Object Detection

Danna Gurari

The University of Texas at Austin Fall 2019

https://www.ischool.utexas.edu/~dannag/Courses/CrowdsourcingForCV/CourseContent.html

This work is licensed under a Creative Commons Attribution 4.0 International License

Review

- Last week
 - Segmentation definition and applications
 - Segmentation evaluation
 - Crowdsourcing segmentations
- Assignments (Class Website & Canvas)
 - Reading assignment 5 due yesterday
 - Lab assignment 2 due in two weeks
 - Project pre-proposal due in two weeks
- Questions?

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU ^(C))
- Lab: drawing on images

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU \odot)
- Lab: drawing on images

Definition

- Object detection: localize every instance of an object
 - Semantic: pre-specified categories (e.g., cat, dog, person, ...)

[Russakovsky et al; IJCV 2015]

• Salient: any category

[Liu et al; CVPR 2007]

Applications: Detection

Mobile check deposit (e.g., Bank of America)

Pedestrian Detection (e.g., Blaxtair)

http://media.brintex.com/Occurrence/121/ Brochure/3435/brochure.pdf

Face detection (e.g., Facebook)

License Plate Detection (e.g., AllGoVision)

Applications: Counting

Counting Fish (e.g., SalmonSoft) http://www.wecountfish.com/?page_id=143

Business Traffic Analytics

Applications: Anomaly Detection

Surveillance

http://www.intel.com/content/www/us/en/embedded/digital-security-surveillance/dss-left-object-detection-demo.html

Applications: Search

Visually similar results

Search for specific items (e.g., Pinterest)

Object Detection versus Recognition

"What is the difference between object recognition and object detection?"

• Learn appearance of object rather than its image context; e.g., giraffe

Object Detection versus Segmentation

• Why choose object "segmentation" over "detection"?

http://mmcheng.net/msra10k/

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU ⁽²⁾)
- Lab: drawing on images

Object Detection – Multiple Objects

- For each object class (e.g., cat, dog, ...), compute:
 - Precision: fraction of correct detections out of all algorithm detections

Ground truth

Algorithm BB + its Confidence

[Russakovsky et al; IJCV 2015]

Object Detection – Multiple Objects

- For each object class (e.g., cat, dog, ...), compute:
 - Precision: fraction of correct detections out of all algorithm detections

Ground truth

AP: 0.0 0.5 1.0 0.3

[Russakovsky et al; IJCV 2015]

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU ^(C))
- Lab: drawing on images

1. Category Selection

- 20 categories chosen:

 1) Initial 4 categories stem from existing dataset
 2) 2006: added 6 classes
 3) 2007: added 10 classes

- Additional categories provide a broader domain and finer-grained categories, including visually similar things

(superscript indicates year of inclusion in the challenge: 2005¹, 2006², 2007³)

