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Review

• Last week:
• Scene classification applications 
• Scene classification datasets: key steps in creating them
• Scene classification datasets: scaling up with crowdsourcing and challenges

• Assignments (Canvas)
• Lab assignment 1 due yesterday
• Reading assignment 3 due next week
• Lab assignment 2 due in three weeks

• Questions?



Today’s Topics

• Attribute labeling applications

• Attributes: dataset creation approaches

• Beyond binary classification: relative/indistinguishable pairs of attributes

• Lab: Connecting to Amazon Mechanical Turk
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Description 
(as opposed to naming)

Attribute Definition

How would you describe this object?
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Description 
(as opposed to naming)

Attribute Definition

How would you describe this object?

* Learning 30,000 objects equates 
to a person learning ~4.5 objects 
per day every day for 18 years

* Can be easier to “describe” than 
to “name” the unknown



Attribute: Recognition Applications

e.g., iBird: describe a bird to learn what type it is
Demo: https://www.youtube.com/watch?v=J1C-Q-z_np0

e.g., recognize objects with common knowledge instead of expert knowledge 

https://www.youtube.com/watch?v=J1C-Q-z_np0


Applications: Expedite Search with Attributes

e.g., Clothes Shopping

e.g., Image Search



Additional Applications

• Recognize new objects with few/no examples; e.g., centaur

• Describe unusual aspects of a familiar object (intra-class variation); e.g.,



Today’s Topics

• Attribute labeling applications

• Attributes: dataset creation approaches

• Beyond binary classification: relative/indistinguishable pairs of attributes

• Lab: Connecting to Amazon Mechanical Turk



Attribute Recognition Datasets
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Attribute Recognition Datasets: a-Pascal, a-Yahoo
1. Image Collection

Ali Farhadi, Ian Endres, Derek Hoiem, & David Forsyth. Describing Objects by Their Attributes. CVPR 2009.

- 12,000 VOC 2008 images

- Internet search on Yahoo! 
for 12 object categories

- Objects are localized in 
images with bounding boxes 



Attribute Recognition Datasets: a-Pascal, a-Yahoo
1. Image Collection

1. Shape attributes: 2D and 3D 
properties such as “is 2D boxy”, “is 
3D boxy”, “is cylindrical“, etc

2. Part attributes: parts that are 
visible, such as “has head”, “has 
leg”, “has arm”, “has wheel”, “has 
wing”, “has window”

3. Material attributes: describe 
what an object is made of, 
including “has wood”, “is furry”, 
“has glass”, “is shiny”

Ali Farhadi, Ian Endres, Derek Hoiem, & David Forsyth. Describing Objects by Their Attributes. CVPR 2009.

- 12,000 VOC 2008 images

- Internet search on Yahoo! 
for 12 object categories

- Objects are localized in 
images with bounding boxes 

2. Category Selection

- 64 attribute categories 
chosen by authors



Attribute Recognition Datasets: a-Pascal, a-Yahoo
1. Image Collection

Ali Farhadi, Ian Endres, Derek Hoiem, & David Forsyth. Describing Objects by Their Attributes. CVPR 2009.

3. Human Labeling

- AMT crowd workers identify 
presence of each attribute

- 12,000 VOC 2008 images

- Internet search on Yahoo! 
for 12 object categories

- Objects are localized in 
images with bounding boxes 

- 64 attribute categories 
chosen by authors

2. Category Selection



Attribute Recognition Datasets
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Attribute Recognition Datasets: ImageNet
1. Image Collection

Olga Russakovsky & Li Fei Fei. Attribute Learning in Large-Scale Datasets. ECCV 2010.

- Candidate images are all 
ImageNet images for which 
objects are localized in 
images with bounding boxes 

- Include images in a 
“synset” for which the 
attribute is contained in the 
synset’s name or definition



Attribute Recognition Datasets: ImageNet
1. Image Collection

Olga Russakovsky & Li Fei Fei. Attribute Learning in Large-Scale Datasets. ECCV 2010.

