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Review

* Last lecture on model compression:
* Motivation
* Pruning
* Knowledge distillation
* Final project report: Overleaf tutorial

e Assignments (Canvas):
* Final project outline due in one week

e Expect a Piazza announcement from Supriya Naidu about course feedback

e Questions?



Today’s Topics
* Motivation

* Hardware tricks

* Architectural tricks

* Training tricks

* Programming tutorial



Today’s Topics

* Motivation



Trend: More Compute-Intensive Models
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e.g., A Common Training Situation

a Boss: What did you do last month?

You: Trained the model for one epoch. ‘ el
[l

5 Boss: Umm, fine, what is your plan for next month?

e

You: Train... train the model for one more epoch?

[

s

-

S

bg/f,.'

https://hanlab.mit.edu/files/course/slides/MIT-TinyML-Lec13-Distributed-Training-I.pdf



Why |s Extensive Compute Undesirable?

- Time-consuming
- Expensive

- Increased environmental impact from carbon emissions



e.g., A Common Training Situation

Burning up
Energy used to train models, MWh

GPT-2 GPT-3
1.7 1287

Llama 2 PaLM
688 3,436

O 1,000 MWh could power an
average US home for 100 years

Sources: Epoch Al; FreeingEnergy

Economist, September 21, 2024



e.g., Current Inference Situation

“Google estimates that three-fifths of its total data-center energy use goes on billions of inference queries.”
“On average, a ChatGPT query needs nearly 10 times as much electricity to process as a Google search.”

Economist Sep 21, 2024; https://www.goldmansachs.com/insights/articles/Al-poised-to-drive-160-increase-in-power-demand



When |s Extensive Compute Unrealistic?

 Learning in resource-constrained settings; e.g., on-device due to privacy
concerns and poor/no Internet
* Inference in resource-constrained environments; e.g.,

Snowball

Security camera

L SO

Crop field analysis

https://www.ephotozine.com/article/19-things- i @

to-look-out-for-in-a-smartphone-camera--31055 Wearable_technology ulos/facebook-is-making-camera-glasses-ha-ha-oh-no Media server Autonomous cars

https://aws.amazon.com/blogs/machine-learning/demystifying-
machine-learning-at-the-edge-through-real-use-cases/



How to develop and use Al
models with less compute?



Today’s Lecture:
A Sampler of HW,
Architecture, and
Training Tricks

https://beyondmeresustenance.com/mexican-charcuterie-board/



Today’s Topics

e Hardware tricks



https://breetapp.com/blog/how-to-maximise-your-crypto-investment-portfolio
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ldeas

* Quantization: reduce precision



Quantization: Reduce Precision

* Which precision and ranges do different data types offer?
* 32 bits: e.g., ~ £3.4x10%® with 232 or ~4 billion values (default PyTorch type)
e 8 bits: [-127, 127]
* 4 bits: [-8, 7]

IEEE 754 single-precision 32-bit float
sign exponent (8 bit) fraction (23 bit) float32

Il BB |
OO0 |1 |11 1]1] 0] 0 HOSEIEOHEOMEOMEONECHEOSIOSRONMETREOMEUEONREONNO O MEURNOSSO R ORROSINO

31 30 23 22 0

bfloat16
sign exponent (8 bit) fraction (7 bit)

]
0 RO T s = £0 - 1O
15 14 7

|
ol oo o oo bfloatl6
6 0

https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-
parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766



Quantization: Reduce Precision

°e.g.,
* what number of bits are used in this example?
* what bin value should be used for each of the 9 quantized values?

index : [in bits] value

quantization >

0.1 | -0.6 | -0.07 '={‘-L—' 1 [01) 0
2 | [10) 0.4

1.2 0.4 0

32 bit 32 bit

https://xailient.com/blog/4-popular-model-compression-techniques-explained/



Quantization at Training

Activation: tanh - Initializer: Glorot Normal - Epoch 0

Z-values Weights
15
1.0
, 05 .
H h . . . % 0.0 Ec_»
oW muc pre.Cl-SlOn IS 3 _os 2
needed for training? “1.0
-15
e.g., recall batch hi h2 h3 ha h5 h2 h3 ha h5
. . Layers Layers
nOrmallzatlon Causes Activations Gradients
values to centeron 0 0.02
and range roughly 0.01
between -1 and 1 8 ;
E 2 000
g g +
-0.01
h2 h3 hl h2 h3 hd h5
Layers

Layers

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404



Quantization at Training

How much precision is
needed for training?

e.g., recall batch
normalization causes
values to centeron 0
and range roughly
between -1 and 1

e.g., 4 bits means values mapped to 16 floating point bins (i.e., 2% possible values)

Normal distributions
Mean=0
Standard deviations = 1

0.7,-0.53, -0.39, -0.28, -0.18, -0.09, 0. , 0.08, 0.16, 0.25, 0.34, 0.44, 0.56, 0.72, 1. ]| (Normalisation)

https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-
parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766



Quantization at Training

How much precision is
needed for training?

e.g., recall batch
normalization causes
values to centeron 0
and range roughly
between -1 and 1

Training Loss

3.0 1

N
(%))
!