 1. Category Selection 20 categories chosen: 1) Initial 4 categories stem from existing dataset 2) 2006: added 6 classes 3) 2007: added 10 classes Additional categories provide a broader domain and finer-grained categories, including 	 2. Image Collection - 500,000 images retrieved from Flickr by querying with a number of keywords	 aeroplane, airplane, plane, biplane, monoplane, aviator, bomber, hydroplane, airliner, aircraft, fighter, airport, hangar, jet, boeing, fuselage, wing, propellor, flying bicycle, bike, cycle, cyclist, pedal, tandem, saddle, wheel, cycling, ride, wheelie bird, birdie, birdwatching, nest, sea, aviary, birdcage, bird feeder, bird table boat ship, barge, ferry, canoe, boating, craft, liner, cruise, sailing, rowing, watercraft, regatta, racing, marina, beach, water, canal, river, stream, lake, yacht bottle, cork, wine, beer, champagne, ketchup, squash, soda, coke, lemonade, dinner, lunch, breakfast bus, omnibus, coach, shuttle, jitney, double-decker, motorbus, school bus, depot, terminal, station, terminus, passenger, route car, automobile, cruiser, motorcar, vehicle, hatchback, saloon, convertible, limousine, motor, race, traffic, trip, rally, city, street, road, lane, village, town, centre, shopping, downtown, suburban cat, feline, pussy, mew, kitten, tabby, tortoiseshell, ginger, stray chair, seat, rocker, rocking, deck, swivel, camp, chaise, office, studio, armchair, recliner, sitting, lounge, living room, sitting room cow, beef, heifer, moo, dairy, milk, milking, farm 	 borse, gallop, jump, buck, equine, foal, cavalry, saddle, cante buggy, mare, neigh, dressage, trial, racehorse, steeplechase, tho oughbred, cart, equestrian, paddock, stable, farrier motorbike, motorcycle, minibike, moped, dirt, pillion, biker, trial motorcycling, motorcyclist, engine, motocross, scramble, sideca scooter, trail person, people, family, father, mother, brother, sister, aunt, un cle, grandmother, grandma, grandfather, grandpa, grandson, grand daughter, niece, nephew, cousin sheep, ram, fold, fleece, shear, baa, bleat, lamb, ewe, wool, flock sofa, chesterfield, settee, divan, couch, bolster table, dining, cafe, restaurant, kitchen, banquet, party, meal potted plant, pot plant, plant, patio, windowsill, window sill, yard greenhouse, glass house, basket, cutting, pot, cooking, grow train, express, locomotive, freight, commuter, platform, subway, un derground, steam, railway, railroad, rail, tube, underground, tracl carriage, coach, metro, sleeper, railcar, buffet, cabin, level crossing tv/monitor, television, plasma, flatscreen, flat screen, lcd, cr watching, dvd, desktop, computer, computer monitor, PC, consol game
categories, including visually similar things		 dio, armchair, recliner, sitting, lounge, living room, sitting room cow, beef, heifer, moo, dairy, milk, milking, farm dog, hound, bark, kennel, heel, bitch, canine, puppy, hunter, collar, leash 	watching, dvd, desktop, computer, computer monitor, PC, conso game

1. Category Selection	2. Image Collection	3. Image Verification + Image Annotation	
- 20 categories chosen:			
1) Initial 4 categories stem from existing dataset		- University of Leeds annotation party to recruit annotators	
2) 2006: added 6 classes	- 500,000 images	- Annotation guidelines & real-time	
3) 2007: added 10 classes	Flickr by	assistance	
- Additional categories provide a broader domain and finer-grained categories, including visually similar things	querying with a number of keywords	- Review of every annotation - Annotate only "minority" classes at end of party to increase the count of them	

VOC Guidelines:

What to label	All objects of the defined categories, unless:
	 you are unsure what the object is.
	 the object is very small (at your discretion).
	 less than 10-20% of the object is visible, such that you cannot
	be sure what class it is. e.g. if only a tyre is visible it may
	belong to car or truck so cannot be labelled car, but feet/faces
	can only belong to a person.
	If this is not possible because too many objects, mark image as bad.
Viewpoint	Record the viewpoint of the 'bulk' of the object e.g. the body rather
-	than the head. Allow viewpoints within 10-20 degrees.
	If ambiguous, leave as 'Unspecified'. Unusually rotated objects e.g.
	upside-down people should be left as 'Unspecified'.
Bounding box	Mark the bounding box of the visible area of the object (not the
	estimated total extent of the object).
	Bounding box should contain all visible pixels, except where the
	bounding box would have to be made excessively large to include a
	few additional pixels (<5%) e.g. a car aerial.
Truncation	If more than 15-20% of the object lies outside the bounding box
	mark as Truncated. The flag indicates that the bounding box does
	not cover the total extent of the object.
Occlusion	If more than 5% of the object is occluded within the bounding box,
	mark as Occluded. The flag indicates that the object is not totally
	visible within the bounding box.
Image quality/	Images which are poor quality (e.g. excessive motion blur) should
illumination	be marked bad. However, poor illumination (e.g. objects in
	silhouette) should not count as poor quality unless objects cannot be
	recognised.
	Images made up of multiple images (e.g. collages) should be
	marked bad.
Clothing/mud/	If an object is 'occluded' by a close-fitting occluder e.g. clothing,
snow etc.	mud, snow etc., then the occluder should be treated as part of the
	object.
Transparency	Do label objects visible through glass, but treat reflections on the
	glass as occlusion.
Mirrors	Do label objects in mirrors.
Pictures	Label objects in pictures/posters/signs only if they are photorealistic
	but not if cartoons, symbols etc.