2. Category Selection

- 20 categories: 
(1) 8 colors
(2) furry, long, metallic,   

rectangular, rough, 
round, shiny, smooth, 
spotted, square, 
striped, wet,        
vegetation,  wooden

- Candidate images are all 
ImageNet images for which 
objects are localized in 
images with bounding boxes 

- Include images in a 
“synset” for which the 
attribute is contained in the 
synset’s name or definition

Aim is to identify visual 
connections between objects



Attribute Recognition Datasets: ImageNet

- 20 categories: 
(1) 8 colors
(2) furry, long, metallic,   

rectangular, rough, 
round, shiny, smooth, 
spotted, square, 
striped, wet,        
vegetation,  wooden

1. Image Collection

Olga Russakovsky & Li Fei Fei. Attribute Learning in Large-Scale Datasets. ECCV 2010.

2. Category Selection

- Candidate images are all 
ImageNet images for which 
objects are localized in 
images with bounding boxes 

- Include images in a 
“synset” for which the 
attribute is contained in the 
synset’s name or definition

3. Human Labeling

- AMT crowd workers identify 
presence of each attribute for 
106 images per HIT



Attribute Recognition Datasets: ImageNet

1. Task Design 2. Crowdsourcing Platform

Instructions:
- Color attribute: is a 
significant part of the 
object (at least 25%) 
that color?
- Other attributes: 
would person describe 
the object as a whole 
using that attribute?
Interface:
- Label one attribute

3. Quality Control

- 3 workers label each image and it is 
kept only if 3 workers agree that the 
attribute is present

- “Honeypot”: 6 known images per 
included (unspecified what was done)

Olga Russakovsky & Li Fei Fei. Attribute Learning in Large-Scale Datasets. ECCV 2010.



Attribute Recognition Datasets: ImageNet

Olga Russakovsky & Li Fei Fei. Attribute Learning in Large-Scale Datasets. ECCV 2010.
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Attribute Recognition Datasets: SUN
1. Image Collection

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.

- 20 scenes from each of the 
717 SUN scene categories



Attribute Recognition Datasets: SUN
1. Image Collection 2. Category Selection

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.

- 20 scenes from each of the 
717 SUN scene categories

- Discover attribute types
from image descriptions by 
AMT workers: material, 
object & envelope, surface 
property, affordance, spatial

- Choose discriminative 
attributes offered by AMT 
workers for the 5 types

- Authors removed and 
added some categories 
resulting in 102 categories



Attribute Recognition Datasets: SUN
1. Image Collection 2. Category Selection

- 20 scenes from each of the 
717 SUN scene categories

3. Human Labeling

- AMT crowd workers identify 
presence of each attribute for 
48 images per HIT

- Discover attribute types
from image descriptions by 
AMT workers: material, 
object & envelope, surface 
property, affordance, spatial

- Choose discriminative 
attributes offered by AMT 
workers for the 5 types

- Authors removed and 
added some categories 
resulting in 102 categories

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.



Attribute Recognition Datasets: SUN

1. Task Design

Instructions:

Interface:

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.
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Attribute Recognition Datasets: SUN

1. Task Design

Instructions:

Interface:

(grid of 48 images)

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.



Attribute Recognition Datasets: SUN

1. Task Design 2. Crowdsourcing Platform 3. Quality Control

- Workers must pass a quiz
- List of “suspicious” workers created: 
any worker whose average # of labels 
or work time exceeds one standard 
deviation from average of all workers
- “Bad” workers filtered: found by 
sampling work from “suspicious 
workers” and from random sampling
- “Good” workers cultivated
- Relabel all images twice w/ 28 
trusted workers; use majority vote of 3

Instructions:

Interface:

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.



Attribute Recognition Datasets: SUN
1. Image Collection 2. Category Selection

- 20 scenes from each of the 
717 SUN scene categories

3. Human Labeling

- AMT crowd workers identify 
presence of each attribute for 
48 images per HIT

- Discover attribute types
from image descriptions by 
AMT workers: material, 
object & envelope, surface 
property, affordance, spatial

- Choose discriminative 
attributes offered by AMT 
workers for the 5 types

- Authors removed and 
added some categories 
resulting in 102 categories

Genevieve Patterson & James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Attributes. CVPR 2012.
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Attribute Recognition Datasets: COCO
1. Image Collection

- Subset of COCO images 
which have objects localized 
with bounding boxes 

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.