%]
o
|

1.5 1

What are risks of using fewer bits?

—— FSDP bfloatl6
—— FSDP float32

T
5000

T
10000

Step

15000

20000

[Dietke, CVPR25]



Quantization at Training

How much precision is
needed for training?

e.g., recall batch
normalization causes
values to centeron 0
and range roughly
between -1 and 1

What are risks and benefits of using fewer bits (e.g., when done with pruning)?

' Actual No. Of

Parameters/
size

61M/240 MB

138M/512 MB

Actual Top-5 -
Error Rate
(%)

Method
Type

Pruning

Pruning and
quantizatio
n

Pruning

Para./size after Compression

compression

6.9 MB

Achieved

Top-5 Error Rate '
(%) after
Compression

Speedup
Achieved

Pruning and
quantizatio
n

11.3 MB

3x to 4x

https://xailient.com/blog/4-popular-model-compression-techniques-explained/



Quantization Options

Al00 80GB PCle Al00 80GB SXM

FPe4 (Exceeds default) 9.7 TFLOPS
FP64 Tensor Core (Exceeds default) 19.5 TFLOPS

FP32  (default 195 TFHLOPS
( ) How much is the speed-up?

(without *sparsity)

Tensor Float 32 (TF32)

156 TFLOPS §312 TFLOPS*
BFLOAT16 Tensor Core 312 TFLOPS 624 TFLOPS*
FP16 Tensor Core 312 TFLOPS §624 TFLOPS*

INT8 Tensor Core 624 TOPS [1248 TOPS*

https://www.nvidia.com/en-us/data-center/a100/



Quantization Options

* eg.,

FP64

FP64 Tensor Core

FP32

Tensor Float 32 (TF32)

BFLOATI16 Tensor Core

FP16 Tensor Core

INT8 Tensor Core

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

FP32
TF32
FP16
BF16

c Range Precision
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Greater speed-ups
from greater cuts
in precision!



Quantization Options: A100 vs H200

NVIDIA H200 Tensor Core GPU

Form Factor H200 SXM'

FP64 34 TFLOPS 9.7 TFLOPS

FP64 Tensor Core 67 TFLOPS 19.5 TFLOPS

FP32 67 TFLOPS 19.5 TFLOPS

TF32 Tensor Core 989 TFLOPS? 156 TFLOPS | 312 TFLOPS*
BFLOATI16 Tensor Core 1,979 TFLOPS? 312 TFLOPS | 624 TFLOPS*
FP16 Tensor Core 1,979 TFLOPS? 312 TFLOPS | 624 TFLOPS*

US? f.or 3,958 TFLOPS? 624 TOPS | 1248 TOPS*
training?

https://www.fibermall.com/blog/why-gpu-require-hbm.htm; https://www.nvidia.com/en-us/data-center/a100/



Quantization at Inference

e.g., scale to [-128, 127] with 8 bits

e Qutliers set to minimum and maximum

-amax

Sw Sw amax

¥ \ Outlier
: : : [ Clipping
Rounding ¥, i
Signed Int8 i 1_';"} il
!q 128 I 127

Floating point x;

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/



DeepSeek-V3 now runs at 20
tokens per second on Mac Studio,
and that's a nightmare for OpenAl

r:*-f“ﬁ‘ Awni Hannun
®%. The new Deep Seek V3 0324 in 4-bit runs at > 20 toks/sec on a 512GB M3

e

Ultra with mix-Im!

https://venturebeat.com/ai/deepseek-v3-now-runs-at-20-tokens-per-second-on-mac-studio-and-thats-a-nightmare-for-openai/



ldeas

* Operator fusion: reduce memory read/writes



ldea: Fuse Tasks to Reduce Overhead

Not Fused Fused

o
. M [ppl..
—> Ay — T

S 3 & - &

(e.g., go to school, return home, buy groceries) (e.g., go to school and then buy groceries)

https://quadric.io/2023/09/13/how-to-unlock-the-power-of-operator-fusion-to-accelerate-ai/