VOC Parts Detection Guidelines:

* For each person, annotate 3 types of "parts": head, hands, and feet

* Only annotate images of sufficient size where (1) there is no uncertainty in the position of the parts (2) the head and at least one other part are visible

1. Category Selection	2. Image Collection	3. Image Verification + Image Annotation
- 20 categories chosen:		
1) Initial 4 categories stem from existing dataset		recruit annotators
2) 2006: added 6 classes	- 500,000 images	- Annotation guidelines & real-time
3) 2007: added 10 classes	Flickr by	assistance
- Additional categories provide a broader domain and finer-grained	querying with a number of keywords	 Review of every annotation Annotate only "minority" classes at end
categories, including visually similar things		of party to increase the count of them

Object Detection: VOC Challenge

Object Detection: VOC Challenge

Winner: highest scoring method on the hidden test set

Object Detection: VOC Annual Workshop

The PASCAL Visual Object Clas × +

 \leftarrow \rightarrow C (i) Not Secure | host.robots.ox.ac.uk/pascal/VOC/

The **PASCAL** Visual Object Classes Homepage

The PASCAL VOC project:

- · Provides standardised image data sets for object class recognition
- · Provides a common set of tools for accessing the data sets and annotations
- · Enables evaluation and comparison of different methods
- Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

Pascal VOC data sets

Data sets from the VOC challenges are available through the challenge links below, and evalution of new methods on these data sets can be achieved through the <u>PASCAL VOC Evaluation Server</u>. The evaluation server will remain active even though the challenges have now finished.

http://host.robots.ox.ac.uk/pascal/VOC/

"ILSVRC follows in the footsteps of the PASCAL VOC challenge... which set the precedent for standardized evaluation of recognition algorithms in the form of yearly competitions."

ILSVRC

1. Category Selection

200 ImageNet classes which:
1) exclude synset overlap
2) exclude object classes too "big" in the image
3) are basiclevel categories
4) backward compatible: VOC

Class name in	Closest class in	Avg object scale (%)	
PASCAL VOC	ILSVRC-DET	PASCAL	ILSVRC-
(20 classes)	(200 classes)	VOC	DET
aeroplane	airplane	29.7	22.4
bicycle	bicycle	29.3	14.3
bird	bird	15.9	20.1
boat	watercraft	15.2	16.5
bottle	wine bottle	7.3	10.4
bus	bus	29.9	22.1
car	car	14.0	13.4
cat	domestic cat	46.8	29.8
chair	chair	12.8	10.1
cow	cattle	19.3	13.5
dining table	table	29.1	30.3
dog	dog	37.0	28.9
horse	horse	29.5	18.5
motorbike	motorcyle	32.0	20.7
person	person	17.5	19.3
potted plant	flower pot	12.3	8.1
sheep	sheep	12.2	17.3
sofa	sofa	41.7	44.4
train	train	35.4	35.1
tv/monitor	tv or monitor	14.6	11.2

ILSVRC is more difficult!

Recall from ImageNet: Efficient Object Presence Labeling

• Brute force approach:

- 200 categories x 500,000 images = ??? queries
- 100,000,000 queries; inefficient!

Recall from ImageNet: Efficient Object Presence Labeling

Efficient Object Localization

• 3 Tasks:

Idea: each task has fixed and predictable amount of work

Drawing Training

Rule 1: Include all visible part and draw as tightly as possible.

WRONG: must be as tight as

possible!

CORRECT

CORRECT

included.

WRONG: must include all visible parts!

Rule 2: If there are multiple instances, include only ONE (any one).

CORRECT

CORRECT

WRONG: should include only one instance.

Rule 3: DO NOT draw on an instance that already has a bounding box, as shown below in yellow. Draw on a new instance.

Instructions with examples Look up "kit fox" in Wikipedia in Google Main

Draw a box around kit fox, prairie fox, Vulpes velox: small grey fox of the plains of western North America

Draw a bounding box around the following object in the image:

Instructions:

· If there are multiple instances, pick only ONE (any one).