Attribute Recognition Datasets: COCO
1. Image Collection 2. Category Selection

- Subset of COCO images 
which have objects localized 
with bounding boxes 

- Attributes solicited from 
AMT crowd workers

- Sample of candidate 
adjectives mined from a 
New York Times Corpus 
were suggested to workers

- Attributes discovered for 
object categories in COCO

- Authors manually refined 
list to 196 attributes

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.



Attribute Recognition Datasets: COCO

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.

Task:



Attribute Recognition Datasets: COCO
1. Image Collection 2. Category Selection

- Subset of COCO images 
which have objects localized 
with bounding boxes 

3. Human-in-the-Loop Labeling

- AMT crowd workers identify 
presence of each attribute for 
48 images per HIT

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.

- Attributes solicited from 
AMT crowd workers

- Sample of candidate 
adjectives mined from a 
New York Times Corpus 
were suggested to workers

- Attributes discovered for 
object categories in COCO

- Authors manually refined 
list to 196 attributes



Attribute Recognition Datasets: COCO

1. Task Design

Instructions:

Interface:

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.
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1. Task Design

Instructions:

Interface:

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.



Attribute Recognition Datasets: COCO

1. Task Design

Instructions:

Interface:

(10  images)

(20  attributes)

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.



Attribute Recognition Datasets: COCO

1. Task Design 2. Crowdsourcing Platform 3. Quality Control

- Workers must pass a quiz

- List of “suspicious” workers created: 
any worker whose average 
disagreement with trusted annotations 
exceeds one standard deviation from 
average disagreement of all workers

- “Bad” workers filtered: found by 
verifying work of “suspicious workers”

- Use majority vote label of 3 people 

Instructions:

Interface:
($0.10 per HIT)

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.



Attribute Recognition Datasets: COCO
1. Image Collection 2. Category Selection

- Subset of COCO images 
which have objects localized 
with bounding boxes 

3. Human-in-the-Loop Labeling

- AMT crowd workers identify 
presence of each attribute for 
48 images per HIT

Genevieve Patterson & James Hays. COCO Attributes: Attributes for People, Animals, and Objects. ECCV 2016.

- Attributes solicited from 
AMT crowd workers

- Sample of candidate 
adjectives mined from a 
New York Times Corpus 
were suggested to workers

- Attributes discovered for 
object categories in COCO

- Authors manually refined 
list to 196 attributes
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Attribute Recognition Datasets: Summary

2. Category Selection 3. Image Labelling1. Image Collection

• Key steps in creating dataset:

How is this process different from the process used 
for object recognition and scene classification?



Attribute Recognition Datasets: Summary

2. Category Selection 3. Image Labelling1. Image Collection

• Key steps in creating dataset:

• Key steps for object/scene classification:
2. Image Collection 3. Image Verification1. Category Selection



Today’s Topics

• Attribute labeling applications

• Attributes: dataset creation approaches

• Beyond binary classification: relative/indistinguishable pairs of attributes

• Lab: Connecting to Amazon Mechanical Turk



Discussion: Challenges of Attribute Labeling

1. What makes each task difficult?
2. What label do you agree on for each task and why?



Relative Attributes (Rather Than Categorical)
Has a spectrum of strengths; e.g., 

• Expressions (smiling, surprised)
• Shapes (flat, boxy)
• Material properties (metallic, furry), 
• Functions (suitable, drinkable)

Aron Y & Kristen Grauman. Just Noticeable Differences in Visual Attributes. CCV 2016.



Relative Attributes for Shoe Shopping

Demo: https://www.youtube.com/watch?v=3A6YkHn6OU0

https://www.youtube.com/watch?v=3A6YkHn6OU0


Relative Attributes for Altering Appearance

e.g., simulate weight loss/gain
www.visualizeyourweight.com

e.g., simulate aging and different lifestyles
http://www.mastersingerontology.com/top-25-
incredible-age-progression-tools-online.html

http://www.visualizeyourweight.com/


Relative Attributes for Finding Criminals

e.g., Biometrics: “the suspect is taller than him” 
[D. Reid, M. Nixon, IJCB 2011] 



Today’s Topics

• Attribute labeling applications

• Attributes: dataset creation approaches

• Beyond binary classification: relative/indistinguishable pairs of attributes

• Lab: Connecting to Amazon Mechanical Turk


