] 0] -1

ol 1| 1| 1 X,t»

0ol o] o] -1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

- First Sample

* Compute output value:)’

X2

X3

Predicted

1if d(wix) 20
m T . T _
W. = W'Xx) —
Jj=0 YWy =W X, l) -1 otherwise

~—

0

0

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

- First Sample

* Compute output value:)’

X2

X3

Predicted

1if d(wix) 20
m T . T _
W. = W'Xx) —
Jj=0 YWy =W X, l) -1 otherwise

~—

0

0

1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

- First Sample

Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

X2

X3

Predicted

0

0

1

W1 | W2 [W3 Awo =n (target(i) - OUtpUt(i))
0

(i)

Aw, =17 (target(i) - output(i)) X,

Aw, =n (target'” — output'”) xéi)

Aw, =7 (target(i) - output(i)) x_,fi)

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

- First Sample

. ichts: w: = (&) iy @ . - _
Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

X2

X3

Predicted

wi | w2 | wg | Aw, =0.1(-1-1)*1=-0.2

0

0

1

Aw, =0.1(-1-1)*1=-0.2
Aw, =0.1(-1-1)*0 =0

Aw, = 0.1(-1-1)*0=0

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example
- First Sample

. ichts: w: = (&) iy @ . - _
Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

Xq| Xo | Xg Predicted Wo | Wi | W2 [W3 AWO = 01(-1-1)*1 =-0.2
110]0 1 0 1 0} 010
02(-02| 0 0

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Aw, =0.1(-1-1)*1=-0.2
Aw, =0.1(-1-1)*0 =0

Aw, = 0.1(-1-1)*0=0

Perceptron: Learning Algorithm Example

- Second Sample -
1if ¢(wix)=20

e Compute output value: >~ xw. =w'x; &(w'x) = —
P P Zf:ox’w’ WX ewix) -1 otherwise

~—

Xo | X3 Y Predicted Wo | W1 | W2 | W3
01! 0 1 0 0 0
o | 1) 0.2 0 | o

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example

- Second Sample -
1if ¢(wix)=20

e Compute output value: >~ xw. =w'x; &(w'x) = —
P P Zf:ox’w’ WX ewix) -1 otherwise

~—

Xo | X3 Y Predicted Wo | W1 | W2 | W3
0!l 0| - 1 0 0 0 0
o | 1 3 02|-02] 0 | O

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

X1 | Xy | X3 Predicted
1T1010 1
0 1 -1

Wo | W1 W2 | W3
0 0 0 0
-02(-02(O 0

Aw, = 7 (target” — output?)
Aw, =1 (target? — output'”) xf")
Aw, =n (target”) — output'?) xé”

Aw, =7 (target(i) - output(i)) x_,fi)

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

. ichts: w: = (&) iy @ . - _
Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

X1 | Xy | X3 Predicted
1T100 1
T1011 -1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Wo | W1 W2 | W3
0 0 0 0
-02(-02(O 0

Aw, =0.1(1--1)*1=0.2
Aw, =0.1(1--1)*1=0.2
Aw, =0.1(1--1)*0=0

Aw, =0.1(1--1)*1=0.2

Perceptron: Learning Algorithm Example
- Second Sample

. ichts: w: = (&) iy @ . - _
Update weights: w; = w; + n (target'” — output'”’) X;; learning rate = 0.1

X1 | Xy | Xg Predicted
1T100 1
T1011 -1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Wo | Wi | W2 | W3
0 0 0 0

-02(-02| O 0
0 0 0 0.2

Aw, =0.1(1--1)*1=0.2
Aw, =0.1(1--1)*1=0.2
Aw, =0.1(1--1)*0=0

Aw, =0.1(1--1)*1=0.2

Perceptron: Learning Algorithm Example
- One Epoch (All Examples)

* Wi=w;+ 1 (target(i) - output(i)) x}') ; learning rate = 0.1

X1 X2 X3 Y Wo | W1 W2 | W3
1 0 0 | -1 0 0 0 0 0
t]ofr] 2 ol oo oz
1 1 (1) 1 3 o | o] o o2

4 ol o] o |02
010 1]-1 5 |02 0| o o
0|1]0]-1 6 |02 o | o | o
0 1] 1] 1 7 0| o |02] 02
001 0] -1 8 |-02| o |02]02

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm Example
- Six Epochs (All Examples)

