
Artificial Neurons and
Gradient Descent

Danna Gurari
University of Texas at Austin

Spring 2020

https://www.ischool.utexas.edu/~dannag/Courses/IntroToMachineLearning/CourseContent.html

Review

• Last week:
• Regression applications
• Evaluating regression models
• Background: notation
• Linear regression
• Polynomial regression
• Regularization (Ridge regression and Lasso regression)

• Assignments (Canvas):
• Problem set 2 due yesterday
• Lab assignment 1 due next week

• Questions?

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Today’s Focus: Binary Classification

Distinguish 2 classes

Binary Classification: Spam Detection

Binary Classification: Resume Pre-Screening

Binary Classification: Cancer Diagnosis

Binary Classification: Cognitive Impairment
Recognition by Apple App Usage

https://www.technologyreview.com/f/615032/the-apps-you-use-on-your-phone-could-help-diagnose-your-cognitive-
health/?utm_medium=tr_social&utm_campaign=site_visitor.unpaid.engagement&utm_source=Twitter#Echobox=1579899156

Image Credit: https://www.techradar.com/news/the-10-best-phones-for-seniors

Binary Classification: Food Quality Control

Demo: https://www.youtube.com/watch?v=Bl3XzBWpZbY

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

Example:

Label: Hairy Hairy Not Hairy Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

Training Data Test Data

1. Split data into a “training set” and “

Example:

Label: Hairy Hairy Not Hairy Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

Training Data

2. Train model on “training set” to try to minimize prediction error on it

Example:

Label: Hairy Hairy Not Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “ ” to measure generalization error

Example:

Label:

Test Data

Prediction Model

Predicted Label: ?

Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “ ” to measure generalization error
Test Data

Prediction Model

Example:

Label:

Predicted Label: Not Hairy

Hairy

Goal: Design Models that Generalize Well to
New, Previously Unseen Examples

3. Apply trained model on “ ” to measure generalization error
Test Data

Prediction Model

Example:

Label:

Predicted Label: Not Hairy

Hairy

Evaluation Methods: Confusion Matrix

TP FP

FN TN

Sp
am

Tr
us

te
d

Spam Trusted

Pr
ed
ic
te
d

Actual

TP = true positive
TN = true negative
FP = false positive
FN = false negative

Evaluation Methods : Descriptive Statistics

50 10

15 100

Sp
am

Tr
us

te
d

Spam Trusted

Pr
ed
ic
te
d

Actual

Commonly-used statistical descriptions:

• How many actual spam results are there?
• How many actual trusted results are there?
• How many correctly classified instances?
• How many incorrectly classified instances?

• What is the precision?
• 50/(50+10) ~ 83%

• What is the recall?
• 50/(50+15) ~ 77%

e.g.,
- 65
- 110
- 150/175 ~ 86%
- 25/175 ~ 14%

Group Discussion

• Which of these evaluation metrics would you use versus not use and why?
• Accuracy (number of correctly classified examples)
• Precision
• Recall

• Scenario 1: Medical test for a rare disease affecting one in every million
people.

• Scenario 2: Deciding which emails to flag as spam.

Each student should submit a response in a Google Form (tracks attendance)

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Inspiration: Animal’s Computing Machinery

Neuron
- basic unit in the nervous system for receiving, processing, and

transmitting information; e.g., messages such as…

“hot”

https://www.clipart.email/clipart/dont-
touch-hot-stove-clipart-73647.html

“loud”

https://kisselpaso.com/if-the-sun-city-
music-fest-gets-too-loud-there-is-a-phone-
number-you-can-call-to-complain/

“spicy”

https://www.babycenter.co
m/404_when-can-my-baby-
eat-spicy-foods_1368539.bc

Inspiration: Animal’s Computing Machinery

Human: ~100,000,000,000 neurons

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

Inspiration: Animal’s Computing Machinery

Demo (0-1:20): https://www.youtube.com/watch?v=oa6rvUJlg7o

Inspiration: Neuron “Firing”

Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

• When the input signals exceed a certain threshold within a short period of time, a neuron “fires”
• Neuron “firing” (outputs signal) is an “all-or-none” process

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Artificial Neurons: Historical Context

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression

1943

First Mathematical
Model of Neuron

1957
Perceptron

1960
Adaline

Artificial Neurons: Historical Context

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression

1943

First Mathematical
Model of Neuron

1957
Perceptron

1960
Adaline

Artificial Neuron: McCulloch-Pitts Neuron

Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943

Walter Pitts
(Mathematician)