Approach: Fuse Tasks to Reduce Overhead

Avoid shuttling data back-and-forth to e Moy,
external memory by determining what
operations to fuse so relevant information
stays in limited memory close to the GPU

- When would you prefer L2 cache versus
Load Register Memory?

https://quadric.io/2023/09/13/how-to-unlock-the-power-of-operator-fusion-to-accelerate-ai/



Approach: Fuse Tasks to Reduce Overhead

This approach is especially important given HW trends:
processor performance (tripling every two years) External Memory
exceeds that of memory access speed (~half as much)

Hitting the memory wall
Increase from first datapoint, log scale
o Imtimes
100,000x
Processor performance
e 10,000x
1,000x
100x
Memory access speed
10x
1x
1 1 [ Ll 1 | 1 L T 1 | T Ll LI | | 1 T Ll Ll | Ll LI
1997 2005 10 15 20 23

Source: Amir Gholami et al., University of California

(Economist, Sep 21, 2024) https://quadric.io/2023/09/13/how-to-unlock-the-power-of-operator-fusion-to-accelerate-ai/



FlashAttention: Fuses Attention Operations

Outer Loop

Relevant information stays in KT dx N
limited memory close to GPU

Copy Block to SRAM

Outer Loop

Q:Nxd : > V:NXd
<\ SRAM: 19 TB/s (20 MB) : :
SRAM A .
!
Sl O\ HBM: 1.5TB/s (40 GB) 2 : | o
HBM o Compute Block -
T on SRAM = .
. g 1E c
TET (T a7 DRAM: 12.8 GB/s £ 2 8
(CPU DRAM) (>1TB) 15
. . \J : "O \J
Memory Hierarchy with Output to o
Bandwidth & Memory Size sm(QKT)V: Nxd
Inner Loop i
FlashAttention

Dao et al. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. Neurips 2022



FlashAttention: Fuses Attention Operations

Outer Loop
. . . >
Relevant information stays in KT dx N .
limited memory close to GPU Copy Block to SRAM ATENEGE gIGEIEZ
Q:Nxd , OterleoR = wuwxd ;I Matmul
'GPU : VT )
SRAM SRAM: 19TB/s (20 MB) E ____________ .Ir Dropout
' -
el O\ HBM: 1.5 TB/s (40 GB) 2 ' | copy M | © :
/o : el | Sotma
‘ o | 13 e -
@ ETLY I A DRAM: 12.8 GB/s £ 2 S Fused
(CPUDRAM) Y (>1TB) 18] Mask  Kernel
| \ 1y : —
. . v Tvatm [
Mem?ry Hierarchy Wlt!\ Guti o HRM :
Bandwidth & Memory Size sm(QKT)V: Nxd PyTorch FlashAttention
Inner Loop i
FlashAttention

Dao et al. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. Neurips 2022



FlashAttention?

KT

{ g e Y
| I |

' Warp1 f Warp 2
Q N o et PR

Warp 1-4

Accessed by all warps

i Split across different warps

(a) FLASHATTENTION

! Warp3 | Warp4

I
I
I

KT
Warp 1-4
vV Q V

PR p—————— l/ - T T \l
Warp 1 . Warpl |
\l ; e \..’I

Warp2 - Warp 2 | Warp 1-4
) T
Warp 3 . Warp 3 :
| Warp4 | i '

. Warp4 |

Accessed by all warps

} Split across different warps

(b) FLASHATTENTION-2

An estimated 2x speed-up compared to FlashAttention!

Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. arXiv 2023



ldeas

* Caching: reduce computation



Step 1

KV Caching: Store Keys and Values for Attention

P Only applies to generative (autoregressive) models

Q

Query Token 1

(1, emb_size)

Query Token 1

(1, emb_size)

KT

L uajo] Ay

(emb_size, 1)

L uol A3y

(emb_size, 1)

D Values that will be masked

QK'

(1, 1)

D Values that will be taken from cache

Vv Attention
Value Token 1 Token 1
(1, emb_size) (1, emb_size)
Vv Attention
Value Token 1 Token 1
(1, emb_size) (1, emb_size)

(Operations repeated in
future time steps have
results stored in cache)

Limitations: uses memory
inefficiently since needed
cache size regularly changes
and reserves lots of cache
memory to support large sizes

https://medium.com/@joaolages/kv-caching-explained-276520203249



VLLM: Overcomes Limitations of KV Caching

* Inspiration: virtual memory with paging used in operating systems to limit
memory fragmentation by allocating memory “pages” on demand

