Model Compression

Danna Gurari

University of Colorado Boulder Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

Review

- Last lecture: Practical Systems-Level Development Challenge
 - Motivation
 - Data curation
 - Model maintenance
 - TAs' experiences
- Assignments (Canvas):
 - Lab assignment 3 grades out
 - Project outline due in 1.5 weeks
- Questions?

Today's Topics

- Motivation
- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

Today's Topics

Motivation

- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

Trend: Parameter-Heavy Models (Scaling Law)

Notable AI Models

Publication date (i)

https://epoch.ai/data/notable-ai-models#explore-the-data

Trend: Parameter-Heavy Models

How many parameters are estimated to be in GPT-4 (was used for ChatGPT)?

- (a) 176 million
- (b) 1.76 billion
- (c) 17.6 billion
- (d) 170.6 billion
- (e) 1.76 trillion

Modern Neural Networks Are a Mismatch for Many Real-World Applications

https://www.ephotozine.com/article/19-thingsto-look-out-for-in-a-smartphone-camera--31055

https://en.wikipedia.org/wiki/ Wearable_technology

https://www.buzzfeednews.com/article/katienotopo ulos/facebook-is-making-camera-glasses-ha-ha-oh-no

https://aws.amazon.com/blogs/machine-learning/demystifyingmachine-learning-at-the-edge-through-real-use-cases/

Autonomous cars

Modern Neural Networks Are a Mismatch for Many Real-World Applications

- Large inference time incompatible for real-time applications
- Large memory footprint incompatible for limited memory devices
- Large computational cost incompatible for limited battery devices
- Larger environmental costs

Idea: develop compact models so deep learning models can be used more efficiently and for more applications

Today's Topics

- Motivation
- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

Idea: Trim Model to Necessary Content

https://en.wikipedia.org/wiki/Topiary:

Pruning

https://xailient.com/blog/4-popular-model-compression-techniques-explained/

Pruning: When?

https://xailient.com/blog/4-popular-model-compression-techniques-explained/

Pruning: What?

Often remove:

- individual weights
 - e.g., zero low values
- structures

e.g., layers

Latter is structural, like a surgery!

https://xailient.com/blog/4-popular-model-compression-techniques-explained/

Pruning: How Much?

https://www.datature.io/blog/a-comprehensive-guide-to-neural-network-model-pruning https://xailient.com/blog/4-popular-model-compression-techniques-explained/

What's Currently Interesting? e.g.,

(arXiv 2025)

Multi-Cue Adaptive Visual Token Pruning for Large Vision-Language Models

Bozhi Luan¹ Wengang Zhou¹ Hao Feng¹ Zhe Wang² Xiaosong Li² Houqiang Li¹ ¹ University of Science and Technology of China, ² Huawei Technologies {bzluan,haof}@mail.ustc.edu.cn, {zhwg,lihq}@ustc.edu.cn, {wangzhe226,lixiaosong20}@huawei.com

Combines spatial information and token similarity to remove redundant tokens

Today's Topics

- Motivation
- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

Intuition

A student learns from a knowledgeable teacher

https://www.waterford.org/education/teacher-student-relationships/

Key Question: What is Knowledge?

http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf

http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf

Target mapping: ground truth (1-hot vector)

Target mapping: probability distribution from a model offers further insights into similarities and differences of categories

Target mapping: probability distribution from a model offers further insights into similarities and differences of categories

- Attempts to identify ground truth category
- Also, shares that 2 has similar characteristics to 7 and 1

Target mapping: probability distribution from a model offers further insights into similarities and differences of categories

- Attempts to identify ground truth category
- Also, shares that bear has similar characteristics to dog and cat

 \mathbf{O}

Target mapping: probability distribution from a model offers further insights into similarities and differences of categories

- Attempts to identify ground truth category
- Also, shares that bear has similar characteristics to dog and cat

Idea: teach about ground truth and its relationships to other categories

Hinton, Vinyals, and Dean. Distilling the knowledge in a neural network. arXiv 2015.