Warren McCulloch
(Neurophysiologist)

http://web.csulb.edu/~cwallis/artificialn/warren_mcculloch.html
https://en.wikipedia.org/wiki/Walter_Pitts

Figure Source: https://web.csulb.edu/~cwallis/artificialn/History.htm

Note:
- weights (W) and threshold (T) values are fixed
- inputs and weights can be only 0 or 1
- fires when combined input exceeds threshold

Artificial Neuron: McCulloch-Pitts Neuron

• Mathematical definition:
• “fire” or “do not fire”
• mimics human brain

z =
1 if z

-1 otherwise

Python Machine Learning; Raschkka & Mirjalili

z =

Artificial Neuron: McCulloch-Pitts Neuron

• Mathematical definition:

Python Machine Learning; Raschkka & Mirjalili

z =
1 if z

-1 otherwise

Artificial Neurons: Historical Context

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression

1943

First Mathematical
Model of Neuron

1957
Perceptron

1960
Adaline

Perceptron: Innovator and Vision

Frank Rosenblatt
(Psychologist)

“[The perceptron is] the embryo of an
electronic computer that [the Navy] expects
will be able to walk, talk, see, write,
reproduce itself and be conscious of its
existence…. [It] is expected to be finished in
about a year at a cost of $100,000.”
1958 New York Times article: https://www.nytimes.com/1958/07/08/archives/new-
navy-device-learns-by-doing-psychologist-shows-embryo-of.html

https://en.wikipedia.org/wiki/Frank_Rosenblatt

Perceptron: Model (Linear Threshold Unit)

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957
Python Machine Learning; Raschka & Mirjalili

Note:
- fires when combined input exceeds threshold
- inputs and weights can be any value
- weights (W) are learned

• Fires when a function exceeds threshold:

• Rewriting model:

• Where:

Perceptron: Model (Linear Threshold Unit)

1Bias Python Machine Learning; Raschka & Mirjalili
Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)

1Bias Python Machine Learning; Raschka & Mirjalili
Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957

Perceptron: Model (Linear Threshold Unit)
“Input signals”

“Output signal”

Artificial Neuron:

Biological Neuron:

Python Machine Learning; Raschka & Mirjalili
Image Source: https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

Perceptron: Learning Algorithm Approach

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Perceptron: Learning Algorithm Approach

Iteratively update linear
boundary with observation
of each additional example:

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm Approach

Iteratively update linear
boundary with observation
of each additional example:

https://en.wikipedia.org/wiki/Perceptron

Perceptron: Learning Algorithm

1. Initialize weights to 0 or small random numbers
2. For each training sample:

1. Compute output value:

2. Update weights with the following definition:

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Learning Rate
True Class Label Predicted Class Label

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Correct Class Label?
1. Initialize weights to 0 or small random numbers
2. For each training sample:

1. Compute output value:

2. Update weights with the following definition:

Learning Rate
True Class Label Predicted Class Label

equals 0, so no weight update

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?
1. Initialize weights to 0 or small random numbers
2. For each training sample:

1. Compute output value:

2. Update weights with the following definition:

Learning Rate
True Class Label Predicted Class Label

equals 2 or -2 so moves weights closer to positive or negative target class

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

Learning Rate
True Class Label Predicted Class Label

equals 2 or -2 so moves weights closer to positive or negative target class

e.g.,

If: Then, ???

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

Learning Rate
True Class Label Predicted Class Label

equals 2 or -2 so moves weights closer to positive or negative target class

e.g.,

If: Then,
• Increases weight so activation will be more positive for the sample next time
• Thus more likely to classify the sample as +1 next time

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

Learning Rate
True Class Label Predicted Class Label

equals 2 or -2 so moves weights closer to positive or negative target class

e.g.,

If: Then, ???

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm - What Happens
to Weights When It Predicts Wrong Class Label?

Learning Rate
True Class Label Predicted Class Label

equals 2 or -2 so moves weights closer to positive or negative target class

e.g.,

If: Then, ???
• Increases weight to a larger extent to be more positive for the sample next time
• Thus more likely to classify the sample as +1 next time

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm (e.g., 2D dataset)

0

1 1

2 2

All weights updated
simultaneously

1. Initialize weights to 0 or small random numbers
2. For each training sample:

1. Compute output value:

2. Update weights with the following definition:

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Perceptron: Learning Algorithm Example

• True Model: Y is 1 if at least two of the three inputs are equal to 1.