* |dea: an LLM serving engine using PageAttention, which allocates KV cache into
fixed-size blocks (aka, “pages”) that don’t have to be contiguous

Worker 0 Key and value vectors
Scheduler Cache Model , Block 1 | years ago our | fathers
Engine Shard 0 -’
Block 2 f
KV Cache Manager Worker 1 Qu?ry o oc brought | forth
Cache Model 1 vector
Engine Shard 1 -’
i - Block 0 | Four score and seven
/ \ Worker N - 1
CPU Block | | GPU Block = Model E . : : :
Aot T f=n N ’ Figure 5. Illustration of the PagedAttention algorithm,
where the attention key and values vectors are stored as
Figure 4. vLLM system overview. non-contiguous blocks in the memory.

Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention. SOSP 2023



ldeas

 Distributed optimization: parallelize computation



Recall Multi-Thread Programming

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
- ————

— thread

multithreaded process

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html



Distribute Neural Network Computations
Across Multiple Devices (e.g., GPUs, CPUs)

* Key questions:

* What tasks to delegate to each device?

e What communication to facilitate across devices and how to do this?

* Popular Methods:

e Distributed Data Parallel (DDP): each “machine” holds copy of model to perform forward and
backward passes on different data subsets, with cross-machine communication (i.e., check-pointing)

to identify average gradients across machines
* If you had 4 GPUs, approximately what amount of speed-up might you expect?

e Distributed Lower-Communication Training (DiLoCo): distributes training to multiple “islands” of a
massive cluster (e.g., 100,000 GPUs), with regular checkpointing in each and less checkpointing
across them, enabling devices to come from different sources (e.g., locations, companies, countries)

» Zero Redundancy Optimizer (ZeRO): supports parallelism without code changes; partitions model
training states (e.g., weights, gradients) across devices, enabling training of very large models (e.g.,
trillions of parameters)



Summary: How to Get a Greater
Return on Your HW Investments

* Quantization: reduce precision
* Operator fusion: reduce memory read/writes
* Caching: reduce computation

 Distributed optimization: parallelize computation



Today’s Topics

e Architectural tricks



ldeas

* Mixture of experts: reduce computation



Mixture of Experts

* Can activate only a subset of model parameters at inference time

.................... .I

Router

e

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Expert Implementation

Decoder Decoder
(dense model) | (sparse model)j
( Layer Norm ) ( Layer Norm )
| |
Masked Self- Masked Self-
Attention Attention
- @ —®
Replace the FFNN
. , with many FFNNs
__Layer Norm | each representing ( Layer Norm )
an “expert”. :
>

v v

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Experts

* Focus is on specific tokens, rather than topics (e.g., computer science)

Layer 1 - 3 o b ‘Expert 4 l :
Punctuation Verbs Conjunctions Visual
(,.:&-7?, etc.) (said, read, (the, and, if, not,  Descriptions
miss, etc.) etc.) (dark, outer,
yellow, etc.)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Routers (aka, Gate Network)

* Given an input, the router selects the best-suited expert(s)

Input
I

Router

oo ETREEE (T TR YR
S Expert1 M Expert2 m _Expert4 |

S  Expertl m “experts ] experta

Output

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Routers

* Given an input, the router selects the best-suited expert(s); e.g.,

Sparse Model i

Punctuation Verbs Conjuntions Numbers
CO00O0CO0@0e

not activated not activated not activated

activated

a https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Expert: Dense vs Sparse Layer

Router Router

Beneficial for inference time!

-----------

Learning challenge: load balancing
to apply similar importance to
many experts rather than
overfitting to few experts

Dense MoE Sparse MoE

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Router Implementation

MoE Layer
Router
|
Softmax
SEEEEEEREES 45 ]
31 Probabilities
- 19 for each expert
ctivate |—|
selected 00 - |

expert
i | Not activated

n

.

ceep=.45.caaa-- > Weighted
activation

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts




Mixture of Expert: Inference Time Set-Up

( Layer Norm )
1

e Masked Self-
Attention

—®

( Layer Norm )

A
v
( LMHead )

Sparse Parameters
(loading model)
Q-0+ +0O+
+CE0+ 00+
4 experts loaded

( Layer Norm )
1

e Masked Self-
Attention

—®

( Layer Norm )

( LMHead )

Active Parameters |
(using model)

0-0+0+0+ Fewer inference

S—

.......... : tlme CompUtatiOnS!