Knowledge Distillation: Teach Student the "Dark Knowledge" of Teacher

Knowledge Distillation: Teach Student the "Dark Knowledge" of Teacher

Recall Softmax: converts scores into a probability distribution that sums to 1

https://wandb.ai/authors/knowledge-distillation/reports/Distilling-Knowledge-in-Neural-Networks--VmlldzoyMjkxODk

Generalized Softmax: converts scores into a probability distribution summing to 1, with temperature

 $\sigma(\mathbf{z})_i = \frac{\exp(\mathbf{z}_i/\mathbf{T})}{\sum_i \exp(\mathbf{z}_i/\mathbf{T})}$

What is the typical value of T used for softmax?

Idea: set the temperature to a value greater than 1

Generalized Softmax: converts scores into a probability distribution summing to 1, with temperature

https://medium.com/@harshit158/softmax-temperature-5492e4007f71

Generalized Softmax: converts scores into a probability distribution summing to 1,

Larger T values provides greater information about which categories are similar to the teacher's predicted category

https://medium.com/@harshit158/softmax-temperature-5492e4007f71

Generalized Softmax: converts scores into a probability distribution summing to 1, with temperature; e.g., T=5

https://wandb.ai/authors/knowledge-distillation/reports/Distilling-Knowledge-in-Neural-Networks--VmlldzoyMjkxODk

Knowledge Distillation: Teach Student the "Dark Knowledge" of Teacher

"Distillation" loss computed to bring student's distribution closer to that of the teacher, using the generalized softmax equation

Knowledge Distillation: Teach Student the "Dark Knowledge" of Teacher

Total loss computed during training is a weighted sum of the conventional cross entropy loss and the "distillation loss"

Knowledge Distillation: At Test Time

Arguably, Any Neural Network Student Could Learn from Any Neural Network Teacher

Arguably, Any Neural Network Student Could Learn from Any Neural Network Teacher

Knowledge Distillation Enhancement: Hints

Encourage student (FitNet) to mimic the teacher's feature responses; e.g., output of guided layer should match the output of hint layer

Knowledge Distillation Enhancement: Hints

Encourage student (FitNet) to mimic the teacher's feature responses; e.g., output of guided layer should match the output of hint layer

W_s^M Wg W_s^2 W_s^1

Training conducted to learn the intermediate feature

Layer added to match size of the hint's output layer

Teacher and Student Networks (a)

(b) Hints Training

Romero et al. Fitnets: Hints for thin deep nets. ICLR 2015.

Knowledge Distillation Enhancement: Hints

Encourage student (FitNet) to mimic the teacher's feature responses; e.g., output of guided layer should match the output of hint layer

(c) Knowledge Distillation

Teacher and Student Networks (a)

(b) Hints Training

W

W_{Guided}

Romero et al. Fitnets: Hints for thin deep nets. ICLR 2015.

Example: Predict Category from 1000 Options

- Evaluation metric: % correct (top-1 and top-5 predictions)
- Dataset: ~1.5 million images
- Source: images scraped from search engines, such as Flickr, and labeled by crowdworkers

Example: Do Bigger, More Accurate Models Make Better Teachers?

Cho and Hariharan. On the Efficacy of Knowledge Distillation. ICCV 2019; https://blog.csdn.net/qq_22749699/article/details/79460817

Example: Do Bigger, More Accurate Models Make Better Teachers?

(% = Top-1 error rates)

Teacher	Teacher Error (%)	Student Error (%)
ResNet18	30.24	30.57
ResNet34	26.70	30.79
ResNet50	23.85	30.95

What is the student's performance trend from larger, more accurate teachers?

Example: Do Bigger, More Accurate Models Make Better Teachers?

(% = Top-1 error rates)

Teacher	Teacher Error (%)	Student Error (%)
-	-	30.24
ResNet18	30.24	30.57
ResNet34	26.70	30.79
ResNet50	23.85	30.95

Student performance not only drops for larger teachers but the models distilled from teachers perform worse than training the student from scratch!