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example

• True Model: Y is 1 if at least two of the three inputs are equal to 1.

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- First Sample

?

Predicted

=
1 if

-1 otherwise• Compute output value: ;

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- First Sample

Predicted

=
1 if

-1 otherwise• Compute output value: ;

1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- First Sample
• Update weights: ; learning rate = 0.1

0

1 1

2 2

3 3

1

Predicted

? ? ? ?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- First Sample

0

1

2

3

= 0.1(-1-1)*1 = -0.2

= 0.1(-1-1)*1 = -0.2

= 0.1(-1-1)*0 = 0

= 0.1(-1-1)*0 = 0

1

Predicted

? ? ? ?

• Update weights: ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- First Sample

1
0

1

2

3

= 0.1(-1-1)*1 = -0.2

= 0.1(-1-1)*1 = -0.2

= 0.1(-1-1)*0 = 0

= 0.1(-1-1)*0 = 0

Predicted

• Update weights: ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

1
?

Predicted

=
1 if

-1 otherwise• Compute output value: ;

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

1

Predicted

=
1 if

-1 otherwise• Compute output value: ;

-1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

1
-1

Predicted

• Update weights: ; learning rate = 0.1

? ? ? ?

0

1 1

2 2

3 3

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample
• Update weights: ; learning rate = 0.1

0

1

2

3

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*0 = 0

= 0.1(1--1)*1 = 0.2

1
-1

Predicted

? ? ? ?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Second Sample

1
-1

Predicted

• Update weights: ; learning rate = 0.1

0

1

2

3

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*0 = 0

= 0.1(1--1)*1 = 0.2

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- One Epoch (All Examples)
• ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm Example
- Six Epochs (All Examples)
• ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Perceptron: Learning Algorithm

Python Machine Learning; Raschka & Mirjalili

Perceptron: Learning Algorithm
- What are the Hyperparameters?

• Learning rate
• Number of epochs (passes over the dataset)

Artificial Neurons: Historical Context

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression

1943

First Mathematical
Model of Neuron

1957
Perceptron

1960
Adaline

Adaline (ADAptive LInear NEuron)

Bernard Widrow and Ted Hoff, An Adaptive “Adaline” Neuron Using Chemical “Memistors”, 1960
Python Machine Learning; Raschka & Mirjalili

Adaline: Difference to Perceptron

Python Machine Learning; Raschka & Mirjalili

Adaline: Learning Algorithm

1. Initialize the weights to 0 or small random numbers.
2. For k epochs (passes over the training set)

1. For each training sample
1. Compute the predicted output value y
2. Compare predicted to actual output and compute "weight update" value
3. Update the "weight update" value

2. Update weights with accumulated "weight update" values
Unlike Perceptron, does not make updates per sample

http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm

1. Initialize the weights to 0 or small random numbers.
2. For k epochs (passes over the training set)

1. For each training sample
1. Compute the predicted output value y
2. Compare predicted to actual output and compute "weight update" value
3. Update the "weight update" value

2. Update weights with accumulated "weight update" values:

Learning Rate Take step away from gradientSum of squared errorsMathematical
Simplification

Key Idea: this is differentiable!!!

http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm
- Derivation of Equation to Update Weights

http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Learning Algorithm
- Derivation of Equation to Update Weights

Updates based on continuous valued prediction!Updates based on all samples
http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Adaline: Difference to Perceptron

Updates based on continuous
valued prediction rather than

integer predictions!