* Wi=w;+ 1 (target(i) - output(i)) x}i) ; learning rate = 0.1

X1 Xo | X3 Y Wo | Wi | W2 | W3 Epoch| wg [Wq | Ws [W3
1100 | -1 0 0| 0] 0| O 0 Oo(0[0]|O
110 1] 1 1 02702 0 | O 1 |-02] 0 [0.2]0.2
111]0] 1 2 0 0| 0 02 2 |-02[0]04]02
IEEERE Z g 8 8 83 3 |-04]| 0]04]02
00| 1]-1 e lo2l ol ol o 4 [-04l02[04]04
0| 1/|0]-1 6 lo2l ol ol o 5 |-06]/02[04]0.2
0 (111 7 0 0 | 02| 02 6 -06/0.410.4]0.2
0|0/ 0] -1 8 |-02| o |02/ 02

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Perceptron: Learning Algorithm

Weight update
Error

O— @ o

Net input Threshold
function function

QOO
QOOE

Python Machine Learning; Raschka & Mirjalili

Perceptron: Learning Algorithm
- What are the Hyperparameters?

* Learning rate
 Number of epochs (passes over the dataset)

Artificial Neurons: Historical Context

Perceptron
First Mathematical =~ 19>7
Model of Neuron Adaline
1943 1960
1613 1815 1945 1956 1959 1974 1980 1987 1993
O— O~ - ———O) O
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning Winter Winter

regression

Adaline (ADAptive LiInear NEuron)

Weight update
OB @)oo

Net input Activation Threshold
function function

function

Python Machine Learning; Raschka & Mirjalili
Bernard Widrow and Ted Hoff, An Adaptive “Adaline” Neuron Using Chemical “Memistors”, 1960

Adaline: Difference to Perceptron

Output

Net input Activation Threshold
function function

function

Adaptive Linear Neuron (Adaline) Python Machine Learning; Raschka & Mirjalili

Adaline: Learning Algorithm

1. Initialize the weights to 0 or small random numbers.

2. For k epochs (passes over the training set)

1. For each training sample

1. Compute the predicted output value y
2. Compare predicted to actual output and compute "weight update" value

3. Update the "weight update" value
2. Update weights withljaccumulated "weight update” values

Unlike Perceptron, does not make updates per sample

http://rasbt.github.io/mixtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm

1. Initialize the weights to 0 or small random numbers.

2. For k epochs (passes over the training set)

1. For each training sample

1. Compute the predicted output value y
2. Compare predicted to actual output and compute "weight update" value

3. Update the "weight update" value
2. Update weights with accumulated "weight update” values: w; =
Key Idea: this is differentiable!!!

Mathematical Sum of squared errors Learning Rate Take step away from gradient

Simplification
http://rasbt.github.io/mixtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm
- Derivation of Equation to Update Weights

aJ

ow;
WE Z @) ¢(z)()

%awiz y()—fl)(Z)()
-%Z ¥ =400 50 (0 - 96
T (0 - $)?) W(WONC))
_Z (9 - ¢@F)(=x)
=—Z (y? - 9@y)x”

http://rasbt.github.io/mixtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm
- Derivation of Equation to Update Weights

0_]

aWJ

_ aij % ,- (5 - p@P)"

_ % awij , (5 - p@)?)

=% ,- a?vj(O — g0)?)

Updates based on all samples Updates based on continuous valued prediction!

http://rasbt.github.io/mixtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Difference to Perceptron

Updates based on continuous
valued prediction rather than
integer predictions!

Output

Threshold
function

Adaptive Linear Neuron (Adaline) Python Machine Learning; Raschka & Mirjalili

Adaline: Comparison to Linear Regression

Continuous

>

Output

Net input Activation
function function

M Categorical (nominal)

Net input
function

: Threshold
function function

Adaptive Linear Neuron (Adaline)

http://rasbt.github.io/mlIxtend/user_guide/general_concepts/linear-gradient-derivative/

Artificial Neurons: Historical Context

Perceptron
First Mathematical 1928
Model of Neuron Adaline
1943 1960
1613 1815 1945 1956 1959 1974 1980 1987 1993
O e O~ =) O e
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning Winter Winter

regression

Artificial Neurons: Limitations

1. Assumes Data is Linearly Separable

A

Linearly separable

2. Results depend on initial values of weights

4 Not linearly separable

-
O 0o o

Not linearly separable

3. Despite clear weaknesses, artificial neurons are the foundation of
today’s state-of-art machine learning algorithms

Python Machine Learning; Raschka & Mirjalili

Today’s Topics

e Gradient descent

Learning Algorithm for Adaline:
- Gradient Descent (Optimization)

e
WLl oo [

* * Chop into Launch!
Lots* of data pieces

y
Study the ; Train on!ine Evalgate
problem ML algorithm solution
T Analyze <
errors

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Gradient Descent (Optimization)

Gradient
Descent
1847
1613 1815 1945 1956 1959 1974 1980 1987 1993
Human “Computers” Linear & First programmable Turing Test Machine 1rst A ond A
polynomial machine & Al Learning\ Winter Winter
regression