Example: Why Might Student Performance Drop as Teacher Size Grows?

- 1. More accurate models are more confident and so need higher temperatures to learn the "dark knowledge" of category relationships
- 2. Student mimics teacher but the loss function is mismatched from the evaluation metric

3. Student fails to accurately mimic teacher

Experimental analysis suggests this is the reason

Example: Why Might Students Fail to Mimic Teachers?

Scratch Full KD 70-Error (%) 09 40-30-80 20 40 60 100 0 # Epochs

Hypothesis: student underfitting from small capacity and so "minimizing one loss (KD loss) at the expense of the other (cross entropy loss)" (ResNet18 - ResNet34) Full KD vs Scratch

Example: Why Might Students Fail to Mimic Teachers?

How to overcome this issue?

- Early stopping with KD loss (ESKD) to leverage its benefit at the start of training

Cho and Hariharan. On the Efficacy of Knowledge Distillation. ICCV 2019

Example: How Does ESKD Compare To Training A Student from Scratch?

Teacher	Top-1 Error (%, Test)
ResNet18	30.57
ResNet18 (ES KD)	29.01
ResNet34	30.79
ResNet34 (ES KD)	29.16
ResNet50	30.95
ResNet50 (ES KD)	29.35

Training a model with early stopping knowledge distillation loss leads to better results than training from scratch!

Example: Are Results from ESKD Better When Using Bigger, More Accurate Models As Teachers?

Teacher	Top-1 Error (%, Test)
ResNet18	30.57
ResNet18 (ES KD)	29.01
ResNet34	30.79
ResNet34 (ES KD)	29.16
ResNet50	30.95
ResNet50 (ES KD)	29.35

No; the student may still be struggling with underfitting due to an insufficient representational capacity

Example: To Address The Capacity Problem Why Not Instead Distill to Intermediate Sizes?

Performs almost identically to a model that is distilled directly from a large to small size; does not address the core problem:

The student must be in the solution space of the teacher

What's Currently Interesting? e.g.,

(Neurips 2024)

What Knowledge Gets Distilled in Knowledge Distillation?

Utkarsh Ojha* Yuheng Li* Anirudh Sundara Rajan*

Yingyu Liang Yong Jae Lee

Today's Status Quo: Multiple Model Sizes; e.g.,

😣 Spaces	Spaces 🛯 🧧 huggingface/inference-playground 🗅 🗇 like 124 💽 Running 🛛 🌏		
	Q Search models		
			deepseek-ai / DeepSeek-Coder-V2-Lite-Instruct
			deepseek-ai / deepseek-IIm-67b-chat
			deepseek-ai / DeepSeek-R1
			deepseek-ai / DeepSeek-R1-Distill-Llama-70B
			deepseek-ai / DeepSeek-R1-Distill-Llama-8B
			deepseek-ai / DeepSeek-R1-Distill-Qwen-1.5B
			deepseek-ai / DeepSeek-R1-Distill-Qwen-14B
			deepseek-ai / DeepSeek-R1-Distill-Qwen-32B
			deepseek-ai / DeepSeek-V3
			HuggingFaceH4 / starchat2-15b-v0.1

Today's Topics

- Motivation
- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

Project Outline

- Latex in Overleaf to create professional-looking document
- Related work: How to find them?
 - Market search
 - Publication search (e.g., Google Scholar)
 - New Al tools
 - e.g., "Deep Research" from OpenAI, with prompt: <u>https://taaft.notion.site/The-Ultimate-Deep-Research-Prompt-Engineer-1c0ed82cbfd38068aa61ff326133fc24</u>
 - e.g., Al2's paper finder: <u>https://allenai.org/blog/paper-finder</u>

Today's Topics

- Motivation
- Pruning
- Knowledge distillation
- Final project report: Overleaf tutorial