2 experts used

—

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



Mixture of Experts: Routers

* Paths can differ at different time steps for autoregressive models
f What[is [MoE 2 [MoE JRllf what[is [MoE[ ? [MoETis |

First pass Second pass Third pass

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts



ldeas

* Multi-token prediction: accelerate computation



Multi-Token Prediction

Discarded at inference (or used to speed up model up to 3 times)

4-token 2 B 3 4 . 5 8
targets

Use N output heads

to predict N tokens

at each time step:
Inputs 1 2 3 4

Gloeckle et al. Better & Faster Large Language Models via Multi-token Prediction. April 2024



Summary

* Mixture of experts: reduce computation

* Multi-token prediction: accelerate computation



Today’s Topics

* Training tricks



Pioneering Methods: Historical Context
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ldeas

e Curriculum learning



Accelerate Learning with a Curriculum

Random Order of Examples Ordered Examples

Table of Cantemts

o i e b 0 b
hiils Rl vy Pkt

Big Book of Math; Dinah Zike

How did you learn math?



Accelerate Learning with a Curriculum

Random Order of Examples Ordered Examples

How did you learn to read?



Key Questions In Creating a Curriculum

* How many levels to include in the curriculum from easy to hard?

* How to define what is “easier” versus “harder”?



How to Evaluate a Curriculum?

* How good is the model? - generalization performance on test data

* How long did learning take? - training convergence speed



Pioneering Task: Shape Prediction

Classify each shape as rectangle, ellipse, or triangle

« & 3*
~ o.' -.

Solution: 3-layer neural network
1. Easy (Basic): less shape variablility (squares, circles, and equilateral triangles); 10,000 examples
2. Hard (Geom): more shape variability (rectangles, ellipses, and triangles); 10,000 examples

Bengio et al., Curriculum Learning, 2009



Shape Prediction: Curriculum Learning

Results when training on
easier examples for n epochs
and then training on harder

Q.21

. 9 4
examples until 256 epochs or =
validation error hits minimum @
(20 random initializations). N — —
o 2. |
Ll |

What are the benefits of
curriculum learning?

Q17
1

Q.16
1

0.15

How many epochs should we
train the model before
iIntroducing hard examples?

4 8 16 32 B4 128

swilch epoch

No curriculum

Bengio et al., Curriculum Learning, 2009



ldeas

e Dataset distillation



Distill Large Dataset Into a Small
Number of Synthetic Images

Dataset Train
Distillation

Similar Test
Performance

N images M images

Train

Yiu, Lu, and Wang. Dataset Distillation: A Comprehensive Review. PAMI 2023



Pioneering Paper

" " - -

F .";'.ﬁ:.':T_ :-’-I.'g'::_ o
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60K images

T ey
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PA: % % |
El.lﬂﬂ.

DA
50K images
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"3 e e A5
g o
nap -
£ 5 - 3 B
’ & Lo s e, I
‘] & Ly v S R

1 0 images

Synthetic training images enable more
efficient training (i.e., less training
images and so gradient descent steps)
while reducing data storage costs and
bypassing privacy concerns

Wang et al. Dataset Distillation. arXiv 2018



Typical Approach: Many Optimization Objectives

Algorithm 1: Dataset Distillation Framework

Input: Original dataset 7
Output: Synthetic dataset S

Initialize S > Random, real, or core-set

while not converge do
Get a network &8 > Random or from some cache

Update 6 and cache it if necessary
> Via S or T, for some steps
Update S via L(S,T)
> PerM, ParM, DisM, or their variants

end

return S

Yiu, Lu, and Wang. Dataset Distillation: A Comprehensive Review. PAMI 2023



Many Optimization Objectives

Dataset Distillation

—

Performance Matching

VAN

Meta Learning KRR
|

e.g., Pioneering 2018 paper “optimize[s]
a synthetic dataset such that neural
networks trained on it could have the
lowest loss on the original dataset”

Distribution Matching Parameter Matching
Single Layer Multi Layer Single-Step Multi-Step
“key idea... train the same network using rather than match impacts on
synthetic datasets and original datasets for training, “obtain synthetic data
some steps, respectively, and encourage the whose distribution can

consistency of their trained neural parameter”  approximate that of real data”

https://blog.roboflow.com/what-is-dataset-distillation/



Summary

e Curriculum learning

e Dataset distillation



Today’s Topics

* Programming tutorial



Today’s Topics
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