Ridge Lasso
Regression Regression

Gradient Descent — Intuition

* Repeat:
1. Guess
2. Calculate error

* e.g., learn linear model for converting kilometers to miles

1 - 1.60934

Mile - Kilometer -

Miles ——{ Kilometers = miles x constant ——— Kilometers

Gradient Descent — Intuition

* Repeat:
1. § Guess
2. Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

S10 — Shekels = dollars x constant

Gradient Descent — Intuition

* Repeat:
1. Guess

2.8 Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

510 —

Shekels = dollars x constant

—> Error = Guess - Correct

Gradient Descent — Intuition

* Repeat:
1. § Guess
2. Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

S10 — Shekels = dollars x constant

Gradient Descent — Intuition

* Repeat:
1. Guess

2.8 Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

510 —

Shekels = dollars x constant

—> Error = Guess - Correct

Gradient Descent — Intuition

* Repeat:
1. § Guess
2. Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

S10 — Shekels = dollars x constant

Gradient Descent — Intuition

* Repeat:
1. Guess
2. 8 Calculate error

* e.g., learn constant multiplier to convert US dollars to Israeli shekels

S10 —{ Shekels = dollars x constant —— Error = Guess - Correct

* |dea: iteratively adjust constant (i.e., model parameter) to try to
reduce the error

Gradient Descent Algorithms

* Approach: solve mathematical problems by updating estimates of the solution via
an iterative process to “optimize” a function
* e.g., minimize or maximize an objective function f(x) by altering x

End Point (Minimum)

Analogy
Hiking to the bottom of a mountain range...

blindfolded (or for a person who is blind)!

Start

* When minimizing the objective function, it also is often called interchangeably
the cost function, loss function, or error function.

Approach: Employ Calculus Concepts

* |dea: use derivatives!
* Derivatives tells us how to change the input x to make a small change to the output f(x)
e Functions with multiple inputs rely on a partial derivative for each input

* Gradient descent:
* Iteratively update f(x) by moving x in small steps with the opposite sign of the derivative

Louis Augustin Cauchy: Compte Rendu "a I’'Acad’emie des Sciences of October 18, 1847

Gradient Descent — Relationship to Adaline

* What was trying to be minimized for Adaline?

c @ - Weight updat
= DD D) o

Net input Activation Threshold

: @ function function function

Python Machine Learning; Raschka & Mirjalili

Gradient Descent: Influence of Learning Rate

Initial
weight

Jw)l \

A
/_— Gradient J(w)

/]
(]
I
/ Global cost minimum
J.. (w

 Jin(W) ’
w W

* Learning Rate: amount new evidence is prioritized when updating weights

* What happens when learning rate is too small?
* Convergence to good solution will be slow!

 What happens when learning rate is too large?
* May not be able to converge to a good solution

* How to address the cons of different learning rates?
* Gradually reduce learning rate over time

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

Batch Gradient Descent (BGD)

 For each step (update), use calculations over all training examples

* What are strengths of this approach?
* Does not bounce too much

* What are weaknesses of this approach?
* Very slow or infeasible when dataset is large

* Which algorithm uses this?
* Adaline

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Stochastic Gradient Descent (SGD)

* For each step (update), use calculations from one training example

* What are strengths of this approach?
e Each iteration is fast to compute
e Can train using huge datasets (stores one instance in memory at each iteration)

* What are weaknesses of this approach?
* Updates will bounce a lot

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Mini-batch Gradient Descent

* For each step (update), use calculations over subset of training examples

* What are strengths of this approach?
* Bounces less erratically when finding model parameters than SGD
e Can train using huge datasets (store some instances in memory at each iteration)

* What are weaknesses of this approach?
* Very slow or infeasible when dataset is large

* Which algorithm uses this?
* To be explored in future classes

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4 _ann.pdf

Today’s Topics

e Lab

Credits

* Image of Boulder: http://boulderrunning.com/where2run/five-trails-
for-hill-running-and-mountain-training/

* Stick person figure:
https://drawception.com/game/AsPNcppPND/draw-yourself-
blindfolded-pio/

 Figure: https://www.quora.com/What-is-meant-by-gradient-descent-
in-laymen-terms

* Figure and great reference:
https://beamandrew.github.io/deeplearning/2017/02/23/deep learn
ing 101 partl.html

http://boulderrunning.com/where2run/five-trails-for-hill-running-and-mountain-training/
https://drawception.com/game/AsPNcppPND/draw-yourself-blindfolded-pio/
https://www.quora.com/What-is-meant-by-gradient-descent-in-laymen-terms
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