SEE INSTRUCTIONS WITH EXAMPLES

Check here if there's NO kit fox, prairie fox, Vulpes velox in this image.

(Optional) Enter any comment you have:

matter as long as all visible parts are

WRONG: occluded parts do not

prev NO.6 submit

Drawing Task

Drawing Qualification Test

Draw a box around **lion cub**: a young lion This is a qualification test! Draw a bounding box around the following object in the image:

lion cub: a young lion

5 images in total. 4 left. This is a qualification test.

- Verify rules are understood with test images
- Train with 3 types of feedback messages:
- 1) bounding box is not sufficiently tight
- 2) object selected is not the solicited object
- 3) object selected already has bounding box

Efficient Object Localization

• 3 Tasks:

Quality Verification Training

- Instructions with illustrations explaining 3 rules:
 - Rule 1: Good bounding box must include instance of the required object.
 - Rule 2: Good bounding box must include all visible parts and be as tight as possible.
 - Rule 3: If there are multiple instances, a good bounding box must include only ONE (any one).

Quality Verification Task

Quality Verification Qualification Test

Successfully rate test images known to have good and bad bounding boxes

Quality Verification Quality Control

Trust work if worker does well on validation images in the task batch:

- Good bounding boxes: bounding boxes rated by multiple workers with strong consensus as ``good"

- Bad bounding boxes: perturb good bounding boxes

Efficient Object Localization

• 3 Tasks:

Coverage Verification Task

Main Instructions with examples Look up "bird" in Wikipedia in Google

Draw a box around **bird**: warm-blooded egg-laying vertebrates characterized by feathers and <u>SEE INSTRUCTIONS WITH EXAMPLES</u> forelimbs modified as wings

Question: Does every instance of "bird" have a bounding box (either green or yellow)?

YES, everyone has a bounding box.

NO, not everyone has a bounding box.

(Optional) Enter any comment you have:

 prev
 NO. 4
 next

 198 images in total.
 194 left. This is a preview.

 Please accept it first.

Coverage Verification Qualification Test

Successfully rate test images known to show all bounding boxes demarcated and some bounding boxes missing

Coverage Verification Quality Control

Trust work if worker does well on validation images in the task batch:

- Good coverage: coverage rated by multiple workers with strong consensus as ``good"

- Bad coverage: remove bounding boxes from images with ``good" coverage

Efficient Object Localization

• 3 Tasks:

Analysis of Task Decomposition Task

Task Name	Time per b.box		
Task Ivallie	Median	Mean	
Drawing	25.5s	50.8s	
Quality Verification	9.0s	21.9s	
Coverage Verification	7.8s	15.3s	
Total	42.4s	88.0s	

Proposed system: ~88.0 seconds per BB BB Consensus: ~116.9 seconds (50.8×2+15.3)

Consensus approach is at least 32.8% more expensive than proposed approach!

Object Detection: ILSVRC Challenge

Object Detection: ILSVRC Challenge

Winner: highest scoring method on the hidden test set

Object Detection: ILSVRC Annual Workshop

🔰 🚹 ImageNet Large Scale Visual R 🗙 🕂

→ C ③ Not Secure | image-net.org/challenges/LSVRC/2012/index#introduction

⊕ ☆

IM GENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012)

Introduction Task Timetable Citation^{new} Organizers Contact Workshop Download Evaluation Server

News

- September 2, 2014: <u>A new paper</u> which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset, analyzes the results of the past five years of the challenge, and even compares current computer accuracy with human accuracy is now available. *Please cite it when reporting ILSVRC2012 results or using the dataset.*
- March 19, 2013: Check out <u>ILSVRC 2013</u>!
- January 26, 2012: Evaluation server is up. Now you can evaluate you own results against the competition entries.
- December 21, 2012: Additional analysis of the ILSVRC dataset and competition results is released.
- October 21, 2012: Slides from the workshop are being added to the workshop schedule.
- October 13, 2012: Full results are released.

http://image-net.org/challenges/LSVRC/2012/index#introduction

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU ^(C))
- Lab: drawing on images

Today's Topics

- Object detection applications
- Object detection evaluation
- Crowdsourcing object detection
- Class discussion (chosen by YOU ^(C))
- Lab: drawing on images