Python Machine Learning; Raschka & Mirjalili

Adaline: Comparison to Linear Regression

http://rasbt.github.io/mlxtend/user_guide/general_concepts/linear-gradient-derivative/

Artificial Neurons: Historical Context

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression

1943

First Mathematical
Model of Neuron

1958
Perceptron

1960
Adaline

1. Assumes Data is Linearly Separable

2. Results depend on initial values of weights
3. Despite clear weaknesses, artificial neurons are the foundation of

today’s state-of-art machine learning algorithms

Artificial Neurons: Limitations

Python Machine Learning; Raschka & Mirjalili

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Learning Algorithm for Adaline:
- Gradient Descent (Optimization)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Gradient Descent (Optimization)

1613

Human “Computers”

1945

First programmable
machine

Turing Test
& AI

1959

Machine
Learning

19561815 1974 1980 1987 1993

1rst AI
Winter

2nd AI
Winter

Linear &
polynomial
regression Ridge

Regression
Lasso

Regression

1847

Gradient
Descent

• Repeat:
1. Guess
2. Calculate error

• e.g., learn linear model for converting kilometers to miles

Miles Kilometers = miles x constant Kilometers

Gradient Descent – Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

$10 Shekels = dollars x constant

Gradient Descent – Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Error = Guess - Correct

Gradient Descent – Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent – Intuition

$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent – Intuition

Error = Guess - Correct$10 Shekels = dollars x constant

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

Gradient Descent – Intuition

$10 Shekels = dollars x constant

Gradient Descent – Intuition

• Repeat:
1. Guess
2. Calculate error

• e.g., learn constant multiplier to convert US dollars to Israeli shekels

• Idea: iteratively adjust constant (i.e., model parameter) to try to
reduce the error

Error = Guess - Correct$10 Shekels = dollars x constant

Gradient Descent Algorithms

• Approach: solve mathematical problems by updating estimates of the solution via
an iterative process to “optimize” a function

• e.g., minimize or maximize an objective function f(x) by altering x

• When minimizing the objective function, it also is often called interchangeably
the cost function, loss function, or error function.

Analogy
Hiking to the bottom of a mountain range…
blindfolded (or for a person who is blind)!

Start

End Point (Minimum)

Approach: Employ Calculus Concepts

• Idea: use derivatives!
• Derivatives tells us how to change the input x to make a small change to the output f(x)
• Functions with multiple inputs rely on a partial derivative for each input

• Gradient descent:
• Iteratively update f(x) by moving x in small steps with the opposite sign of the derivative

Louis Augustin Cauchy: Compte Rendu `a l’Acad´emie des Sciences of October 18, 1847

Which letter is the global minimum?

Which letter(s) are local minima?

Gradient Descent – Relationship to Adaline

• What was trying to be minimized for Adaline?

Python Machine Learning; Raschka & Mirjalili

Gradient Descent: Influence of Learning Rate

• Learning Rate: amount new evidence is prioritized when updating weights
• What happens when learning rate is too small?

• Convergence to good solution will be slow!
• What happens when learning rate is too large?

• May not be able to converge to a good solution
• How to address the cons of different learning rates?

• Gradually reduce learning rate over time

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch02/ch02.ipynb

Batch Gradient Descent (BGD)

• For each step (update), use calculations over all training examples
• What are strengths of this approach?

• Does not bounce too much

• What are weaknesses of this approach?
• Very slow or infeasible when dataset is large

• Which algorithm uses this?
• Adaline

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Stochastic Gradient Descent (SGD)

• For each step (update), use calculations from one training example
• What are strengths of this approach?

• Each iteration is fast to compute
• Can train using huge datasets (stores one instance in memory at each iteration)

• What are weaknesses of this approach?
• Updates will bounce a lot

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Mini-batch Gradient Descent

• For each step (update), use calculations over subset of training examples
• What are strengths of this approach?

• Bounces less erratically when finding model parameters than SGD
• Can train using huge datasets (store some instances in memory at each iteration)

• What are weaknesses of this approach?
• Very slow or infeasible when dataset is large

• Which algorithm uses this?
• To be explored in future classes

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

Today’s Topics

• Binary classification applications

• Evaluating classification models

• Biological neurons: inspiration

• Artificial neurons: Perceptron & Adaline

• Gradient descent

• Lab

Credits

• Image of Boulder: http://boulderrunning.com/where2run/five-trails-
for-hill-running-and-mountain-training/

• Stick person figure:
https://drawception.com/game/AsPNcppPND/draw-yourself-
blindfolded-pio/

• Figure: https://www.quora.com/What-is-meant-by-gradient-descent-
in-laymen-terms

• Figure and great reference:
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learn
ing_101_part1.html

http://boulderrunning.com/where2run/five-trails-for-hill-running-and-mountain-training/
https://drawception.com/game/AsPNcppPND/draw-yourself-blindfolded-pio/
https://www.quora.com/What-is-meant-by-gradient-descent-in-laymen-terms
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

